NO860180L - - Google Patents

Info

Publication number
NO860180L
NO860180L NO860180A NO860180A NO860180L NO 860180 L NO860180 L NO 860180L NO 860180 A NO860180 A NO 860180A NO 860180 A NO860180 A NO 860180A NO 860180 L NO860180 L NO 860180L
Authority
NO
Norway
Prior art keywords
cellulose
cells
fibers
meq
cell
Prior art date
Application number
NO860180A
Other languages
Norwegian (no)
Inventor
Jack Litwin
Original Assignee
Statens Bakteriologiska Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statens Bakteriologiska Lab filed Critical Statens Bakteriologiska Lab
Publication of NO860180L publication Critical patent/NO860180L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte ved dyrking av celler, spesielt diploide celler og spesielt diploide celler fra pattedyr så som menneskeceller, blant annet fibroblastceller, i et dyrkningsmedium i nærvær av cellulosefibre av en spesiell type. Cellulosefibrene består av cellulose med positive ladninger og/eller anionbyttercellulose. Denne type cellulose er velkjent, og visse typer av slik cellulose er f.eks. beskrevet i "Techniques in Protein Chemistry", Elsevier Publish-ing Company, 1967, I. Leggett, s. 290-304. Velegnet materiale føres i handelen, f.eks. av Sigma Chemical Co., St. Louis, MO, USA. I disse celluloseanionbyttere er vanlige aminogrupper som kan være substituerte på forskjellige måter, bundet til cellu-losemolekyler og gir anionbytteregenskaper. The present invention relates to a method for growing cells, especially diploid cells and especially diploid cells from mammals such as human cells, including fibroblast cells, in a culture medium in the presence of cellulose fibers of a special type. The cellulose fibers consist of cellulose with positive charges and/or anion exchange cellulose. This type of cellulose is well known, and certain types of such cellulose are e.g. described in "Techniques in Protein Chemistry", Elsevier Publishing Company, 1967, I. Leggett, pp. 290-304. Suitable material is carried in the trade, e.g. by Sigma Chemical Co., St. Louis, MO, USA. In these cellulose anion exchangers, common amino groups, which can be substituted in various ways, are bound to cellulose molecules and provide anion exchange properties.

Cellene som dyrkes ifølge oppfinnelsen består fortrinnsvis av såkalt forankringsavhengige celler som normalt dyrkes f.eks. i suspens jon. The cells cultivated according to the invention preferably consist of so-called anchoring-dependent cells which are normally cultivated e.g. in suspension ion.

Følgende beskrivelse av forsøk ifølge oppfinnelsen utgjør en del av foreliggende beskrivelse. The following description of experiments according to the invention forms part of the present description.

Forsøk 1Attempt 1

Medium: "Eagle's minimum essential medium" med tilsetning av 4mM glutamin, 1 mM natriumpyruvat, 20 mM TRICINE (N-tris(hy-droksymetyl)-metylglycin), pH 7,8, 10% kalveserum og 0,1% natriumhydrogenkarbonat. Medium: "Eagle's minimum essential medium" with the addition of 4 mM glutamine, 1 mM sodium pyruvate, 20 mM TRICINE (N-tris(hydroxymethyl)-methylglycine), pH 7.8, 10% calf serum and 0.1% sodium bicarbonate.

Cellulose: Celletilvekst oppnås bare på positivt ladede cellulosefibre (anionbyttere), ingen tilvekst ble observert på negativt ladede fibre (kationbyttere). Alle cellulosematerialer stammet fra Sigma Chemical Co., St. Louis, MO, USA. Følgende cellulosefibre ble prøvet: Cellulose: Cell growth is only achieved on positively charged cellulose fibers (anion exchangers), no growth was observed on negatively charged fibers (cation exchangers). All cellulosic materials were from Sigma Chemical Co., St. Louis, MO, USA. The following cellulose fibers were tested:

(1) QAE (dietyl-(2-hydroksypropyl)-aminoetyl) 0,9 mekv/g(1) QAE (diethyl-(2-hydroxypropyl)-aminoethyl) 0.9 meq/g

(2) DEAE (dietylaminoetyl) 0,9 mekv/g +0,7 mekv/g(2) DEAE (diethylaminoethyl) 0.9 meq/g +0.7 meq/g

(3) TEAE (trietylaminoetyl) 0,9 mekv/g(3) TEAE (triethylaminoethyl) 0.9 meq/g

(4) Aminoetyl 0,33 mekv/g(4) Aminoethyl 0.33 meq/g

(5) Bensyl-DEAE(5) Benzyl-DEAE

(6) Bensoylert-naftoylert DEAE(6) Benzoylated-naphthoylated DEAE

(7) ECTE0LA (epiklorhydrin-trietanolamin) 0,3 mekv/g(7) ECTE0LA (epichlorohydrin-triethanolamine) 0.3 meq/g

(8) PEI (polyetylenimin) 1,07 mekv/g(8) PEI (Polyethyleneimine) 1.07 meq/g

Likeledes god tilvekst fikk man med QAE, DEAE og TEAE og svakere vekst fikk man med de andre typene av cellulose. Fibrene ble oppslemmet i destillert vann ved en konsentrasjon på 30 mg/ml og ble autoklavert i 30 minutter. Likewise, good growth was obtained with QAE, DEAE and TEAE and weaker growth was obtained with the other types of cellulose. The fibers were slurried in distilled water at a concentration of 30 mg/ml and autoclaved for 30 minutes.

Cellestammer: Humane diploide fibroblaster ble anvendt ved alle forsøk. Disse celler stammet fra embryonisk lungevev og gjennomgikk forskjellige antall passasjer innen de ble frosset og lagret i flytende nitrogen. De er forankringsavhengige celler fordi de krever en egnet overflate som de kan hefte til, spre seg på og etter hvert deles. To cellestammer ble anvendt: (1) MRC-5 erholdt fra England og (2) en cellestamme erholdt i oppfinnerens laboratorium kalt Lu(S). Vekstegenskapene til begge disse cellestammer er grundig undersøkt og har vist seg å være likeartet. Cell lines: Human diploid fibroblasts were used in all experiments. These cells were derived from embryonic lung tissue and underwent various numbers of passages before being frozen and stored in liquid nitrogen. They are anchorage-dependent cells because they require a suitable surface to which they can attach, spread and eventually divide. Two cell strains were used: (1) MRC-5 obtained from England and (2) a cell strain obtained in the inventor's laboratory called Lu(S). The growth properties of both of these cell strains have been thoroughly investigated and have been shown to be similar.

De har begge en levetid in vitro på mellom 70 og 90 populasjonsdelinger. They both have a lifespan in vitro of between 70 and 90 population divisions.

Frembringelsesmåte for dyrkning av humane fibroblaster: Frosne ampuller av celler ble tint hurtig og podet i Roux-flasker av plast inneholdende 150 mm Eagles medium. Når celleskiktet ble sammenflytende, ble cellene oppslemmet i 50 ml 200 ug/ml krystal-linsk trypsin i fosfatbuffret saltløsning uten kalsium og magnesium, pH 7,8, og cellene innført i nye Roux-flasker med ferskt medium. Etter hvert ble cellene anvendt for poding av en "spinner bottle", en flaske som inneholdt en suspendert magnetisk stang som ble anvendt som røreanordning, inneholdende Eagles medium og en suspensjon av cellulosefibre. Cellepodingen som ble anvendt var 1x10 5 celler/mg cellulose. Cellulosen ble anvendt i en konsentrasjon på ca. 3 mg/ml. De fleste forsøk ble gjennom-ført med QAE-cellulose. Den nødvendige mengde for den omrørte kulturen ble sentrifugert ved 3000 X g i 10 minutter, suppleant-væsken ble suget vekk og cellulosen gjenoppslemmet i dyrkningsmediet og satt til flasken utstyrt med røring. Method of preparation for cultivation of human fibroblasts: Frozen vials of cells were rapidly thawed and inoculated into plastic Roux flasks containing 150 mm of Eagle's medium. When the cell layer became confluent, the cells were resuspended in 50 ml of 200 ug/ml crystalline trypsin in phosphate-buffered saline without calcium and magnesium, pH 7.8, and the cells introduced into new Roux bottles with fresh medium. Eventually, the cells were used to inoculate a "spinner bottle", a bottle containing a suspended magnetic rod used as a stirring device, containing Eagle's medium and a suspension of cellulose fibres. The cell seeding used was 1x10 5 cells/mg cellulose. The cellulose was used in a concentration of approx. 3 mg/ml. Most experiments were carried out with QAE cellulose. The required amount of the stirred culture was centrifuged at 3000 X g for 10 minutes, the supernatant liquid was aspirated and the cellulose resuspended in the culture medium and added to the flask equipped with stirring.

QAE-cellulosefibrene (grov kvalitet) hadde en lengde som varierte mellom 6 pm og 800 pm eller mer, og deres bredde varierte mellom 10 pm og 35 pm i diameter. The QAE cellulose fibers (coarse quality) had a length varying between 6 µm and 800 µm or more, and their width varied between 10 µm and 35 µm in diameter.

De celler som ble tilsatt cellulosesuspensjonen heftet til noen av fibrene, men spreddes ikke og vokste over fibrenes overflate på den normale måte som forventes av forankringsavhengige celler. De vokste istedet som en cellemasse, hvori cellulosefibre av forskjellig størrelse ble innebygget. Disse aggregater av celler og fibre nådde en størrelse på 150 til 200 um eller mer i diameter etter 7 til 8 døgns inkubering. Det anslåtte antall celler som oppnåddes etter dette tidsrom varierte mellom 1,2x10<6>og 1,8x10<6>celler/ml. Etter 8 til 10 døgns inkubering avtok antallet celler i suspensjonen. Mediet ble tappet med 2 til 3 døgns mellomrom ved at fibercellemassene fikk sette seg på bunnen av flasken, halvparten av mediet ble suget av og et like stort volum ferskt medium tilsatt. The cells added to the cellulose suspension adhered to some of the fibers but did not spread and grew over the surface of the fibers in the normal manner expected of anchorage-dependent cells. Instead, they grew as a mass of cells, in which cellulose fibers of different sizes were incorporated. These aggregates of cells and fibers reached a size of 150 to 200 µm or more in diameter after 7 to 8 days of incubation. The estimated number of cells obtained after this time ranged between 1.2x10<6> and 1.8x10<6>cells/ml. After 8 to 10 days of incubation, the number of cells in the suspension decreased. The medium was drained at intervals of 2 to 3 days by allowing the fiber cell masses to settle on the bottom of the bottle, half of the medium was sucked off and an equal volume of fresh medium added.

De fibre som ble innebygget i disse aggregater hadde en lengde som varierte mellom 100 um eller mindre og 200 um, idet lengre fibre sjelden ble observert. Bredden til fibrene syntes å være mellom 10 pm og 20 pm i diameter. Resten og hoveddelen av cellulosefibrene var helt frie for celler. Cellene syntes å velge en populasjon av fibre som var best egnet for cellenes hefting og vekst. Denne virkning kan skyldes størrelsen til fibrene eller en ujevn fordeling av ladede kjemiske grupper. The fibers that were built into these aggregates had a length that varied between 100 µm or less and 200 µm, longer fibers being rarely observed. The width of the fibers appeared to be between 10 µm and 20 µm in diameter. The rest and the main part of the cellulose fibers were completely free of cells. The cells appeared to select a population of fibers that were best suited for cell attachment and growth. This effect may be due to the size of the fibers or an uneven distribution of charged chemical groups.

Forsøk 2Attempt 2

Materialer og metoderMaterials and methods

Medium: "Eagle's minimum essential medium" med tilsetning av 4mM glutamin, 1 mM natriumpyruvat, 20 mM TRICINE (N-tris(hydroksy-metyl)-metylglycin), pH 7,8, 10% kalveserum og 0,1% natriumhydrogenkarbonat. Medium: "Eagle's minimum essential medium" with the addition of 4 mM glutamine, 1 mM sodium pyruvate, 20 mM TRICINE (N-tris(hydroxy-methyl)-methylglycine), pH 7.8, 10% calf serum and 0.1% sodium bicarbonate.

Cellestammer: Diploide lungefibroblaster fra menneskeembryoer ble anvendt ved samtlige forsøk. De fleste forsøk ble utført med en cellestamme isolert i oppfinnerens laboratorium kalt Lu(S) med en populasjons-fordoblingsgrad mellom 20 og 30 delinger. Visse forsøk ble utført med cellestammen MRC5 med en populasjons-fordoblingsgrad mellom 30 og 35 delinger. Resultatene var likeartede for de to stammene. Cell lines: Diploid lung fibroblasts from human embryos were used in all experiments. Most experiments were performed with a cell strain isolated in the inventor's laboratory called Lu(S) with a population doubling rate between 20 and 30 divisions. Certain experiments were performed with the cell strain MRC5 with a population doubling rate between 30 and 35 divisions. The results were similar for the two strains.

Cellulose: Cellevekst erholdtes bare på positivt ladede cellulosefibre (anionbyttere), ingen vekst observert på negativt ladede fibre (kationbyttere). All cellulose stammet fra Sigma Chemical Co., St. Louis, MO, USA. Følgende anionbyttere ble undersøkt: Cellulose: Cell growth was only obtained on positively charged cellulose fibers (anion exchangers), no growth was observed on negatively charged fibers (cation exchangers). All cellulose was from Sigma Chemical Co., St. Louis, MO, USA. The following anion exchangers were investigated:

(1) QAE - 2-hydroksypropylaminoetyl 0,9 mekv/g(1) QAE - 2-Hydroxypropylaminoethyl 0.9 meq/g

(2) DEAE - dietylaminoetyl 0,9 mekv/g(2) DEAE - diethylaminoethyl 0.9 meq/g

(3) TEAE - trietylaminoetyl 0,9 mekv/g(3) TEAE - triethylaminoethyl 0.9 meq/g

(4) Aminoetyl 0,33 mekv/g(4) Aminoethyl 0.33 meq/g

(5) Bensy1-DEAE(5) Benzy1-DEAE

(6) Bensoylert-naftoylert DEAE(6) Benzoylated-naphthoylated DEAE

(7) ECTEOLA - epiklorhydrin-trietanolamin 0,3 mekv/g(7) ECTEOLA - epichlorohydrin-triethanolamine 0.3 meq/g

(8) PEI - polyetylenimin 1,07 mekv/g(8) PEI - polyethyleneimine 1.07 meq/g

Mikroskopisk undersøkelse av cellulosecellesuspensjonen (figur 4) viste at cellene ikke heftet til og ble spredd på fibrene under dannelse av et monoskikt, hvilket er den vanligste form for cellevekst in vitro. Istedet dannedes aggregater av celler og cellulosefibre og øket i diameter ettersom inkubasjonen skred frem. Microscopic examination of the cellulose cell suspension (figure 4) showed that the cells did not adhere to and were spread on the fibers forming a monolayer, which is the most common form of cell growth in vitro. Instead, aggregates of cells and cellulose fibers were formed and increased in diameter as the incubation progressed.

Cellulosepreparatene som ble anvendt i begynnelsen av disse forsøk ble klassifisert som "grov kvalitet" (coarse grade) av fabrikanten og fibrene hadde en lengde som varierte mellom 6 pm og 800 pm eller mer, og deres bredde varierte mellom 10 pm og 35 pm i diameter. Som det fremgår av figur 4a, b, c, og f var en stor del av fibrene ikke knyttet til cellefiberaggregatene. De fibre som var innbygget i disse aggregater, hadde en lengde varierende mellom mindre enn 100 pm og 200 pm, lengre fibre ble sjelden observert. Fibrenes bredde syntes å være mellom 10 pm og 20 pm i diameter. Celle-fiberaggregatene kan nå størrelser på 150 til 200 pm i diameter etter 7 til 8 døgn inkubasjon. Noen ganger observertes større aggregater. The cellulose preparations used at the beginning of these experiments were classified as "coarse grade" (coarse grade) by the manufacturer and the fibers had a length varying between 6 pm and 800 pm or more, and their width varied between 10 pm and 35 pm in diameter . As can be seen from figure 4a, b, c, and f, a large part of the fibers were not connected to the cell fiber aggregates. The fibers that were built into these aggregates had a length varying between less than 100 pm and 200 pm, longer fibers were rarely observed. The width of the fibers appeared to be between 10 µm and 20 µm in diameter. The cell-fiber aggregates can reach sizes of 150 to 200 pm in diameter after 7 to 8 days of incubation. Larger aggregates were sometimes observed.

Cellene syntes å velge en populasjon av fibre som er best egnet for cellenes hefting og tilvekst. Dette utvalg synes å stå i forbindelse med fibrenes størrelse. En cellulosesuspensjon som ble filtrert gjennom et 200 mesh nett av rustfritt stål, ble podet med cellene. Som det fremgår av figur 4d, e, blir større deler av fibrene med en lengde på ca. 100 pm eller mindre knyttet til celler. Forforsøk på å dyrke fibroblaster på TLC-(tynnskiktkromatografi)-preparater av QAE- og DEAE-cellulose, som har fiberlengder på 100 pm eller mindre, gir tegn på at disse preparater er bedre egnet for celle-fiberaggregater enn cellulosematerialer av grov kvalitet. The cells appeared to select a population of fibers that are best suited for cell attachment and growth. This selection seems to be related to the size of the fibers. A cellulose suspension filtered through a 200 mesh stainless steel mesh was inoculated with the cells. As can be seen from Figure 4d, e, larger parts of the fibers with a length of approx. 100 pm or less attached to cells. Preliminary attempts to grow fibroblasts on TLC (thin layer chromatography) preparations of QAE and DEAE cellulose, having fiber lengths of 100 pm or less, indicate that these preparations are better suited for cell-fiber aggregates than coarse grade cellulose materials.

Diploide menneskefibroblasters evne til å vokse i form av disses celle-fiberaggregater er ikke tidligere rapportert såvidt oppfinneren vet. The ability of diploid human fibroblasts to grow in the form of their cell-fibrous aggregates has not previously been reported to the inventor's knowledge.

Folkman & Greenspan har vist at sfæroider av cellemasser kan vokse til en diameter på flere millimeter, men ved en diameter på 1 mm ble cellene i sentrum nekrotiske. Ettersom imidlertid celle-fiberaggregatene var meget mindre og gjennomtrengt av fibre, som eventuelt kan hjelpe til å lede medium til de indre deler av aggregatene, er det mulig at største delen av cellene var levende i de aggregater som ble dannet under minst 8 døgns inkubasjon. Lengre inkubasjon medførte imidlertid ofte en reduksjon av celleproteinet, selv med ofte gjentatte utskift-ninger av medium, og det må derfor finnes en grense for stør-relsen og livskraften til cellene i disse aggregatene. Folkman & Greenspan have shown that spheroids of cell masses can grow to a diameter of several millimeters, but at a diameter of 1 mm the cells in the center became necrotic. However, as the cell-fibre aggregates were much smaller and permeated by fibres, which could possibly help to conduct medium to the inner parts of the aggregates, it is possible that the largest part of the cells were alive in the aggregates that were formed during at least 8 days' incubation. Longer incubation, however, often resulted in a reduction of the cell protein, even with frequently repeated changes of medium, and there must therefore be a limit to the size and viability of the cells in these aggregates.

Metoden som er beskrevet, har vist seg gunstig for produk-sjon i stor skala av f.eks. virusvaksiner med humane diploide fibroblaster. The method described has proven beneficial for large-scale production of e.g. virus vaccines with human diploid fibroblasts.

Anionbyttercellulosen som anvendes ifølge oppfinnelsen, inneholder fortrinnsvis aminogrupper og har fortrinnsvis en anionbytterkapasitet på minst 0,01 mekv/g, eventuelt minst 0,05 mekv/g eller minst 0,1 mekv/g. Fortrinnsvis er anionbytterkapasiteten opptil 5 mekv/g, eventuelt opptil 3 mekv/g eller opptil 1,5 mekv/g eller også opptil 1 mekv/g, bestemt ved vanlige metoder. The anion exchange cellulose used according to the invention preferably contains amino groups and preferably has an anion exchange capacity of at least 0.01 meq/g, optionally at least 0.05 meq/g or at least 0.1 meq/g. Preferably, the anion exchange capacity is up to 5 meq/g, optionally up to 3 meq/g or up to 1.5 meq/g or also up to 1 meq/g, determined by conventional methods.

Den anvendte anionbyttercellulosen foreligger fortrinnsvis i form av fibre hvorav i forhold til vekten, minst 20%, fortrinnsvis minst 50% og i særdeleshet minst 75% eller minst 90% har en fiberdiameter på maksimalt 200 pm, fortrinnsvis maksimalt 100 um, spesielt maksimalt 50 pm eller maksimalt 25 pm. Fiberlengden er fortrinnsvis maksimalt 1000 pm, spesielt maksimalt 200 pm eller maksimalt 100 pm. Også fiberlengdeverdier på maksimalt 50 pm eller maksimalt 20 um har vist seg å være betydningsfulle. Fiberlengden er samtidig fortrinnsvis minst 0,1 pm, i særdeleshet minst 1 um, spesielt minst 5 um eller minst 10 pm. Fiberlengde-verdiene beregnes herved på minst 50%, fortrinnsvis minst 75%, minst 90% eller minst 99% av cellulosematerialvekten. The anion exchange cellulose used is preferably in the form of fibers of which, in relation to the weight, at least 20%, preferably at least 50% and in particular at least 75% or at least 90% have a fiber diameter of a maximum of 200 µm, preferably a maximum of 100 µm, especially a maximum of 50 µm or a maximum of 25 pm. The fiber length is preferably a maximum of 1000 pm, in particular a maximum of 200 pm or a maximum of 100 pm. Also fiber length values of a maximum of 50 µm or a maximum of 20 µm have been found to be significant. At the same time, the fiber length is preferably at least 0.1 µm, in particular at least 1 µm, especially at least 5 µm or at least 10 µm. The fiber length values are hereby calculated at at least 50%, preferably at least 75%, at least 90% or at least 99% of the cellulose material weight.

Den anvendte celluloseanionbytter tilhører fortrinnsvis en av typene: QAE (dietyl-(2-hydroksypropyl)-aminoetyl)-cellulose, fortrinnsvis med ionebytterkapasitet ca. 0,9 mekv/g, The cellulose anion exchanger used preferably belongs to one of the types: QAE (diethyl-(2-hydroxypropyl)-aminoethyl) cellulose, preferably with an ion exchange capacity of approx. 0.9 meq/g,

DEAE (dietylaminoetyl)-cellulose, fortrinnsvis med ionebytterkapasitet ca. 0,7 til 0,9 mekv/g, DEAE (diethylaminoethyl) cellulose, preferably with an ion exchange capacity of approx. 0.7 to 0.9 meq/g,

TEAE (trietylaminoetyl)-cellulose, fortrinnsvis med ionebytterkapasitet ca. 0,9 mekv/g, TEAE (triethylaminoethyl) cellulose, preferably with an ion exchange capacity of approx. 0.9 meq/g,

aminoetylcellulose, fortrinnsvis med ionebytterkapasitet 0,33 mekv/g, aminoethyl cellulose, preferably with an ion exchange capacity of 0.33 meq/g,

bensyl-DEAE-cellulose,benzyl DEAE cellulose,

bensoylert-naftoylert DEAE.benzoylated-naphthoylated DEAE.

Ifølge oppfinnelsen dyrker man fortrinnsvis diploide celler fra pattedyr, fortrinnsvis menneskeceller, såsom fibroblastceller, og denne dyrking kan utføres også for virusdyrking eller vaksinefremstilling. According to the invention, one preferably cultivates diploid cells from mammals, preferably human cells, such as fibroblast cells, and this cultivation can also be carried out for virus cultivation or vaccine production.

Ifølge et aspekt av oppfinnelsen bringes cellene til å vokse på fibre eller fibrene som celleansamlinger, fortrinnsvis av sfærisk eller cylindrisk form og fortrinnsvis med en diameter opptil 1000 pm, eventuelt opptil 500 pm eller opptil 300 pm eller også opptil 200 eller 100 pm. Celleansamlingene dyrkes gjerne til minst 10%, minst 50% eller minst 90% av cellematerialvekten foreligger i form av slike celleansamlinger med en diameter på minst 10 pm, fortrinnsvis minst 25 pm eller minst 50 pm, eventuelt minst 100 pm. Cellene i slike celleansamlinger danner en ansamling av mer enn ett monoskikt av celler. Disse celleansamlinger innelukker fortrinnsvis i det minste deler av to eller flere fibre innenfor celleansamlingen. Disse fibre har fortrinnsvis fiberlengder og fiberdiametre innenfor de ovenfor nevnte grensene, f.eks. en fiberlengde på maksimalt 500 pm og i særdeleshet maksimalt 300 pm og f.eks. en diameter mellom 3 og 50 pm, i særdeleshet mellom 5 og 30 pm, f.eks. 10-20 pm. Veksten utføres fortrinnsvis inntil antall celler pr. ml av dispersjonen når minst 10<4>, minst 10<5>eller minst 10<6>celler pr. ml dispersjon. Passende verdier for den øvre grense av cellemengden er f.eks. maksimalt 10 9 , maksimalt 10 8 eller maksimalt 10 7celler/ml dispersjon. Celledyrkingstiden kan varieres, f.eks. gå opp i minst 1 døgn, minst 2 døgn eller minst 3 døgn eller minst 5 døgn. Passende Øvre grenseverdier for celledyrkingstid kan f.eks. være opp til 14 døgn, opptil 10 døgn, opptil 7 døgn eller opptil 5 døgn. According to one aspect of the invention, the cells are made to grow on fibers or the fibers as cell aggregates, preferably of spherical or cylindrical shape and preferably with a diameter of up to 1000 pm, optionally up to 500 pm or up to 300 pm or also up to 200 or 100 pm. The cell aggregates are preferably grown until at least 10%, at least 50% or at least 90% of the cell material weight exists in the form of such cell aggregates with a diameter of at least 10 pm, preferably at least 25 pm or at least 50 pm, possibly at least 100 pm. The cells in such cell aggregations form an accumulation of more than one monolayer of cells. These cell collections preferably include at least parts of two or more fibers within the cell collection. These fibers preferably have fiber lengths and fiber diameters within the above-mentioned limits, e.g. a fiber length of a maximum of 500 pm and in particular a maximum of 300 pm and e.g. a diameter between 3 and 50 pm, in particular between 5 and 30 pm, e.g. 10-20 pm. Growth is preferably carried out until the number of cells per ml of the dispersion reaches at least 10<4>, at least 10<5> or at least 10<6> cells per ml dispersion. Appropriate values for the upper limit of the cell amount are e.g. maximum 10 9 , maximum 10 8 or maximum 10 7 cells/ml dispersion. The cell culture time can be varied, e.g. go up for at least 1 day, at least 2 days or at least 3 days or at least 5 days. Appropriate Upper limit values for cell culture time can e.g. be up to 14 days, up to 10 days, up to 7 days or up to 5 days.

Passende konsentrasjoner av cellulosefibre i dyrkningmediet kan være minst 0,01 mg/ml, minst 0,1 mg/ml eller minst 1 mg/ml, eventuelt minst 5 mg/ml. Passende øvre grenseverdier har vist seg f.eks. å være maksimalt 500 mg/ml, maksimalt 100 mg/ml, maksimalt 50 mg/ml eller maksimalt 10 mg/ml. Suitable concentrations of cellulose fibers in the culture medium can be at least 0.01 mg/ml, at least 0.1 mg/ml or at least 1 mg/ml, possibly at least 5 mg/ml. Appropriate upper limit values have been shown, e.g. to be a maximum of 500 mg/ml, a maximum of 100 mg/ml, a maximum of 50 mg/ml or a maximum of 10 mg/ml.

Passende dyrkningsmedier og dyrkningsbetingelser forøvrig for forskjellige celletyper er velkjente for en fagmann og kan anvendes ifølge oppfinnelsen. I så henseende kan det f.eks. vises til publikasjonen "Microcarrier Cell Culture Principles & Methods" fra Pharmacia Fine Chemicals og til de litteratur-referanser som er angitt i denne publikasjonen. Suitable culture media and culture conditions otherwise for different cell types are well known to a person skilled in the art and can be used according to the invention. In this respect, it can e.g. refer to the publication "Microcarrier Cell Culture Principles & Methods" from Pharmacia Fine Chemicals and to the literature references indicated in this publication.

Anvendelsen av diploide menneskefibroblaster for polio-vaksinefremstilling har tidligere vært begrenset på grunn av tekniske vanskeligheter med dyrking av disse celler på tidligere tilgjengelige mikrobærere. Cellene vokser til forholdsvis lave konsentrasjoner, og kulturene har vært så følsomme for håndtering at et stort antall celler på mikrobærerne kunne gått tapt i de forskjellige behandlingstrinn som en kultur utsettes for. Anvendelsen av mikrobærere av positivt ladet cellulose ifølge oppfinnelsen for celledyrking har utelukket mange av disse problemer. De diploide menneskefibroblastcellene har blitt dyrket med godt resultat som celle-fiberaggregat med flere cellulosefibre som ble prøvet, som nevnt i det foregående, f.eks. dietyl-2-hydroksypropyl-aminoetyl (QAE), dietylaminoetyl (DEAE), trietylaminoetyl (TEAE). The use of diploid human fibroblasts for polio vaccine production has previously been limited due to technical difficulties in culturing these cells on previously available microcarriers. The cells grow to relatively low concentrations, and the cultures have been so sensitive to handling that a large number of cells on the microcarriers could be lost in the various treatment steps to which a culture is subjected. The use of microcarriers of positively charged cellulose according to the invention for cell cultivation has excluded many of these problems. The diploid human fibroblast cells have been cultured with good results as cell-fiber aggregates with several cellulose fibers that were tried, as mentioned above, e.g. diethyl-2-hydroxypropyl-aminoethyl (QAE), diethylaminoethyl (DEAE), triethylaminoethyl (TEAE).

I det følgende angis resultater erholdt med suspensjonskulturer av slike celle-fiberaggregater fra diploide menneske-fibroblastceller infisert med poliovirus. In the following, results obtained with suspension cultures of such cell-fibrous aggregates from diploid human fibroblast cells infected with poliovirus are given.

Materialer og metoder:Materials and methods:

Cellestammer: To stammer av embryonale menneskelunge-fibroblaster ble anvendt: (1) MRC5 erholdt fra The National Institute for Biological Standards and Control, England, og (2) Lu(S) isolert fra embryonalt menneskelungevev i oppfinnerens laboratorium. Cell strains: Two strains of embryonic human lung fibroblasts were used: (1) MRC5 obtained from The National Institute for Biological Standards and Control, England, and (2) Lu(S) isolated from embryonic human lung tissue in the inventor's laboratory.

Celluloseanionbytterfibre: De fleste forsøk ble utført med QAE- eller DEAE-cellulose, spesielt preparat med korte fiberlengder tilvirket for tynnskiktskromatografi (TLC). Andre cellulosematerialer som ble anvendt, var TEAE og bensyl-DEAE. Alle cellulosematerialer hadde en ionebytterkapasitet på ca. 0,9 mekv/g. Cellulosen ble anvendt i en konsentrasjon av 3 mg/ml. Cellulose anion exchange fibers: Most experiments were performed with QAE or DEAE cellulose, especially preparations with short fiber lengths made for thin layer chromatography (TLC). Other cellulosic materials used were TEAE and benzyl-DEAE. All cellulose materials had an ion exchange capacity of approx. 0.9 meq/g. The cellulose was used in a concentration of 3 mg/ml.

Medium og celledyrking: Mediet for celledyrkingen var "Eagle's minimum essential medium" komplettert med 10% kalveserum, 4 mM glutamin, 20 mM TRICINE-buffer, pH 7,8 og 1 mM Na-pyruvat. Medium and cell culture: The medium for the cell culture was "Eagle's minimum essential medium" supplemented with 10% calf serum, 4 mM glutamine, 20 mM TRICINE buffer, pH 7.8 and 1 mM Na-pyruvate.

Cellene ble først dyrket til et sammenflytende monoskikt i Roux-flasker av plast, oppslemmet med trypsin (200 um/ml krystal-linsk trypsin (Sigma) i fosfatbuffret saltløsning inneholdende 20 mM TRICINE, pH 7,7-7,8 og 0,08% natriumbikarbonat), ble sentrifugert, vasket en gang og tilsatt en konsentrasjon på ca. 1,5x10^ celler/mg cellulose. Etter 5-7 døgns inkubering ble celle-fiber-massen vasket tre ganger med fosfatbuffret saltløsning, pH 7,4, gjenoppslemmet til det opprinnelige volum i "Parkers 199 medium" uten serum og infisert med poliovirus. I de fleste av disse forsøkene anvendtes poliovirus av type 1 (Brunender) samt poliovirus av type 2 (MEF-1) i ett forsøk. Infeksjonsevnen til disse virus ble målt ved poding av viruspreparatene i ti gangers fortynning i vevskulturer og den fortynning ved hvilken 50% av kulturene ble infisert, ble beregnet og betegnet "vevskultur-infeksjonsdose", 50% sluttpunkt (VKID5Q). Alle styrkeverdier er angitt i log1QVKID5Q. The cells were first grown to a confluent monolayer in plastic Roux flasks, slurried with trypsin (200 µm/ml crystalline trypsin (Sigma) in phosphate-buffered saline containing 20 mM TRICINE, pH 7.7-7.8 and 0.08 % sodium bicarbonate), was centrifuged, washed once and added to a concentration of approx. 1.5x10^ cells/mg cellulose. After 5-7 days' incubation, the cell-fiber mass was washed three times with phosphate-buffered saline, pH 7.4, resuspended to the original volume in "Parker's 199 medium" without serum and infected with poliovirus. In most of these experiments, poliovirus type 1 (Brunender) and poliovirus type 2 (MEF-1) were used in one experiment. The infectivity of these viruses was measured by inoculating the virus preparations in tenfold dilution in tissue cultures and the dilution at which 50% of the cultures were infected was calculated and termed "tissue culture infection dose", 50% endpoint (VKID5Q). All strength values are given in log1QVKID5Q.

Resultat:Result:

Tabell II viser resultatene fra 5 uavhengige 100 ml suspensjonskulturer av Lu(S)-celler med 3 mg/ml QAE-cellulose infisert med 6,3 VKIDC_ poliovirus type 1. Table II shows the results of 5 independent 100 ml suspension cultures of Lu(S) cells with 3 mg/ml QAE cellulose infected with 6.3 VKIDC_ poliovirus type 1.

DU YOU

Tabell III viser resultatene fra fem 100 ml suspensjonskulturer av MRC 5-celler med 3 mg/ml av de angitte cellulosemateri-alene. Kulturene ble infisert med 6,0 VRID^/ml poliovirus type 1 . Table III shows the results from five 100 ml suspension cultures of MRC 5 cells with 3 mg/ml of the specified cellulose materials. The cultures were infected with 6.0 VRID^/ml poliovirus type 1.

Suspensjonskulturer med større volumer enn 100 ml ga også opphav til likeartede virusstyrkeverdier. Tabell IV beskriver noen resultater av poliovirus type 1 dyrket i MRC 5-celler sammen med 3 mg/ml DEAE-TLC-cellulose. Viruspodingen utgjorde 6,0 VKID50</ml.> Suspension cultures with volumes greater than 100 ml also gave rise to similar viral strength values. Table IV describes some results of poliovirus type 1 grown in MRC 5 cells together with 3 mg/ml DEAE-TLC cellulose. The virus inoculation amounted to 6.0 VKID50</ml.>

Poliovirus av type 2 ble podet i en konsentrasjon på 5,0 VKID5Q/ml i en 5 liter suspensjonskultur av MRC 5 med 3 mg/ml DEAE-TLC-cellulose. Etter 24 timer hadde styrkeverdien steget til 6,5 og etter 48 timer til 6,8 VKIDc_/ml. Selv om disse styrkeverdier var lave, antagelig på grunn av at inokuleringen var så lav, viser de at virus kunne øke på det nærmeste hundre ganger, hvilket er omtrent samme økning som oppnås med poliovirus av type 1. Type 2 poliovirus was inoculated at a concentration of 5.0 VKID5Q/ml in a 5 liter suspension culture of MRC 5 with 3 mg/ml DEAE-TLC cellulose. After 24 hours the strength value had risen to 6.5 and after 48 hours to 6.8 VKIDc_/ml. Although these potency values were low, presumably because the inoculation was so low, they show that virus could increase in the vicinity of a hundredfold, which is about the same increase achieved with poliovirus type 1.

Diploide menneske-fibroblaster utgjør det beste tilgjengelige cellesubstrat for fremstilling av menneske-virusvaksine, ettersom cellestammene lett kan reguleres og standardiseres, er meget godt undersøkte, underholder vekst av de fleste humane virustyper og er fullstendig normale, hvilket utelukker risikoen for at onkogen DNA kommer inn i vaksinepreparatet. Det har imidlertid vært vanskelig å anvende disse celler for vaksinefremstilling på grunn av vanskelighetene med å dyrke cellene i stor skala på mikrobærere. Ifølge foreliggende oppfinnelse har det vist seg at diploide menneske-fibroblaster kan dyrkes opp til tilstrekkelige cellekonsentrasjoner sammen med cellulosemikro-bærere (f.eks. mellom 1,5 og 2x10^ celler/ml), slik at ved infeksjon med virus, f.eks. poliovirus, kan styrkeverdier oppnås som er vesentlig høyere enn det som kan oppnås hos monokulturer av disse celler på f.eks. apnjurceller. Diploid human fibroblasts constitute the best available cell substrate for human virus vaccine production, as the cell lines can be easily regulated and standardized, are very well studied, support growth of most human virus types, and are completely normal, which excludes the risk of oncogenic DNA entering in the vaccine preparation. However, it has been difficult to use these cells for vaccine production because of the difficulties in growing the cells on a large scale on microcarriers. According to the present invention, it has been shown that diploid human fibroblasts can be grown to sufficient cell concentrations together with cellulose micro-carriers (e.g. between 1.5 and 2x10^ cells/ml), so that in case of infection with viruses, e.g. . poliovirus, strength values can be achieved which are significantly higher than what can be achieved with monocultures of these cells on e.g. monkey kidney cells.

I det følgende beskrives sammenlignende forsøk som ble utført med fremgangsmåten ifølge oppfinnelsen og med konvensjo-nelle celledyrkingsunderlag. De dyrkede cellene bestod av diploide menneske-fibroblastceller, "strain MRC5". Denne cellestamme beskrives f.eks. i en artikkel av Jacobs, Jones, Baille: "Characteristics of a human diploid cell designated MRC5" i Nature, bind 227, s. 168-170, 1970, og stammet fra National Institute for Biological Study and Control. In the following, comparative experiments which were carried out with the method according to the invention and with conventional cell culture substrates are described. The cultured cells consisted of diploid human fibroblast cells, strain MRC5. This cell strain is described e.g. in an article by Jacobs, Jones, Baille: "Characteristics of a human diploid cell designated MRC5" in Nature, vol. 227, pp. 168-170, 1970, originating from the National Institute for Biological Study and Control.

Dyrkningsmediet bestod av "Eagle's minimum essential medium" i samtlige forsøk og dette var komplettert med 10% kalveserum, 20 mM Tricine, pH 7,8, 4 mM glutamin, 1 mM Na-pyruvat og 0,08% hydrogenkarbonat. The culture medium consisted of "Eagle's minimum essential medium" in all experiments and this was supplemented with 10% calf serum, 20 mM Tricine, pH 7.8, 4 mM glutamine, 1 mM Na-pyruvate and 0.08% bicarbonate.

Følgende mikrobærere ble anvendt:The following microcarriers were used:

1. Mikrobærere ifølge oppfinnelsen: DEAE-cellulosefibre (small fibre) for tynnskiktkromatografi, kapasitet 0,96 mekv/g. 2. Biosilon, som består av mikrobærere av plastkuler og ble tilsatt et medium som sterilt pulver. 3 og 4. Cytodex og Gelibeads (tiogelatinkuler) klargjort ifølge fabrikantens instruksjoner. 1. Microcarriers according to the invention: DEAE cellulose fibers (small fibers) for thin layer chromatography, capacity 0.96 meq/g. 2. Biosilon, which consists of microcarriers of plastic balls and was added to a medium as a sterile powder. 3 and 4. Cytodex and Gelibeads (thiogelatin beads) prepared according to the manufacturer's instructions.

Cellulosen ifølge oppfinnelsen ble anvendt i en konsentrasjon av 3 mg/ml, biosilon i en mengde på 60 mg/ml, cytodex og gelibeads i en konsentrasjon på 4 mg/ml. The cellulose according to the invention was used in a concentration of 3 mg/ml, biosilon in an amount of 60 mg/ml, cytodex and gelibeads in a concentration of 4 mg/ml.

ResultatResult

Forsøket vedrører bestemmelse av styrkeverdier for poliovirus type 1 erholdt fra de ovenfor angitte celledyrkinger på mikrobærere. The experiment concerns the determination of potency values for poliovirus type 1 obtained from the above-mentioned cell cultures on microcarriers.

MRC5 , passasje 21, ble podet i suspensjonskulturer i en konsentrasjon på 4x10 5 celler/ml. Kulturene ble rørt med en hastighet på ca. 40 omdreininger/minutt. Mediet ble utskiftet en gang etter 4 døgns inkubering ved at celle-mikrobærermassen fikk sette seg på bunnen av kolben, det gamle mediet ble avsuget og et like stort volum ferskt medium tilsatt. MRC5 , passage 21, was seeded in suspension cultures at a concentration of 4x10 5 cells/ml. The cultures were stirred at a speed of approx. 40 revolutions/minute. The medium was replaced once after 4 days' incubation by allowing the cell-microcarrier mass to settle to the bottom of the flask, the old medium was aspirated and an equal volume of fresh medium added.

Etter 7 døgns inkubering ved 37°C ble celle-mikrobærermassen vasket tre ganger med fosfatbuffret saltløsning pH 7,4 og serumfritt Parkers 199-medium tilsatt. Kulturene ble deretter infisert med poliovirus type 1 (podemengde ca. 10 5 ' 5 TCID^Q/ml). Resultatene er angitt i tabell V. Tidligere forsøk har vist at den optimale tiden for å oppnå antigenmateriale for poliovirus-vaksine er 72 timer etter infeksjon. After 7 days' incubation at 37°C, the cell-microcarrier mass was washed three times with phosphate-buffered saline pH 7.4 and serum-free Parker's 199 medium added. The cultures were then infected with poliovirus type 1 (inoculum amount about 10 5 - 5 TCID 4 Q/ml). The results are shown in Table V. Previous experiments have shown that the optimal time to obtain antigenic material for poliovirus vaccine is 72 hours after infection.

Cellene som er dyrket ifølge oppfinnelsen består fortrinnsvis av normale celler, d.v.s. celler med begrenset delbarhet, f.eks. i gjennomsnitt ofte maksimalt 150, maksimalt 100 eller maksimalt 70 delinger (såkalte populasjonsdelinger). Defini-sjoner av slike celler er å finne i litteraturen, f.eks. Haeflick, Moorhead: "The serial cultivation of human diploid strains" Experimental Cell Research, bind 25 (1961), s. 585-621, og Haeflick: "The limited in vitro lifetime of human diploid cell strains", Experimental Cell Research, bind 37 (1965), s. 614-636. The cells cultivated according to the invention preferably consist of normal cells, i.e. cells with limited divisibility, e.g. on average, often a maximum of 150, a maximum of 100 or a maximum of 70 divisions (so-called population divisions). Definitions of such cells can be found in the literature, e.g. Haeflick, Moorhead: "The serial cultivation of human diploid strains" Experimental Cell Research, vol. 25 (1961), pp. 585-621, and Haeflick: "The limited in vitro lifetime of human diploid cell strains", Experimental Cell Research, vol. 37 (1965), pp. 614-636.

Man kan imidlertid også dyrke celler av krefttype eller celler som er modifisert for kombinasjon av celler av krefttype eller ved innføring av genetisk materiale fra kreftceller eller i kreftceller. However, one can also grow cells of cancer type or cells that have been modified for combination of cells of cancer type or by introducing genetic material from cancer cells or into cancer cells.

Som eksempel på celleopprinnelse kan nevnes animalske celler generelt, celler av hvirveldyr så som celler fra fugler, f.eks. hønsefugler, pattedyrceller, f.eks. celler fra rotter, mus, ape, gnavere, hest, svin, får, hund, katt og spesielt menneskeceller. De dyrkede cellene består ofte av embryoceller (fosterceller) av ovenfor nevnte opprinnelse, for eksempel mannsceller eller kvinnelige embryon. Cellene kan videre stamme fra spesielle organer, f.eks. lunge, hud, forhud, epitelceller. Som eksempel på embryoceller kan også nevnes kyllingembryofibroblaster. Examples of cell origin include animal cells in general, cells from vertebrates such as cells from birds, e.g. chicken birds, mammalian cells, e.g. cells from rats, mice, monkeys, rodents, horses, pigs, sheep, dogs, cats and especially human cells. The cultured cells often consist of embryo cells (fetal cells) of the above-mentioned origin, for example male cells or female embryos. The cells can also originate from special organs, e.g. lung, skin, foreskin, epithelial cells. Chicken embryo fibroblasts can also be mentioned as examples of embryo cells.

Celledyrkingen kan anvendes for fremstilling av forskjellige produkter, f.eks. enzymer, hormoner, f.eks. interferon, som underlag for virusdyrking og fremstilling av vaksine mot disse, f.eks. polio, rabies, røde hunder, influensa, meslinger, herpes, pseudorabies, munn- og klovsyke, aids-forårsakende virus o.s.v. Man anvender gjerne cellekulturer som er godkjent for vaksinefremstilling av WHO. The cell culture can be used for the production of various products, e.g. enzymes, hormones, e.g. interferon, as a substrate for virus cultivation and the production of a vaccine against these, e.g. polio, rabies, rubella, influenza, measles, herpes, pseudorabies, foot-and-mouth disease, AIDS-causing virus, etc. Cell cultures that have been approved for vaccine production by the WHO are often used.

Passende dimensjoner på cellulosefibrene er angitt forut.Appropriate dimensions of the cellulose fibers are indicated beforehand.

En fiberlengde på minst 20 um, minst 40 pm eller minst 60 um har ofte vist seg passende. Samtidig kan fiberlengdens øvre grense ligge på de forut nevnte grenseverdiene, f.eks. maksimalt 200 um eller maksimalt 150 um, eller også maksimalt 100 pm. Fiber-lengdeverdiene beregnes herunder liksom for de forutnevnte fiber-lengdeverdiene på minst 30%, fortrinnsvis minst 50%, spesielt minst 75%, minst 90% eller minst 99% av cellulosematerialvekten. A fiber length of at least 20 µm, at least 40 µm or at least 60 µm has often been found to be suitable. At the same time, the fiber length's upper limit can lie on the previously mentioned limit values, e.g. maximum 200 um or maximum 150 um, or also maximum 100 pm. The fiber length values are calculated below in the same way for the aforementioned fiber length values of at least 30%, preferably at least 50%, especially at least 75%, at least 90% or at least 99% of the cellulose material weight.

Cellulose som blir anvendt som underlag for de anionbyttende cellulosematerialer som ble anvendt ifølge oppfinnelsen, består normalt av en polymer av glukose med ca. 2000-4000 eller flere, f.eks. 3500 eller flere gjentatte enheter i en kjede. Glykosid-bindingen sitter ved 0, cellulose kan defineres som en polymer av (3-D-glukose. Cellulose, which is used as a substrate for the anion-exchange cellulose materials used according to the invention, normally consists of a polymer of glucose with approx. 2000-4000 or more, e.g. 3500 or more repeating units in a chain. The glycosidic bond sits at 0, cellulose can be defined as a polymer of (3-D-glucose.

Figur 1 - Vekst av Lu(S)-celler i 100 ml suspensjonskulturer som inneholder 3 mg/ml QAE-, DEAE- eller TEAE-cellulose og podet med 20x10<6>celler. Celleantallet anslås fra målte proteinverdier. Figur 2 - Virkningen av forskjellig QAE-cellulosekonsentrasjoner på veksten av Lu(S)-celler i 100 ml suspensjonskulturer podet med 20x10<6>celler. Celleantallet ble bestemt fra målte proteinverdier . Figur 3 - Virkningen av cellepoding på tilvekst av Lu(S)-celler i 100 ml suspensjonskulturer inneholdende 3 mg/ml QAE-cellulose. Celluloseantallet ble anslått fra den målte proteinverdi. Figur 4 - Morfologisk utseende av diploide menneskefibroblast-celle-fiberaggregater (se pil). Figure 1 - Growth of Lu(S) cells in 100 ml suspension cultures containing 3 mg/ml QAE, DEAE or TEAE cellulose and seeded with 20x10<6> cells. The cell count is estimated from measured protein values. Figure 2 - The effect of different QAE cellulose concentrations on the growth of Lu(S) cells in 100 ml suspension cultures seeded with 20x10<6> cells. The cell number was determined from measured protein values. Figure 3 - The effect of cell seeding on the growth of Lu(S) cells in 100 ml suspension cultures containing 3 mg/ml QAE cellulose. The cellulose amount was estimated from the measured protein value. Figure 4 - Morphological appearance of diploid human fibroblast cell fiber aggregates (see arrow).

A og B: 4 døgns MRC 5 dyrking med DEAE-cellulose, 380 ganger.A and B: 4-day MRC 5 cultivation with DEAE-cellulose, 380 times.

C: 13 døgns MRC 5-dyrking med 3 mg/ml QAE-cellulose, 380 ganger. D: 8 døgns Lu(S)-dyrking med ca. 1 mg/ml QAE-cellulose filtrert gjennom et nett av rustfritt stål med maskevidde 200 mesh, 48 ganger. C: 13 day MRC 5 cultivation with 3 mg/ml QAE cellulose, 380 times. D: 8-day Lu(S) cultivation with approx. 1 mg/ml QAE cellulose filtered through a 200 mesh stainless steel mesh, 48 times.

E: 8 døgns Lu(S)-dyrking med ca. 1 mg/ml QAE-cellulose filtrert gjennom et nett av rustfritt stål med maskevidde 200 mesh, 960 ganger. E: 8-day Lu(S) cultivation with approx. 1 mg/ml QAE cellulose filtered through a 200 mesh stainless steel mesh, 960 times.

F: 13 døgns MRC 5-dyrking med 3 mg/ml QAE-cellulose, 120 ganger. F: 13-day MRC 5 cultivation with 3 mg/ml QAE cellulose, 120 times.

Claims (7)

1. Fremgangsmåte ved dyrking av normale diploide celler i suspensjon i et dyrkningsmedium, karakterisert ved at veksten utføres i en suspensjon omfattende fibre av cellulose med positive ladninger og/eller anionbytterevne.1. Procedure for growing normal diploid cells in suspension in a culture medium, characterized in that the growth is carried out in a suspension comprising fibers of cellulose with positive charges and/or anion exchange capacity. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at cellulosen består av en anionbyttercellulose, fortrinnsvis med aminogrupper og spesielt med en anionbytterkapasitet på minst 0,01 mekv/g og eventuelt opptil 5 mekv/g.2. Method according to claim 1, characterized in that the cellulose consists of an anion exchange cellulose, preferably with amino groups and especially with an anion exchange capacity of at least 0.01 meq/g and possibly up to 5 meq/g. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at man anvender fibre av anionbyttercellulose, hvorav, i forhold til vekten, minst 20% har en fiberdiameter på maksimalt 100 um, og fortrinnsvis en mengde på maksimalt 1000 pm og minst 1 pm.3. Method according to claim 1 or 2, characterized in that fibers of anion exchange cellulose are used, of which, in relation to the weight, at least 20% have a fiber diameter of a maximum of 100 µm, and preferably an amount of a maximum of 1000 µm and at least 1 µm. 4. Fremgangsmåte ifølge hvert av kravene 1 til 3, karakterisert ved at anionbyttercellulosen tilhører en av typene QAE (dietyl-(2-hydroksypropyl)aminoetyl)-cellulose, fortrinnsvis med en ionebytterkapasitet på ca. 0,9 mekv/g, DEAE (dietylaminoetyl)-cellulose, fortrinnsvis med en ionebytterkapasitet på ca. 0,7-0,9 mekv/g, TEAE (trietylaminoetyl)-cellulose, fortrinnsvis med en ionebytterkapasitet på ca. 0,9 mekv/g, aminoetylcellulose, fortrinnsvis med en ionebytterkapasitet på 0,33 mekv/g, bensy1-DEAE-cellulose, bensoylert-naftoylert DEAE.4. Method according to each of claims 1 to 3, characterized in that the anion exchange cellulose belongs to one of the types QAE (diethyl-(2-hydroxypropyl)aminoethyl)-cellulose, preferably with an ion exchange capacity of approx. 0.9 meq/g, DEAE (diethylaminoethyl) cellulose, preferably with an ion exchange capacity of approx. 0.7-0.9 meq/g, TEAE (triethylaminoethyl) cellulose, preferably with an ion exchange capacity of approx. 0.9 meq/g, aminoethyl cellulose, preferably with an ion exchange capacity of 0.33 meq/g, bensy1-DEAE-cellulose, benzoylated-naphthoylated DEAE. 5. Fremgangsmåte ifølge hvert av kravene 1 til 4, karakterisert ved at den omfatter dyrking av diploide celler fra pattedyr, spesielt menneskeceller, spesielt fibroblastceller, eventuelt for dyrking av virus eller vaksine-produksjon.5. Method according to each of claims 1 to 4, characterized in that it comprises the cultivation of diploid cells from mammals, especially human cells, especially fibroblast cells, possibly for the cultivation of viruses or vaccine production. 6. Fremgangsmåte ifølge hvert av kravene 1 til 5, karakterisert ved dyrking av cellene på fiber eller fibrene som celle-aggregater, fortrinnsvis med i det vesentlige sfærisk eller sylindrisk form og spesielt til en diameter opp til 1000 pm og fortrinnsvis med en diameter på minst 10 pm i en mengde som overskrider et monoskikt av celler, idet celle-aggregatet innelukker i det minste deler av to eller flere fibre innenfor celle-aggregatet, fortrinnsvis fibre med en lengde på maksimalt 500 pm og fortrinnsvis en diameter på mellom 3 og 50 pm, idet dyrkingen fortrinnsvis utføres inntil celleantallet pr. ml i dispersjonen når minst 10 4 celler pr. ml dispersjon og fortrinnsvis til maksimalt 10 g celler pr. ml dispersjon, spesielt over et tidsrom på minst 1 dag og fortrinnsvis opptil 14 dager.6. Method according to each of claims 1 to 5, characterized by growing the cells on fibers or the fibers as cell aggregates, preferably with an essentially spherical or cylindrical shape and especially to a diameter of up to 1000 pm and preferably with a diameter of at least 10 pm in an amount that exceeds a monolayer of cells, the cell aggregate enclosing at least parts of two or more fibers within the cell aggregate, preferably fibers with a length of at most 500 pm and preferably a diameter of between 3 and 50 pm , as the cultivation is preferably carried out until the number of cells per ml in the dispersion reaches at least 10 4 cells per ml dispersion and preferably to a maximum of 10 g cells per ml dispersion, especially over a period of at least 1 day and preferably up to 14 days. 7. Fremgangsmåte ifølge hvert av kravene 1 til 6, karakterisert ved at konsentrasjonen av cellulosefibre i dyrkningsmediet er minst 0,01 mg/ml og fortrinnsvis maksimalt 500 mg/ml.7. Method according to each of claims 1 to 6, characterized in that the concentration of cellulose fibers in the culture medium is at least 0.01 mg/ml and preferably a maximum of 500 mg/ml.
NO860180A 1984-05-21 1986-01-20 NO860180L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8402742A SE454518B (en) 1984-05-21 1984-05-21 PROCEDURE FOR CULTURING DIPLOID CELLS IN THE PRESENTATION OF CELLULOSA FIBERS

Publications (1)

Publication Number Publication Date
NO860180L true NO860180L (en) 1986-01-20

Family

ID=20355970

Family Applications (1)

Application Number Title Priority Date Filing Date
NO860180A NO860180L (en) 1984-05-21 1986-01-20

Country Status (6)

Country Link
EP (1) EP0216771A1 (en)
JP (1) JPS62500001A (en)
DK (1) DK19086A (en)
NO (1) NO860180L (en)
SE (1) SE454518B (en)
WO (1) WO1985005375A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3402927A1 (en) * 1984-01-28 1985-08-08 Pfeifer & Langen, 5000 Köln CELL CULTURE MICROCARRIERS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR GROWING ANCHOR-DEPENDENT CELLS
US4874810A (en) * 1986-03-07 1989-10-17 General Electric Company Impact modified polyphenylene ether-polyamide compositions
US8539900B2 (en) 2009-12-30 2013-09-24 Alex R. Kaye and Frances Kaye Trust Folding transom for a collapsible boat
US9278730B2 (en) 2009-12-30 2016-03-08 Alex R. Kaye and Frances Kaye Trust Brace for folding transom
JP5846550B2 (en) * 2011-05-02 2016-01-20 国立研究開発法人物質・材料研究機構 Short fiber scaffold material, short fiber-cell composite aggregate preparation method and short fiber-cell composite aggregate
TW201738256A (en) * 2016-04-04 2017-11-01 日產化學工業股份有限公司 Production method of protein
JP6799316B2 (en) * 2016-09-12 2020-12-16 国立研究開発法人物質・材料研究機構 Methods for Producing Oriented Short Fiber-Cell Composite Aggregates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA776251B (en) * 1976-11-11 1978-07-26 Massachusetts Inst Technology Improved cell culture microcarriers
FR2396083A1 (en) * 1977-06-30 1979-01-26 Merieux Inst VIRUS CULTURE PROCESS
US4352887A (en) * 1979-10-29 1982-10-05 Albert Einstein College Of Medicine Of Yeshiva University Method and article for culturing differentiated cells
JPS59164723A (en) * 1983-03-10 1984-09-17 Koken:Kk Substrate containing regenerated collagen fibril and its preparation

Also Published As

Publication number Publication date
DK19086A (en) 1986-03-03
SE8402742D0 (en) 1984-05-21
JPS62500001A (en) 1987-01-08
DK19086D0 (en) 1986-01-15
SE8402742L (en) 1985-11-22
SE454518B (en) 1988-05-09
EP0216771A1 (en) 1987-04-08
WO1985005375A1 (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JP5264812B2 (en) Method for producing an active ingredient of a drug or diagnostic agent in an MDCK cell suspension culture
JP3754088B2 (en) Immortalized cell lines for virus propagation
AU2002338666B2 (en) Multiplication of viruses in a cell culture
Berry et al. Production of reovirus type‐1 and type‐3 from Vero cells grown on solid and macroporous microcarriers
HRP950097A2 (en) Hepatitis a virus culture process
HU225791B1 (en) Method for large scale production of virus antigen
KR101835100B1 (en) Method for culturing adherent cells
NO860180L (en)
US3935066A (en) Cell lines
US9932562B2 (en) Drain down and re-feed of microcarrier bioreactor
FI98377C (en) Matrix containing adherent bound cells and method for producing virus / viral antigen
US4169761A (en) Process for the cultivation of viruses
CN109666653B (en) Subculture method of rabies vaccine virus and preparation method of rabies vaccine
CN106085947B (en) MDCK clone cell strain and application thereof
KR20190019776A (en) A serum-free suspension cells for producing rabies virus
Hayle Culture of respiratory syncytial virus infected diploid bovine nasal mucosa cells on cytodex 3 microcarriers
CN108187039A (en) A kind of inactivated avian influenza vaccine production technology and product
RU2076905C1 (en) Method of phylovirus suspension culturing in cell culture on microcarriers
CN115627252A (en) Human lung embryonic cell line and application thereof
CN114934020A (en) Porcine retina epithelial cell line and establishment method and application thereof
Tatiana et al. Primary cell culture. Cell culture
RU2496870C2 (en) Method to produce epithelioid cells of light foetus of buffalo cow for cultivation of viruses
CN111826339A (en) Vero monoclonal cell line and application thereof
RU2140451C1 (en) Strain of cultured kidney cells of sius domestica for animal viruses culturing
NO751303L (en)