NO854117L - Sensor med variabel fiberoptisk kobling. - Google Patents
Sensor med variabel fiberoptisk kobling.Info
- Publication number
- NO854117L NO854117L NO854117A NO854117A NO854117L NO 854117 L NO854117 L NO 854117L NO 854117 A NO854117 A NO 854117A NO 854117 A NO854117 A NO 854117A NO 854117 L NO854117 L NO 854117L
- Authority
- NO
- Norway
- Prior art keywords
- sensor
- medium
- fiber optic
- stated
- load
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 11
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2821—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
- G02B6/2835—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35341—Sensor working in transmission
- G01D5/35345—Sensor working in transmission using Amplitude variations to detect the measured quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/35377—Means for amplifying or modifying the measured quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/241—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/093—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2821—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
- G02B6/2826—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
- G02B6/283—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing couplers being tunable or adjustable
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0128—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects
- G02F1/0131—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
- G02F1/0134—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3131—Digital deflection, i.e. optical switching in an optical waveguide structure in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Optical Transform (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
Den foreliggende oppfinnelse vedrører fiberoptiske føl-
ere hvis drift er basert på variasjon av utgangseffekt-forholdet i en fiberoptisk retningskobler.
Følere, f.eks. akselerometere, mikrofoner, hydrofoner og magnetometere innbefattende både elektromekaniske anordninger og, mer nylig, fiberoptiske anordninger er vel-kjente. Fiberoptiske følere gir fordeler hva angår D.C.-følsomhet, dynamisk område og tilbakevisning av forstyrrelse.
Eksisterende fiberoptiske følere er basert på slike prin-sipper som lysfase-interferens, polarisasjonsrotasjon ved hjelp av dobbeltbrytning og mikrobøyetap. Tidligere kjente fiberoptiske følere kan generelt kategoriseres som en-ten amplitude- eller fase (interferometriske) følere.
Ved en amplitudeføler vil en fysikalsk perturbasjon vek-selvirke med fiberen eller en annen anordning som er direkte forbundet med fiberen, for modulasjon av lysinten-siteten i fiberen. Fasefølere som gir økt følsomhet i forhold til amplitudefølere, er omtalt av Giallorenzi,
et al i"Gptical Fibre Sensor Technology" IEEE Journal of Quantum Electronics, Vol. QE18, No. 4, April 1982,side 626-665. Selv om utviklingen innen fiberoptisk tekno-
logi har vært rask, gjenstår det praktiske problemer, f.eks. hva angår støykilder, detekteringsbehandling og pakking.
Den foreliggende oppfinnelse er definert i de vedføyde krav, og tilføyer en annen kategori av fiberoptiske føl-ere til teknikkens stilling, idet de kan betegnes som forholdsfølere ("ratio sensors"). Forholdet mellom lysenergi i utgangsfibrene endrer seg som reaksjon på på-
ført belastning på et medium som omgir en fiberoptisk retningskobler. Ved en utførelsesform skaffer den foreliggende oppfinnelse et fiberoptisk følerapparat, omfattende en sammensmeltet, skrå bikonisk retningskobler
omgitt av et påkjennings-dobbeltbrytende medium. En trans-duktormekanisme, f.eks. en prøvemasse for et akselerometer, et diafragma for en mikrofon eller trykkføler, eller en magnetostriktiv omhylning for et magnetometer, omformer den parameter som skal avføles til en kraft som påføres direkte på det påkjennings-dobbeltbrytende medium. Den påførte belastning som kan være ekstern eller intern i forhold til mediet, endrer brytningsindeksen for det dobbeltbrytende medium, noe som bevirker at forholdet med hensyn til ut-gangseffekt i hver gren av retningskobleren varierer.
En fiberoptisk føler i henhold til den foreliggende oppfinnelse vil nå bli omtalt i ytterligere detalj ved hjelp av et eksempel under henvisning til den vedføyde tegning. Figur 1 viser komponentene i en variabel kobler for en fiberoptisk føler i henhold til en utførelsesform for oppfinnelsen. Figur 2a er et tverrsnitt gjennom en føler i henhold til den foreliggende oppfinnelse, uført som et akselerometer.
Figur 2b er et snitt etter linjen 2b-2b på figur 2a.
En beskrivelse og analyse av bikoniske singelmodus-fiberoptiske koblere som kan brukes i forbindelse med den foreliggende oppfinnelse, er utført av J. Bures et al i en artikkel med tittelen "Analyse d'un Coupleur Bidirection-nel a Fibres Optiques Monomodes Fusionnes", Applied Op-tics, (journal of the Optical Society of America) Vol. 22, No. 12, June 15, 1983,side 1918-1922, og er herved inn-lemmet som referanse.
Idet det henvises til figur 1, er det her anskueliggjort den fiberoptiske føler 10 med variabel kobler i henhold til den foreliggende oppfinnelse. En sammensmeltet fiberoptisk retningskobler 11 er fremstilt av to innfibre 12 ved hjelp av kjente teknikker. Det resulterende liv parti 13 har en redusert diameter på grunn av smelte- og strekkeoperasjonene. Ved livpartiet 13 vil kjernene 18 for fibrene miste sine føringsegenskaper, og livpartiet 13 som en helhet kan f.eks. i tverrsnitt bli en eliptisk formet føringselement med det omgivende medium 15 for kappe. Således vil den bikoniske smeltede retningskobler 11 i livpartiet 13 fremstå for alle praktiske for-mål som en singelfører hvor kjernene 18 i de opprinne-lige fibre 12 spiller en. ubetydelig rolle, og kobling av lysenergi til to utgangsfibre 14 utføres ved hjelp av et støt-fenomen mellom to modi i livpartiet 13. Den opp-deling av optisk energi i utfibrene 14 som er bevirket av støtfenomenet, er en funksjon både av de fysiske dimen-sjoner for det sammensmeltede livparti 13 og brytningsindeksen for det medium 15 som omslutter livpartiet 13. Mediet 15 kan f.eks. være et belastnings-dobbeltbrytende materiale, dvs. et materiale hvor brytningsindeksen er proporsjonal med påført belastning. Et eksempel på belastnings-dobbeltbrytende materiale som egner seg til bruk som mediet 15 ifølge den foreliggende oppfinnelse, er en silikonelastomer, f.eks. den som produseres av General Electric Co., og er kjent som RTV-12. Imidlertid kan et-hvert materiale med en brytningsindeks som varierer som en funksjon med påført belastning, være anvendelig for utøvelse av den foreliggende oppfinnelse.
I praksis vil en inngangsfiber 12 bli belyst av en kilde
med optisk energi 16 som kan være en infrarød kilde. Den optiske energi blir oppdelt ved hjelp av den sammensmeltede bikoniske retningskobler, og forbundet med utgangsfibrene 14 med et forhold som endrer seg alt ettersom brytningsindeksen for mediet 15 endrer seg som en funksjon av påtrykt belastning. Endringene i optisk energi i utgangsfibrene 14 ble målt med hjelp av to fotodetektorer 17 som skaffer elektriske inngangssignaler til en differensialforsterker 19. Således vil utgangssignalet fra differensial-forsterkeren 19 være representativt for den belastning som påføres mediet 15.
Belastning kan påføres den fiberoptiske føler 10 ved hjelp av en intern eller ekstern mekanisme. For påføring av belastning internt kan det fremskaffes en mikroskopisk be-lastningstilstand ved tilsetning av forskjellige materialer til mediet 15, ideelt i form av mikroskopiske partik-ler som blir blandet inn i mediet 15 før herding. F.eks. kan der for avføling av elektriske felter tilsettes et elektrostriktivt pulvermateriale, f.eks. PVF2til mediet 15. Den foreliggende oppfinnelse kan benyttes som en termisk føler ved tilsetning av et termisk ekspansivt materiale, f.eks. nikkel eller aluminium, til mediet 15. For av-føling av magnetiske felter kan der til mediet 15 tilsettes en magnetostriktiv legering, f.eks. nikkel eller jern. Po-lystyren eller nylon kan tilsettes mediet 15 for økning av følsomheten når den foreliggende oppfinnelse blir brukt som en akustisk føler.
Belastning kan påføres eksternt ved hjelp av en kraft som overføres direkte til mediet 15. Ytre belastning kan på-føres mediet 15 ved hjelp av makroskopiske anordninger, f.eks. diafragmer, vektstenger, elektrostriktive, mag-netostriktive og termostriktive elementer. Generelt vil en hvilken som helst mekanisme som omformer en fysisk eller feltvirkning til en kraft benyttes for påføring av belastning på et belastnings-dobbeltbrytende materiale, og derved bli avfølt av optiske organer ved hjelp av den foreliggende oppfinnelse.
Slik det fremgår av figur 2a og 2b, er der vist en utfør-elsesform for den foreliggende oppfinnelse brukt som et akselerometer 20. En sammensveiset, bikonisk, retnings-forholds-kobler 11, plassert inne i en stiv sylinder 22. Inngangsfibre 12 og utgangsfibre 14 strekker seg gjennom sylinderveggen, og holdes på plass ved hjelp av en epoksy-harpiks 23. Det indre av sylinderen 22 er fyllt med en belastnings-dobbeltbrytende silikonelastomer 15, f.eks. General Electric RTV-12, omtalt ovenfor, som omkapsler
den sammensmeltede, bikoniske retningskobler 11. En
prøvemasse 25 plassert på toppen av det belastnings-dobbelbrytende medium 15 ved midtpartiet av sylinderen 22. Forholdet med hensyn til utgangseffekten, og endringen i forholdet for utgangseffekten proporsjonalt med påtrykt belastning er en funksjon av de optiske ma-terielle og geometriske egenskaper for apparatet. Mer spesielt innbefatter koblingsforhold-faktorene: 1. Brytningsindeksen for mediet 15; 2. Lengden av livpartiet 13; 3. Lengden av overføringspartiet mellom livpartiet 13 og inngangsfibrene 12 og utgangsfibrene 14; 4. Diameteren av fibrene 12 og 14 og diameteren av livpartiet 13; 5. Bølgelengden av lyskilden 16;
6. Egenskapene hos den valgte fiber.
Ved valg av en passende materialkonfigurasjon kan man oppnå ønskede driftspunkter og endringer i utgangseffekt-forhoIdene.
Claims (8)
1. Fiberoptisk føler omfattende fiberoptiske koblerorganer (13) for deling av innkommende lysenergi blant en flerhet av utgangsfibre, karakterisert ved at føleren ytterligere omfatter et medium (15) for inn-kapsling av de fiberoptiske koblerorganer, idet brytningsindeksen for mediet er en funksjon av den belastning som påføres mediet, samt detektororganer (17, 19) for frem-skaffelse av et utgangssignal som representerer forholdet med hensyn til energi i utgangs fibrene.
2. Føler som angitt i krav 1, karakterisert ved at mediet (15) er en belastnings-dobbeltbrytende silikonelastomer.
3. Føler som angitt i krav 1 eller 2, karakterisert ved at der påføres en ytre belastning på mediet (15) .
4. Føler som angitt i krav 1 eller 2, karakterisert ved at der på mediet (15) påtrykkes en indre belastning ved deri å kombinere materialer som reagerer på et parameter som skal avføles.
5. Føler som angitt i et av de foregående krav, karakterisert ved at den fiberoptiske kobler (13) er en sammensmeltet, avsmalnet, bikonisk, retningsfiberop-tisk kobler.
6. Føler som angitt i et av de foregående krav, karakterisert ved at den innkommende lysenergi er infrarød energi.
7. Føler som angitt i et av de foregående krav, karakterisert ved at detektororganene omfatter en flerhet av fotodetektor-dioder (17) anordnet for å motta energi fra utfiberne, og en differensialforsterker (19) til å motta utgangssignalex fra fotodetektor-diod-ene og skaffe utsignalet.
8. Føler som angitt i et av de foregående krav, karakterisert ved at føleren er konstruert som et akselerometer, og at kobleren (13) og mediet (15) rommes i et hus (22) med inn- og utfibre (12, 14) rag-ende gjennom husveggen.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/661,630 US4634858A (en) | 1984-10-17 | 1984-10-17 | Variable coupler fiberoptic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
NO854117L true NO854117L (no) | 1986-04-18 |
Family
ID=24654421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO854117A NO854117L (no) | 1984-10-17 | 1985-10-16 | Sensor med variabel fiberoptisk kobling. |
Country Status (5)
Country | Link |
---|---|
US (1) | US4634858A (no) |
EP (1) | EP0178806A3 (no) |
JP (1) | JPS6197628A (no) |
CA (1) | CA1239294A (no) |
NO (1) | NO854117L (no) |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61221629A (ja) * | 1985-03-15 | 1986-10-02 | Sharp Corp | 感圧素子の製造方法 |
GB8513542D0 (en) * | 1985-05-29 | 1985-07-03 | Gen Electric Co Plc | Fibre optic coupler |
EP0227556A1 (fr) * | 1985-12-24 | 1987-07-01 | Schlumberger Industries | Capteur optique de grandeurs physiques |
US4810051A (en) * | 1987-03-27 | 1989-03-07 | Thomas & Betts Corporation | Optical fiber modulator |
CA1308937C (en) * | 1988-01-11 | 1992-10-20 | Francois Bilodeau | Fabrication technique for low-loss fused taper directional couplers and pressure sensor produced thereby |
US4930862A (en) * | 1988-01-20 | 1990-06-05 | The Babcock & Wilcox Company | Fiberoptic microbend accelerometer |
US4860586A (en) * | 1988-01-20 | 1989-08-29 | The Babcock & Wilcox Company | Fiberoptic microbend accelerometer |
DE3832569A1 (de) * | 1988-09-24 | 1990-03-29 | Philips Patentverwaltung | Faseroptischer sensor |
GB2225850B (en) * | 1988-12-09 | 1992-12-23 | Emi Plc Thorn | Pressure sensing device |
AU630931B2 (en) * | 1989-03-22 | 1992-11-12 | Australian And Overseas Telecommunications Corporation Limited | A optical fibre reflector |
US4920261A (en) * | 1989-05-24 | 1990-04-24 | Universite Du Quebec A Hull | Birefringent optical fiber device for measuring of ambient pressure in a stabilized temperature environment |
US5671191A (en) * | 1989-07-06 | 1997-09-23 | Sperry Marine Inc. | Variable coupler fiber optic sensor hydrophone |
GB8920733D0 (en) * | 1989-09-13 | 1989-10-25 | British Telecomm | An optical detector |
US5022735A (en) * | 1989-11-07 | 1991-06-11 | The Charles Stark Draper Laboratory, Inc. | Fiber splice coating system |
US5074309A (en) * | 1989-12-04 | 1991-12-24 | Sperry Marine Inc. | Device for monitoring cardiovascular signals and fiber optic coupler phonocardio sensor therefor |
US5078465A (en) * | 1990-01-03 | 1992-01-07 | The Charles Stark Draper Laboratory, Inc. | Fused fiber optic coupler |
US5026984A (en) * | 1990-01-16 | 1991-06-25 | Sperry Marine, Inc. | Methods for sensing temperature, pressure and liquid level and variable ratio fiber optic coupler sensors therefor |
US5028801A (en) * | 1990-01-16 | 1991-07-02 | Sperry Marine Inc. | Apparatus and method for multiplexing fiber optic sensors |
BE1003189A5 (fr) * | 1990-07-27 | 1992-01-07 | B A Cosurvey Optics S P R L B | Capteur de pression. |
US5093569A (en) * | 1990-09-21 | 1992-03-03 | The United States Of America As Represented By The Secretary Of The Navy | Tapered optical fiber sensor |
US5136669A (en) * | 1991-03-15 | 1992-08-04 | Sperry Marine Inc. | Variable ratio fiber optic coupler optical signal processing element |
WO1994016346A1 (en) * | 1993-01-15 | 1994-07-21 | Alexandr Alexandrovich Balagur | Fibre-optic measuring converter of pressure, pressure difference and flow, and a process for manufacturing the sensing element of the same |
US5494798A (en) * | 1993-12-09 | 1996-02-27 | Gerdt; David W. | Fiber optic evanscent wave sensor for immunoassay |
GB9403122D0 (en) * | 1994-02-18 | 1994-04-06 | Univ Southampton | Acousto-optic device |
US5647040A (en) * | 1995-12-14 | 1997-07-08 | Corning Incorporated | Tunable optical coupler using photosensitive glass |
US6463187B1 (en) * | 1998-08-24 | 2002-10-08 | Empirical Technologies Corporation | Variable coupler fiberoptic sensor and sensing apparatus using the sensor |
US6723054B1 (en) * | 1998-08-24 | 2004-04-20 | Empirical Technologies Corporation | Apparatus and method for measuring pulse transit time |
US6907148B2 (en) | 1998-08-24 | 2005-06-14 | Empirical Technologies Corporation | Sensing apparatus employing variable coupler fiberoptic sensor |
AU5582599A (en) * | 1998-08-24 | 2000-03-14 | Charles Adkins | Sensing pad assembly employing variable coupler fiberoptic sensor |
US6687424B1 (en) | 1998-08-24 | 2004-02-03 | Empirical Technologies Corporation | Sensing pad assembly employing variable coupler fiberoptic sensor |
GB9820467D0 (en) | 1998-09-18 | 1998-11-11 | Europ Economic Community | Sensing apparatus and a measurment method |
US6776049B2 (en) | 2001-12-07 | 2004-08-17 | Alliant Techsystems Inc. | System and method for measuring stress at an interface |
DE60207690T2 (de) * | 2002-05-31 | 2006-06-22 | Alcatel | Zeitmultiplexer mit aktiver Stabilisierung |
GB2407154B8 (en) * | 2003-10-13 | 2007-02-20 | Univ Cranfield | Improvements in and relating to fibre optic sensors |
CN100507473C (zh) * | 2006-09-22 | 2009-07-01 | 山东省科学院激光研究所 | 单端光纤圈反射式振动、声波传感器 |
DE102011107547B4 (de) * | 2011-07-11 | 2015-08-06 | Krohne Messtechnik Gmbh | Druckaufnehmer für ein Vortex-Durchflussmessgerät, Vortex-Durchflussmessgerät und Verfahren zur Herstellung eines solchen Druckaufnehmers |
DE102011122232A1 (de) | 2011-12-23 | 2013-06-27 | Menlo Systems Gmbh | System zum Erzeugen eines Schwebungssignals |
US8526770B2 (en) * | 2012-01-30 | 2013-09-03 | Empire Technology Development Llc | Systems, materials, and methods for a mechanical stress activated interface using piezo-optical components |
US20140231637A1 (en) * | 2013-02-21 | 2014-08-21 | Kenneth Gerald Blemel | Apparatus for Distance Measurement Using Inductive Means |
WO2015108531A1 (en) | 2014-01-17 | 2015-07-23 | Empire Technology Development Llc | Aligning guide using pressure-sensitive index change elastomer |
WO2015163896A1 (en) | 2014-04-24 | 2015-10-29 | Empire Technology Development Llc | Rewritable photorefractive polymer layer for optical fiber coupling |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10359577B2 (en) | 2017-06-28 | 2019-07-23 | Corning Research & Development Corporation | Multiports and optical connectors with rotationally discrete locking and keying features |
US11300746B2 (en) | 2017-06-28 | 2022-04-12 | Corning Research & Development Corporation | Fiber optic port module inserts, assemblies and methods of making the same |
US11668890B2 (en) | 2017-06-28 | 2023-06-06 | Corning Research & Development Corporation | Multiports and other devices having optical connection ports with securing features and methods of making the same |
AU2017420801A1 (en) | 2017-06-28 | 2020-01-23 | Corning Research & Development Corporation | Multiports and devices having a connector port with a rotating securing feature |
US11187859B2 (en) | 2017-06-28 | 2021-11-30 | Corning Research & Development Corporation | Fiber optic connectors and methods of making the same |
US11199660B2 (en) * | 2018-11-20 | 2021-12-14 | University Of Louisville Research Foundation, Inc. | Soft optics with mechanically tunable refractive index |
WO2020139745A1 (en) | 2018-12-28 | 2020-07-02 | Corning Research & Development Corporation | Multiport assemblies including mounting features or dust plugs |
WO2020242847A1 (en) | 2019-05-31 | 2020-12-03 | Corning Research & Development Corporation | Multiports and other devices having optical connection ports with sliding actuators and methods of making the same |
US11294133B2 (en) | 2019-07-31 | 2022-04-05 | Corning Research & Development Corporation | Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation |
US11487073B2 (en) | 2019-09-30 | 2022-11-01 | Corning Research & Development Corporation | Cable input devices having an integrated locking feature and assemblies using the cable input devices |
EP3805827A1 (en) * | 2019-10-07 | 2021-04-14 | Corning Research & Development Corporation | Fiber optic terminals and fiber optic networks having variable ratio couplers |
CN110772236B (zh) * | 2019-10-08 | 2021-04-20 | 华中科技大学 | 一种基于定向耦合器的切脉传感器及脉象测量装置 |
US11650388B2 (en) | 2019-11-14 | 2023-05-16 | Corning Research & Development Corporation | Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal |
US11536921B2 (en) | 2020-02-11 | 2022-12-27 | Corning Research & Development Corporation | Fiber optic terminals having one or more loopback assemblies |
US11604320B2 (en) | 2020-09-30 | 2023-03-14 | Corning Research & Development Corporation | Connector assemblies for telecommunication enclosures |
US11927810B2 (en) | 2020-11-30 | 2024-03-12 | Corning Research & Development Corporation | Fiber optic adapter assemblies including a conversion housing and a release member |
US11686913B2 (en) | 2020-11-30 | 2023-06-27 | Corning Research & Development Corporation | Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same |
US11880076B2 (en) | 2020-11-30 | 2024-01-23 | Corning Research & Development Corporation | Fiber optic adapter assemblies including a conversion housing and a release housing |
US11994722B2 (en) | 2020-11-30 | 2024-05-28 | Corning Research & Development Corporation | Fiber optic adapter assemblies including an adapter housing and a locking housing |
US11947167B2 (en) | 2021-05-26 | 2024-04-02 | Corning Research & Development Corporation | Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420251A (en) * | 1980-05-05 | 1983-12-13 | Rockwell International Corporation | Optical deformation sensor |
US4368645A (en) * | 1980-09-26 | 1983-01-18 | United Technologies Corporation | Optical pressure sensor |
US4360247A (en) * | 1981-01-19 | 1982-11-23 | Gould Inc. | Evanescent fiber optic pressure sensor apparatus |
US4482890A (en) * | 1981-01-22 | 1984-11-13 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Weight responsive intrusion detector using dual optical fibers |
DE3105748C2 (de) * | 1981-02-17 | 1983-07-07 | Spinner-GmbH Elektrotechnische Fabrik, 8000 München | Verfahren zur Herstellung eines Lichtwellenleiter-Kopplers |
FR2507787A1 (fr) * | 1981-06-16 | 1982-12-17 | Jeunhomme Luc | Dispositif de commutation de lumiere entre des fibres optiques par variation de temperature d'une substance dans laquelle elles sont disposees et systeme de commutation utilisant de tels dispositifs |
JPS5810705A (ja) * | 1981-07-10 | 1983-01-21 | Omron Tateisi Electronics Co | 光結合器 |
EP0074788B1 (en) * | 1981-09-10 | 1989-05-31 | The Board Of Trustees Of The Leland Stanford Junior University | Fiber coupler temperature tranducer |
US4495819A (en) * | 1982-12-23 | 1985-01-29 | Gould Inc. | Optical pressure sensor |
JPS59133423A (ja) * | 1983-01-20 | 1984-07-31 | Matsushita Electric Ind Co Ltd | 光応用センサ |
US4545253A (en) * | 1983-08-29 | 1985-10-08 | Exxon Production Research Co. | Fiber optical modulator and data multiplexer |
DE3415242C1 (de) * | 1984-04-24 | 1985-10-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Faseroptischer Sensor |
-
1984
- 1984-10-17 US US06/661,630 patent/US4634858A/en not_active Expired - Lifetime
-
1985
- 1985-06-04 CA CA000483088A patent/CA1239294A/en not_active Expired
- 1985-07-22 JP JP60161733A patent/JPS6197628A/ja active Pending
- 1985-09-20 EP EP19850306704 patent/EP0178806A3/en not_active Ceased
- 1985-10-16 NO NO854117A patent/NO854117L/no unknown
Also Published As
Publication number | Publication date |
---|---|
EP0178806A3 (en) | 1988-06-01 |
JPS6197628A (ja) | 1986-05-16 |
US4634858A (en) | 1987-01-06 |
CA1239294A (en) | 1988-07-19 |
EP0178806A2 (en) | 1986-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO854117L (no) | Sensor med variabel fiberoptisk kobling. | |
US4443700A (en) | Optical sensing apparatus and method | |
CA1116884A (en) | Optical sensing apparatus and method | |
US4342907A (en) | Optical sensing apparatus and method | |
EP1181501B1 (en) | Methods and apparatus for mechanically enhancing the sensitivity of longitudinally loaded fiber optic sensors | |
Guo et al. | Highly sensitive FBG seismometer with a 3D-printed hexagonal configuration | |
Cui et al. | Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber | |
Wang et al. | Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil | |
WO1983002496A1 (en) | Quadrature fiber-optic interferometer matrix | |
Wu et al. | MOEMS accelerometer based on microfiber knot resonator | |
Yao et al. | Fiber optical intensity sensors | |
Abbas et al. | Temperature and strain sensing with hybrid interferometer | |
CN104296856A (zh) | 增敏平台光纤光栅振动传感器 | |
CN105783996B (zh) | 一种可同时测量声波与压力的光纤传感器 | |
CN110530550B (zh) | 准分布式温度传感系统的信号解调方法 | |
Liu et al. | Sensitivity enhancement of interferometric fiber-optic accelerometers using multi-core fiber | |
Wu et al. | A novel optical accelerometer based on slant-ended fiber | |
CN207963952U (zh) | 一种基于非对称双芯光纤的分布式双参量传感装置 | |
Chang et al. | Fiber optic vibration sensor based on over-coupled fused coupler | |
Barbin et al. | Estimating the Sensitivity of Microoptoelectromechanical Micro-g Accelerometer | |
Dong et al. | Highly sensitive strain and vibration sensors based on the microfiber sagnac interferometer | |
Wang et al. | An in-fiber Acceleration Sensor based on Fabry–Perot Cavity | |
Zhang et al. | Mechanical filter-based differential pressure fiber-optic Fabry-Perot infrasound sensor | |
Yao et al. | X-Structure of Torque Adjustable Formed by 3D Printing with Embedded Optical Fiber Bending for Vibration Sensing | |
Kadhim | Strain measurement by using phase modulated fiber optic sensors technology |