NO854117L - Sensor med variabel fiberoptisk kobling. - Google Patents

Sensor med variabel fiberoptisk kobling.

Info

Publication number
NO854117L
NO854117L NO854117A NO854117A NO854117L NO 854117 L NO854117 L NO 854117L NO 854117 A NO854117 A NO 854117A NO 854117 A NO854117 A NO 854117A NO 854117 L NO854117 L NO 854117L
Authority
NO
Norway
Prior art keywords
sensor
medium
fiber optic
stated
load
Prior art date
Application number
NO854117A
Other languages
English (en)
Inventor
Lawrence Henry Gilligan
David William Gerdt
Original Assignee
Sperry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sperry Corp filed Critical Sperry Corp
Publication of NO854117L publication Critical patent/NO854117L/no

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • G02B6/283Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing couplers being tunable or adjustable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3131Digital deflection, i.e. optical switching in an optical waveguide structure in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Transform (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Den foreliggende oppfinnelse vedrører fiberoptiske føl-
ere hvis drift er basert på variasjon av utgangseffekt-forholdet i en fiberoptisk retningskobler.
Følere, f.eks. akselerometere, mikrofoner, hydrofoner og magnetometere innbefattende både elektromekaniske anordninger og, mer nylig, fiberoptiske anordninger er vel-kjente. Fiberoptiske følere gir fordeler hva angår D.C.-følsomhet, dynamisk område og tilbakevisning av forstyrrelse.
Eksisterende fiberoptiske følere er basert på slike prin-sipper som lysfase-interferens, polarisasjonsrotasjon ved hjelp av dobbeltbrytning og mikrobøyetap. Tidligere kjente fiberoptiske følere kan generelt kategoriseres som en-ten amplitude- eller fase (interferometriske) følere.
Ved en amplitudeføler vil en fysikalsk perturbasjon vek-selvirke med fiberen eller en annen anordning som er direkte forbundet med fiberen, for modulasjon av lysinten-siteten i fiberen. Fasefølere som gir økt følsomhet i forhold til amplitudefølere, er omtalt av Giallorenzi,
et al i"Gptical Fibre Sensor Technology" IEEE Journal of Quantum Electronics, Vol. QE18, No. 4, April 1982,side 626-665. Selv om utviklingen innen fiberoptisk tekno-
logi har vært rask, gjenstår det praktiske problemer, f.eks. hva angår støykilder, detekteringsbehandling og pakking.
Den foreliggende oppfinnelse er definert i de vedføyde krav, og tilføyer en annen kategori av fiberoptiske føl-ere til teknikkens stilling, idet de kan betegnes som forholdsfølere ("ratio sensors"). Forholdet mellom lysenergi i utgangsfibrene endrer seg som reaksjon på på-
ført belastning på et medium som omgir en fiberoptisk retningskobler. Ved en utførelsesform skaffer den foreliggende oppfinnelse et fiberoptisk følerapparat, omfattende en sammensmeltet, skrå bikonisk retningskobler
omgitt av et påkjennings-dobbeltbrytende medium. En trans-duktormekanisme, f.eks. en prøvemasse for et akselerometer, et diafragma for en mikrofon eller trykkføler, eller en magnetostriktiv omhylning for et magnetometer, omformer den parameter som skal avføles til en kraft som påføres direkte på det påkjennings-dobbeltbrytende medium. Den påførte belastning som kan være ekstern eller intern i forhold til mediet, endrer brytningsindeksen for det dobbeltbrytende medium, noe som bevirker at forholdet med hensyn til ut-gangseffekt i hver gren av retningskobleren varierer.
En fiberoptisk føler i henhold til den foreliggende oppfinnelse vil nå bli omtalt i ytterligere detalj ved hjelp av et eksempel under henvisning til den vedføyde tegning. Figur 1 viser komponentene i en variabel kobler for en fiberoptisk føler i henhold til en utførelsesform for oppfinnelsen. Figur 2a er et tverrsnitt gjennom en føler i henhold til den foreliggende oppfinnelse, uført som et akselerometer.
Figur 2b er et snitt etter linjen 2b-2b på figur 2a.
En beskrivelse og analyse av bikoniske singelmodus-fiberoptiske koblere som kan brukes i forbindelse med den foreliggende oppfinnelse, er utført av J. Bures et al i en artikkel med tittelen "Analyse d'un Coupleur Bidirection-nel a Fibres Optiques Monomodes Fusionnes", Applied Op-tics, (journal of the Optical Society of America) Vol. 22, No. 12, June 15, 1983,side 1918-1922, og er herved inn-lemmet som referanse.
Idet det henvises til figur 1, er det her anskueliggjort den fiberoptiske føler 10 med variabel kobler i henhold til den foreliggende oppfinnelse. En sammensmeltet fiberoptisk retningskobler 11 er fremstilt av to innfibre 12 ved hjelp av kjente teknikker. Det resulterende liv parti 13 har en redusert diameter på grunn av smelte- og strekkeoperasjonene. Ved livpartiet 13 vil kjernene 18 for fibrene miste sine føringsegenskaper, og livpartiet 13 som en helhet kan f.eks. i tverrsnitt bli en eliptisk formet føringselement med det omgivende medium 15 for kappe. Således vil den bikoniske smeltede retningskobler 11 i livpartiet 13 fremstå for alle praktiske for-mål som en singelfører hvor kjernene 18 i de opprinne-lige fibre 12 spiller en. ubetydelig rolle, og kobling av lysenergi til to utgangsfibre 14 utføres ved hjelp av et støt-fenomen mellom to modi i livpartiet 13. Den opp-deling av optisk energi i utfibrene 14 som er bevirket av støtfenomenet, er en funksjon både av de fysiske dimen-sjoner for det sammensmeltede livparti 13 og brytningsindeksen for det medium 15 som omslutter livpartiet 13. Mediet 15 kan f.eks. være et belastnings-dobbeltbrytende materiale, dvs. et materiale hvor brytningsindeksen er proporsjonal med påført belastning. Et eksempel på belastnings-dobbeltbrytende materiale som egner seg til bruk som mediet 15 ifølge den foreliggende oppfinnelse, er en silikonelastomer, f.eks. den som produseres av General Electric Co., og er kjent som RTV-12. Imidlertid kan et-hvert materiale med en brytningsindeks som varierer som en funksjon med påført belastning, være anvendelig for utøvelse av den foreliggende oppfinnelse.
I praksis vil en inngangsfiber 12 bli belyst av en kilde
med optisk energi 16 som kan være en infrarød kilde. Den optiske energi blir oppdelt ved hjelp av den sammensmeltede bikoniske retningskobler, og forbundet med utgangsfibrene 14 med et forhold som endrer seg alt ettersom brytningsindeksen for mediet 15 endrer seg som en funksjon av påtrykt belastning. Endringene i optisk energi i utgangsfibrene 14 ble målt med hjelp av to fotodetektorer 17 som skaffer elektriske inngangssignaler til en differensialforsterker 19. Således vil utgangssignalet fra differensial-forsterkeren 19 være representativt for den belastning som påføres mediet 15.
Belastning kan påføres den fiberoptiske føler 10 ved hjelp av en intern eller ekstern mekanisme. For påføring av belastning internt kan det fremskaffes en mikroskopisk be-lastningstilstand ved tilsetning av forskjellige materialer til mediet 15, ideelt i form av mikroskopiske partik-ler som blir blandet inn i mediet 15 før herding. F.eks. kan der for avføling av elektriske felter tilsettes et elektrostriktivt pulvermateriale, f.eks. PVF2til mediet 15. Den foreliggende oppfinnelse kan benyttes som en termisk føler ved tilsetning av et termisk ekspansivt materiale, f.eks. nikkel eller aluminium, til mediet 15. For av-føling av magnetiske felter kan der til mediet 15 tilsettes en magnetostriktiv legering, f.eks. nikkel eller jern. Po-lystyren eller nylon kan tilsettes mediet 15 for økning av følsomheten når den foreliggende oppfinnelse blir brukt som en akustisk føler.
Belastning kan påføres eksternt ved hjelp av en kraft som overføres direkte til mediet 15. Ytre belastning kan på-føres mediet 15 ved hjelp av makroskopiske anordninger, f.eks. diafragmer, vektstenger, elektrostriktive, mag-netostriktive og termostriktive elementer. Generelt vil en hvilken som helst mekanisme som omformer en fysisk eller feltvirkning til en kraft benyttes for påføring av belastning på et belastnings-dobbeltbrytende materiale, og derved bli avfølt av optiske organer ved hjelp av den foreliggende oppfinnelse.
Slik det fremgår av figur 2a og 2b, er der vist en utfør-elsesform for den foreliggende oppfinnelse brukt som et akselerometer 20. En sammensveiset, bikonisk, retnings-forholds-kobler 11, plassert inne i en stiv sylinder 22. Inngangsfibre 12 og utgangsfibre 14 strekker seg gjennom sylinderveggen, og holdes på plass ved hjelp av en epoksy-harpiks 23. Det indre av sylinderen 22 er fyllt med en belastnings-dobbeltbrytende silikonelastomer 15, f.eks. General Electric RTV-12, omtalt ovenfor, som omkapsler
den sammensmeltede, bikoniske retningskobler 11. En
prøvemasse 25 plassert på toppen av det belastnings-dobbelbrytende medium 15 ved midtpartiet av sylinderen 22. Forholdet med hensyn til utgangseffekten, og endringen i forholdet for utgangseffekten proporsjonalt med påtrykt belastning er en funksjon av de optiske ma-terielle og geometriske egenskaper for apparatet. Mer spesielt innbefatter koblingsforhold-faktorene: 1. Brytningsindeksen for mediet 15; 2. Lengden av livpartiet 13; 3. Lengden av overføringspartiet mellom livpartiet 13 og inngangsfibrene 12 og utgangsfibrene 14; 4. Diameteren av fibrene 12 og 14 og diameteren av livpartiet 13; 5. Bølgelengden av lyskilden 16;
6. Egenskapene hos den valgte fiber.
Ved valg av en passende materialkonfigurasjon kan man oppnå ønskede driftspunkter og endringer i utgangseffekt-forhoIdene.

Claims (8)

1. Fiberoptisk føler omfattende fiberoptiske koblerorganer (13) for deling av innkommende lysenergi blant en flerhet av utgangsfibre, karakterisert ved at føleren ytterligere omfatter et medium (15) for inn-kapsling av de fiberoptiske koblerorganer, idet brytningsindeksen for mediet er en funksjon av den belastning som påføres mediet, samt detektororganer (17, 19) for frem-skaffelse av et utgangssignal som representerer forholdet med hensyn til energi i utgangs fibrene.
2. Føler som angitt i krav 1, karakterisert ved at mediet (15) er en belastnings-dobbeltbrytende silikonelastomer.
3. Føler som angitt i krav 1 eller 2, karakterisert ved at der påføres en ytre belastning på mediet (15) .
4. Føler som angitt i krav 1 eller 2, karakterisert ved at der på mediet (15) påtrykkes en indre belastning ved deri å kombinere materialer som reagerer på et parameter som skal avføles.
5. Føler som angitt i et av de foregående krav, karakterisert ved at den fiberoptiske kobler (13) er en sammensmeltet, avsmalnet, bikonisk, retningsfiberop-tisk kobler.
6. Føler som angitt i et av de foregående krav, karakterisert ved at den innkommende lysenergi er infrarød energi.
7. Føler som angitt i et av de foregående krav, karakterisert ved at detektororganene omfatter en flerhet av fotodetektor-dioder (17) anordnet for å motta energi fra utfiberne, og en differensialforsterker (19) til å motta utgangssignalex fra fotodetektor-diod-ene og skaffe utsignalet.
8. Føler som angitt i et av de foregående krav, karakterisert ved at føleren er konstruert som et akselerometer, og at kobleren (13) og mediet (15) rommes i et hus (22) med inn- og utfibre (12, 14) rag-ende gjennom husveggen.
NO854117A 1984-10-17 1985-10-16 Sensor med variabel fiberoptisk kobling. NO854117L (no)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/661,630 US4634858A (en) 1984-10-17 1984-10-17 Variable coupler fiberoptic sensor

Publications (1)

Publication Number Publication Date
NO854117L true NO854117L (no) 1986-04-18

Family

ID=24654421

Family Applications (1)

Application Number Title Priority Date Filing Date
NO854117A NO854117L (no) 1984-10-17 1985-10-16 Sensor med variabel fiberoptisk kobling.

Country Status (5)

Country Link
US (1) US4634858A (no)
EP (1) EP0178806A3 (no)
JP (1) JPS6197628A (no)
CA (1) CA1239294A (no)
NO (1) NO854117L (no)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221629A (ja) * 1985-03-15 1986-10-02 Sharp Corp 感圧素子の製造方法
GB8513542D0 (en) * 1985-05-29 1985-07-03 Gen Electric Co Plc Fibre optic coupler
EP0227556A1 (fr) * 1985-12-24 1987-07-01 Schlumberger Industries Capteur optique de grandeurs physiques
US4810051A (en) * 1987-03-27 1989-03-07 Thomas & Betts Corporation Optical fiber modulator
CA1308937C (en) * 1988-01-11 1992-10-20 Francois Bilodeau Fabrication technique for low-loss fused taper directional couplers and pressure sensor produced thereby
US4930862A (en) * 1988-01-20 1990-06-05 The Babcock & Wilcox Company Fiberoptic microbend accelerometer
US4860586A (en) * 1988-01-20 1989-08-29 The Babcock & Wilcox Company Fiberoptic microbend accelerometer
DE3832569A1 (de) * 1988-09-24 1990-03-29 Philips Patentverwaltung Faseroptischer sensor
GB2225850B (en) * 1988-12-09 1992-12-23 Emi Plc Thorn Pressure sensing device
AU630931B2 (en) * 1989-03-22 1992-11-12 Australian And Overseas Telecommunications Corporation Limited A optical fibre reflector
US4920261A (en) * 1989-05-24 1990-04-24 Universite Du Quebec A Hull Birefringent optical fiber device for measuring of ambient pressure in a stabilized temperature environment
US5671191A (en) * 1989-07-06 1997-09-23 Sperry Marine Inc. Variable coupler fiber optic sensor hydrophone
GB8920733D0 (en) * 1989-09-13 1989-10-25 British Telecomm An optical detector
US5022735A (en) * 1989-11-07 1991-06-11 The Charles Stark Draper Laboratory, Inc. Fiber splice coating system
US5074309A (en) * 1989-12-04 1991-12-24 Sperry Marine Inc. Device for monitoring cardiovascular signals and fiber optic coupler phonocardio sensor therefor
US5078465A (en) * 1990-01-03 1992-01-07 The Charles Stark Draper Laboratory, Inc. Fused fiber optic coupler
US5026984A (en) * 1990-01-16 1991-06-25 Sperry Marine, Inc. Methods for sensing temperature, pressure and liquid level and variable ratio fiber optic coupler sensors therefor
US5028801A (en) * 1990-01-16 1991-07-02 Sperry Marine Inc. Apparatus and method for multiplexing fiber optic sensors
BE1003189A5 (fr) * 1990-07-27 1992-01-07 B A Cosurvey Optics S P R L B Capteur de pression.
US5093569A (en) * 1990-09-21 1992-03-03 The United States Of America As Represented By The Secretary Of The Navy Tapered optical fiber sensor
US5136669A (en) * 1991-03-15 1992-08-04 Sperry Marine Inc. Variable ratio fiber optic coupler optical signal processing element
WO1994016346A1 (en) * 1993-01-15 1994-07-21 Alexandr Alexandrovich Balagur Fibre-optic measuring converter of pressure, pressure difference and flow, and a process for manufacturing the sensing element of the same
US5494798A (en) * 1993-12-09 1996-02-27 Gerdt; David W. Fiber optic evanscent wave sensor for immunoassay
GB9403122D0 (en) * 1994-02-18 1994-04-06 Univ Southampton Acousto-optic device
US5647040A (en) * 1995-12-14 1997-07-08 Corning Incorporated Tunable optical coupler using photosensitive glass
US6463187B1 (en) * 1998-08-24 2002-10-08 Empirical Technologies Corporation Variable coupler fiberoptic sensor and sensing apparatus using the sensor
US6723054B1 (en) * 1998-08-24 2004-04-20 Empirical Technologies Corporation Apparatus and method for measuring pulse transit time
US6907148B2 (en) 1998-08-24 2005-06-14 Empirical Technologies Corporation Sensing apparatus employing variable coupler fiberoptic sensor
AU5582599A (en) * 1998-08-24 2000-03-14 Charles Adkins Sensing pad assembly employing variable coupler fiberoptic sensor
US6687424B1 (en) 1998-08-24 2004-02-03 Empirical Technologies Corporation Sensing pad assembly employing variable coupler fiberoptic sensor
GB9820467D0 (en) 1998-09-18 1998-11-11 Europ Economic Community Sensing apparatus and a measurment method
US6776049B2 (en) 2001-12-07 2004-08-17 Alliant Techsystems Inc. System and method for measuring stress at an interface
DE60207690T2 (de) * 2002-05-31 2006-06-22 Alcatel Zeitmultiplexer mit aktiver Stabilisierung
GB2407154B8 (en) * 2003-10-13 2007-02-20 Univ Cranfield Improvements in and relating to fibre optic sensors
CN100507473C (zh) * 2006-09-22 2009-07-01 山东省科学院激光研究所 单端光纤圈反射式振动、声波传感器
DE102011107547B4 (de) * 2011-07-11 2015-08-06 Krohne Messtechnik Gmbh Druckaufnehmer für ein Vortex-Durchflussmessgerät, Vortex-Durchflussmessgerät und Verfahren zur Herstellung eines solchen Druckaufnehmers
DE102011122232A1 (de) 2011-12-23 2013-06-27 Menlo Systems Gmbh System zum Erzeugen eines Schwebungssignals
US8526770B2 (en) * 2012-01-30 2013-09-03 Empire Technology Development Llc Systems, materials, and methods for a mechanical stress activated interface using piezo-optical components
US20140231637A1 (en) * 2013-02-21 2014-08-21 Kenneth Gerald Blemel Apparatus for Distance Measurement Using Inductive Means
WO2015108531A1 (en) 2014-01-17 2015-07-23 Empire Technology Development Llc Aligning guide using pressure-sensitive index change elastomer
WO2015163896A1 (en) 2014-04-24 2015-10-29 Empire Technology Development Llc Rewritable photorefractive polymer layer for optical fiber coupling
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10359577B2 (en) 2017-06-28 2019-07-23 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
AU2017420801A1 (en) 2017-06-28 2020-01-23 Corning Research & Development Corporation Multiports and devices having a connector port with a rotating securing feature
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11199660B2 (en) * 2018-11-20 2021-12-14 University Of Louisville Research Foundation, Inc. Soft optics with mechanically tunable refractive index
WO2020139745A1 (en) 2018-12-28 2020-07-02 Corning Research & Development Corporation Multiport assemblies including mounting features or dust plugs
WO2020242847A1 (en) 2019-05-31 2020-12-03 Corning Research & Development Corporation Multiports and other devices having optical connection ports with sliding actuators and methods of making the same
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
EP3805827A1 (en) * 2019-10-07 2021-04-14 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
CN110772236B (zh) * 2019-10-08 2021-04-20 华中科技大学 一种基于定向耦合器的切脉传感器及脉象测量装置
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11994722B2 (en) 2020-11-30 2024-05-28 Corning Research & Development Corporation Fiber optic adapter assemblies including an adapter housing and a locking housing
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420251A (en) * 1980-05-05 1983-12-13 Rockwell International Corporation Optical deformation sensor
US4368645A (en) * 1980-09-26 1983-01-18 United Technologies Corporation Optical pressure sensor
US4360247A (en) * 1981-01-19 1982-11-23 Gould Inc. Evanescent fiber optic pressure sensor apparatus
US4482890A (en) * 1981-01-22 1984-11-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Weight responsive intrusion detector using dual optical fibers
DE3105748C2 (de) * 1981-02-17 1983-07-07 Spinner-GmbH Elektrotechnische Fabrik, 8000 München Verfahren zur Herstellung eines Lichtwellenleiter-Kopplers
FR2507787A1 (fr) * 1981-06-16 1982-12-17 Jeunhomme Luc Dispositif de commutation de lumiere entre des fibres optiques par variation de temperature d'une substance dans laquelle elles sont disposees et systeme de commutation utilisant de tels dispositifs
JPS5810705A (ja) * 1981-07-10 1983-01-21 Omron Tateisi Electronics Co 光結合器
EP0074788B1 (en) * 1981-09-10 1989-05-31 The Board Of Trustees Of The Leland Stanford Junior University Fiber coupler temperature tranducer
US4495819A (en) * 1982-12-23 1985-01-29 Gould Inc. Optical pressure sensor
JPS59133423A (ja) * 1983-01-20 1984-07-31 Matsushita Electric Ind Co Ltd 光応用センサ
US4545253A (en) * 1983-08-29 1985-10-08 Exxon Production Research Co. Fiber optical modulator and data multiplexer
DE3415242C1 (de) * 1984-04-24 1985-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Faseroptischer Sensor

Also Published As

Publication number Publication date
EP0178806A3 (en) 1988-06-01
JPS6197628A (ja) 1986-05-16
US4634858A (en) 1987-01-06
CA1239294A (en) 1988-07-19
EP0178806A2 (en) 1986-04-23

Similar Documents

Publication Publication Date Title
NO854117L (no) Sensor med variabel fiberoptisk kobling.
US4443700A (en) Optical sensing apparatus and method
CA1116884A (en) Optical sensing apparatus and method
US4342907A (en) Optical sensing apparatus and method
EP1181501B1 (en) Methods and apparatus for mechanically enhancing the sensitivity of longitudinally loaded fiber optic sensors
Guo et al. Highly sensitive FBG seismometer with a 3D-printed hexagonal configuration
Cui et al. Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber
Wang et al. Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil
WO1983002496A1 (en) Quadrature fiber-optic interferometer matrix
Wu et al. MOEMS accelerometer based on microfiber knot resonator
Yao et al. Fiber optical intensity sensors
Abbas et al. Temperature and strain sensing with hybrid interferometer
CN104296856A (zh) 增敏平台光纤光栅振动传感器
CN105783996B (zh) 一种可同时测量声波与压力的光纤传感器
CN110530550B (zh) 准分布式温度传感系统的信号解调方法
Liu et al. Sensitivity enhancement of interferometric fiber-optic accelerometers using multi-core fiber
Wu et al. A novel optical accelerometer based on slant-ended fiber
CN207963952U (zh) 一种基于非对称双芯光纤的分布式双参量传感装置
Chang et al. Fiber optic vibration sensor based on over-coupled fused coupler
Barbin et al. Estimating the Sensitivity of Microoptoelectromechanical Micro-g Accelerometer
Dong et al. Highly sensitive strain and vibration sensors based on the microfiber sagnac interferometer
Wang et al. An in-fiber Acceleration Sensor based on Fabry–Perot Cavity
Zhang et al. Mechanical filter-based differential pressure fiber-optic Fabry-Perot infrasound sensor
Yao et al. X-Structure of Torque Adjustable Formed by 3D Printing with Embedded Optical Fiber Bending for Vibration Sensing
Kadhim Strain measurement by using phase modulated fiber optic sensors technology