CN110530550B - 准分布式温度传感系统的信号解调方法 - Google Patents

准分布式温度传感系统的信号解调方法 Download PDF

Info

Publication number
CN110530550B
CN110530550B CN201910740352.3A CN201910740352A CN110530550B CN 110530550 B CN110530550 B CN 110530550B CN 201910740352 A CN201910740352 A CN 201910740352A CN 110530550 B CN110530550 B CN 110530550B
Authority
CN
China
Prior art keywords
optical fiber
optical
polymer
polymer microcavity
filled microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910740352.3A
Other languages
English (en)
Other versions
CN110530550A (zh
Inventor
李志红
阮秀凯
戴瑜兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201910740352.3A priority Critical patent/CN110530550B/zh
Publication of CN110530550A publication Critical patent/CN110530550A/zh
Application granted granted Critical
Publication of CN110530550B publication Critical patent/CN110530550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了一种准分布式温度传感系统的信号解调方法,包括有:宽带光源、光隔离器、光环形器、光纤耦合器、单模光纤、聚合物微腔填充微结构光纤传感器、光谱分析仪及计算机,其中,宽带光源经光隔离器与光环形器连接,光环形器的输出端口与光纤耦合器的一端连接,光纤耦合器有多个输出接口,该多个输出接口经单模光纤后分别与多个聚合物微腔填充微结构光纤传感器连接,光环形器的另一个输出端口与光谱分析仪输入端连接,得到多个监测位点的温度信息。本发明具有多节点分布式传感、快速响应、灵敏度高、系统简单稳定、低成本等特点。

Description

准分布式温度传感系统的信号解调方法
技术领域
本发明属于传感技术领域,具体是指一种基于聚合物微腔填充微结构光纤的准分布式温度传感系统及其信号解调方法。
背景技术
温度监测对于电力系统、石油矿井、桥梁建筑、海底光缆等重大工程的健康运行有着至关重要的作用。对这些工程设施开展分布式在线温度监测,尽早得到其内部温度变化规律并评估其危险情况,是保障这些设施安全运行的迫切需求和发展趋势。光纤传感作为一种非常有效的分布式在线温度监测方法,得到了诸多国家的高度重视。
相比于传统光纤,微结构光纤或光子晶体光纤是一种横截面为二维周期空气孔结构的光子晶体,基于带隙效应将光限制在实心或空心纤芯内传播。空气孔的引入使得微结构光纤拥有丰富的光学特性,为温度传感提供了优良的传输和传感媒介,其中选择性填充微结构光纤温度传感最为瞩目。然而,选择性填充微结构光纤温度传感还面临着众多因素的制约,如(1)定向耦合匹配条件复杂,需要精确控制填充材料及微结构光纤结构参数;(2)填充材料部分属性(如高损耗、有害性、不稳定性等)限制了微结构光纤温度传感的应用;(3)复杂空气孔设计增加了器件制备难度;(4)对于工程应用中普遍关注的分布式温度监测方面还缺乏足够的探索。
发明内容
为解决现有技术存在的问题和不足,本发明的目的是提供一种基于聚合物微腔填充微结构光纤的准分布式温度传感系统及其信号解调方法,其中传感阵列由聚合物微腔填充微结构光纤构成,信号解调方法基于最小方差无失真响应算法构建,具有多节点分布式传感、快速响应、系统简单稳定、灵敏度高、系统简单稳定、低成本等特点。
本发明的第一个目的是提供一种基于聚合物微腔填充微结构光纤的准分布式温度传感系统,其技术方案包括宽带光源、光隔离器、光环形器、光纤耦合器、单模光纤、聚合物微腔填充微结构光纤传感器、光谱分析仪及计算机,其中,宽带光源经光隔离器与光环形器连接,光环形器的输出端口与光纤耦合器的一端连接,光纤耦合器有多个输出接口,该多个输出接口经单模光纤后分别与多个聚合物微腔填充微结构光纤传感器连接,光环形器的另一个输出端口与光谱分析仪输入端连接,光谱分析仪的输出端与计算机连接,在计算机内进行信号解调;所述的光隔离器仅允许从所述的宽带光源至所述的光环形器方向的光通过,同时阻止从所述的光环形器至所述的宽带光源方向的光通过;
其中,所述的光纤耦合器为多等份分光耦合器,即将输入光均分为强度相同的多份输出光。
其中,所述的光谱分析仪的光谱响应范围覆盖所述的多个聚合物微腔填充微结构光纤传感器干涉信号的光谱范围。
本发明的第二个目的是提供一种聚合物微腔填充微结构光纤传感器,由所述聚合物微腔填充微结构光纤传感器由微结构光纤和聚合物微腔构成,其中,微结构光纤为空气芯光子带隙光纤或空心光纤,聚合物微腔材料为聚甲基丙烯酸甲酯或者聚二甲基硅氧烷,构成法布里-珀罗干涉腔,每个聚合物微腔的长度L各不相同,即该各个聚合物微腔构成干涉腔的干涉信号频率各不相同。
其中,所述的聚合物微腔填充微结构光纤传感器还包括有环氧树脂胶,该环氧树脂胶用于封装所述的聚合物微腔的一端,另一方面用于将所述的聚合物微腔填充微结构光纤传感器固定在监测位点上。
本发明的第三个目的是提供一种基于所述的准分布式温度传感系统的信号解调方法,包括:
S1:多个聚合物微腔填充微结构光纤传感器分别采集监测点的温度信息,该多个聚合物微腔填充微结构光纤传感器的数量记为N,N≥1;
S2:得到N个聚合物微腔填充微结构光纤传感器的干涉信号R=[R1,R2,…,RN]T,上标T表示转置,信号频率分别为f1、f2…fN
S3:基于最小方差无失真响应算法设定N个干涉信号的加权矢量W=[W1,W2,…,WN];
S4:计算N个干涉信号的协方差矩阵Rxx=E[RRH]T,E表示求期望值;
S5:对N个干涉信号进行加权运算得到总的信号Y=WHR,再求解最小化约束问题确定最佳加权矢量W,即求解min(WHRxxW)且WHa=1,其中a=[1,exp(-j2πf),…,exp(-j2πf(N-2)),exp(-j2πf(N-1))]T表示N个干涉信号的方位向量,f是频率,min表示求最小值,上标H表示共轭;
S6:得到干涉信号的功率谱密度函数P(f)=WHRxxW;
S7:扫描频率f,得到N个聚合物微腔填充微结构光纤传感器的功率谱随温度的变化;
S8:得到N个聚合物微腔填充微结构光纤传感器分别采集的温度信息。
本技术方案中,基于聚合物微腔填充微结构光纤的准分布式温度传感系统的工作原理为:所述的宽带光源输出的非偏振光经光隔离器后输入至光环形器,从光环形器输出后进入至光纤耦合器,该光纤耦合器设置有1个输入接口,N(表示多个)个输出接口,定义为1×N光纤耦合器,从1×N光纤耦合器的N个端口输出后经单模光纤分别输入至N个聚合物微腔填充微结构光纤传感器,输入光在聚合物微腔填充微结构光纤传感器的聚合物微腔内发生干涉并再次反射回1×N光纤耦合器,由于聚合物微腔具有高热光系数和高热膨胀系数,外界环境的温度变化导致聚合物微腔的长度发生变化,从而引起干涉信号发生变化,从N个聚合物微腔填充微结构光纤传感器反射回的N个干涉信号经1×N光纤耦合器后进入光环形器,从光环形器输出后被光谱分析仪采集到,随后输入至计算机进行信号解调,经信号解调后得到N个聚合物微腔填充微结构光纤传感器分别采集的温度信息。
本发明相对于现有技术具有如下的优点及有益效果:
(1)本发明提供的基于聚合物微腔填充微结构光纤的准分布式温度传感系统,通过在空芯微结构光纤内填充具有高热光效应和高热膨胀效应的聚合物制作对温度敏感的聚合物微腔填充微结构光纤传感器,制作工艺简单成本低,避免了复杂的微加工过程,从而保证了光纤传感探头的完整性和器件稳定性。
(2)本发明提供的基于聚合物微腔填充微结构光纤的准分布式温度传感系统,基于高精度的聚合物微腔干涉效应实现准分布式温度传感,而不是目前普遍研究的微结构光纤定向耦合效应,从而避免了复杂的耦合模式匹配过程,使传感探头原理更直观、结构更简单、参数更可控,具有多节点分布式传感、快速响应、系统简单稳定、灵敏度高、系统简单稳定、低成本等特点,在实际应用中更易维护。
(3)本发明提供的基于聚合物微腔填充微结构光纤的准分布式温度传感系统,基于最小方差无失真响应算法建立信号解调方法,具有在线快速、高精度、支持多节点等优异特性,避免了传统的波分复用、时分复用、OTDR、非线性散射效应等其它方法所需的精密光电设备及较复杂的解调方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1基于聚合物微腔填充微结构光纤的准分布式温度传感系统原理图。
图2聚合物微腔填充微结构光纤传感器截面图,其中,L为聚合物微腔的长度;
图3基于聚合物微腔填充微结构光纤的准分布式温度传感的信号解调方法流程图,其中,上标T表示转置,上标H表示共轭,E表示求期望值。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1至图3所示,本发明实施例公开了基于聚合物微腔填充微结构光纤的准分布式温度传感系统,如图1所示,包括:宽带光源1、光隔离器2、光环形器3、光纤耦合器4、单模光纤5、聚合物微腔填充微结构光纤传感器6、光谱分析仪7及计算机8。本实施例中,光纤耦合器4具有1个输入端、N个输出端,定义为1×N光纤耦合器,其中,宽带光源1经光隔离器2与光环形器3连接,光环形器3的输出端口与1×N光纤耦合器4的一端连接,1×N光纤耦合器4的N个输出接口经单模光纤5后分别与N个聚合物微腔填充微结构光纤传感器6连接,光环形器3的另一个输出端口与光谱分析仪7输入连接,光谱分析仪7的输出端与计算机8连接。
本实施例中,聚合物微腔填充微结构光纤传感器6的截面图如图2所示,聚合物微腔填充微结构光纤传感器6由微结构光纤9、聚合物微腔10和环氧树脂胶11组成,其中,微结构光纤9为空气芯光子带隙光纤,聚合物微腔10材料为聚甲基丙烯酸甲酯(PMMA)或者聚二甲基硅氧烷(PDMS),通过截断填充方法填充在光子晶体光纤的空气芯内构成法布里-珀罗干涉腔,每个聚合物微腔10的长度L各不相同,即各个干涉腔的干涉信号频率各不相同,环氧树脂胶11一方面用于封装所述的聚合物微腔的一端,另一方面用于将所述的聚合物微腔填充微结构光纤传感器6固定在监测位点上。
本实施例中,所述的光隔离器2仅允许从所述的宽带光源1至所述的光环形器3方向的光通过,同时阻止从所述的光环形器3至所述的宽带光源1方向的光通过。
本实施例中,所述的1×N光纤耦合器4为N等份分光耦合器,即将输入光均分为强度相同的N份输出光。
本实施例中,所述的光谱分析仪7的光谱响应范围覆盖所述的N个聚合物微腔填充微结构光纤传感器6干涉信号的光谱范围。本实施例中,基于聚合物微腔填充微结构光纤的准分布式温度传感的信号解调方法流程图如图3所示,主要包括:
S1:多个聚合物微腔填充微结构光纤传感器(6)分别采集监测点的温度信息,该多个聚合物微腔填充微结构光纤传感器(6)的数量记为N,≥1;
S2:得到N个聚合物微腔填充微结构光纤传感器(6)的干涉信号R=[R1,R2,…,RN]T,上标T表示转置,信号频率分别为f1、f2…fN
S3:基于最小方差无失真响应算法设定N个干涉信号的加权矢量W=[W1,W2,…,WN];
S4:计算N个干涉信号的协方差矩阵Rxx=E[RRH]T,E表示求期望值;
S5:对N个干涉信号进行加权运算得到总的信号Y=WHR,再求解最小化约束问题确定最佳加权矢量W,即求解min(WHRxxW)且WHa=1,其中a=[1,exp(-j2πf),…,exp(-j2πf(N-2)),exp(-j2πf(N-1))]T表示N个干涉信号的方位向量,f是频率,min表示求最小值,上标H表示共轭;
S6:得到干涉信号的功率谱密度函数P(f)=WHRxxW;
S7:扫描频率f,得到N个聚合物微腔填充微结构光纤传感器的功率谱随温度的变化;
S8:得到N个聚合物微腔填充微结构光纤传感器分别采集的温度信息。
本实施例中,基于聚合物微腔填充微结构光纤的准分布式温度传感系统的工作原理为:所述的宽带光源1输出的非偏振光经光隔离器2后输入至光环形器3,从光环形器3输出后进入至1×N光纤耦合器4,从1×N光纤耦合器4的N个端口输出后经单模光纤5分别输入至N个聚合物微腔填充微结构光纤传感器6,输入光在聚合物微腔填充微结构光纤传感器6的聚合物微腔10内发生干涉并再次反射回1×N光纤耦合器4,由于聚合物微腔10具有高热光系数和高热膨胀系数,外界环境的温度变化导致聚合物微腔10的长度发生变化,从而引起干涉信号发生变化,从N个聚合物微腔填充微结构光纤传感器6反射回的N个干涉信号经1×N光纤耦合器4后进入光环形器3,从光环形器3输出后被光谱分析仪7采集到,随后输入至计算机8进行信号解调,经信号解调后得到N个聚合物微腔填充微结构光纤传感器分别采集的温度信息。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (1)

1.一种准分布式温度传感系统的信号解调方法,其特征在于,该准分布式温度传感系统基于聚合物微腔填充微结构光纤,其包括有:宽带光源(1)、光隔离器(2)、光环形器(3)、光纤耦合器(4)、单模光纤(5)、聚合物微腔填充微结构光纤传感器(6)、光谱分析仪(7)及计算机(8),其中,宽带光源(1)经光隔离器(2)与光环形器(3)连接,光环形器(3)的输出端口与光纤耦合器(4)的一端连接,光纤耦合器(4)有多个输出接口,该多个输出接口经单模光纤(5)后分别与多个聚合物微腔填充微结构光纤传感器(6)连接,光环形器(3)的另一个输出端口与光谱分析仪(7)输入端连接,光谱分析仪(7)的输出端与计算机(8)连接,在计算机内进行信号解调;所述的光隔离器(2)仅允许从所述的宽带光源(1)至所述的光环形器(3)方向的光通过,同时阻止从所述的光环形器(3)至所述的宽带光源(1)方向的光通过;通过该准分布式温度传感系统,其信号解调方法包括:
S1:多个聚合物微腔填充微结构光纤传感器(6)分别采集监测点的温度信息,该多个聚合物微腔填充微结构光纤传感器(6)的数量记为N,N≥1;
S2:得到N个聚合物微腔填充微结构光纤传感器(6)的干涉信号R=[R1,R2,…,RN]T,上标T表示转置,信号频率分别为f1、f2…fN
S3:基于最小方差无失真响应算法设定N个干涉信号的加权矢量W=[W1,W2,…,WN];
S4:计算N个干涉信号的协方差矩阵Rxx=E[RRH]T,E表示求期望值;
S5:对N个干涉信号进行加权运算得到总的信号Y=WHR,再求解最小化约束问题确定最佳加权矢量W,即求解min(WHRxxW)且WHa=1,其中a=[1,exp(-j2πf),…,exp(-j2πf(N-2)),exp(-j2πf(N-1))]T表示N个干涉信号的方位向量,f是频率,min表示求最小值,上标H表示共轭;
S6:得到干涉信号的功率谱密度函数P(f)=WHRxxW;
S7:扫描频率f,得到N个聚合物微腔填充微结构光纤传感器的功率谱随温度的变化;
S8:得到N个聚合物微腔填充微结构光纤传感器分别采集的温度信息。
CN201910740352.3A 2019-08-12 2019-08-12 准分布式温度传感系统的信号解调方法 Active CN110530550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910740352.3A CN110530550B (zh) 2019-08-12 2019-08-12 准分布式温度传感系统的信号解调方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910740352.3A CN110530550B (zh) 2019-08-12 2019-08-12 准分布式温度传感系统的信号解调方法

Publications (2)

Publication Number Publication Date
CN110530550A CN110530550A (zh) 2019-12-03
CN110530550B true CN110530550B (zh) 2020-10-09

Family

ID=68663013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910740352.3A Active CN110530550B (zh) 2019-08-12 2019-08-12 准分布式温度传感系统的信号解调方法

Country Status (1)

Country Link
CN (1) CN110530550B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924048B (zh) * 2021-01-25 2022-10-04 广东海洋大学 一种基于pdms双腔并联的高灵敏度温度传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269573B (zh) * 2011-05-03 2014-11-05 东华大学 一种准分布式复合材料结构应变和温度检测系统
CN102519499B (zh) * 2011-12-14 2015-08-05 华中科技大学 基于微结构光纤法布里-珀罗谐振腔准的准分布式传感器
CN108152220B (zh) * 2018-01-05 2023-10-13 中国计量大学 基于双c型微型空腔的敏感膜内嵌式光纤氢气传感器
CN208091901U (zh) * 2018-02-11 2018-11-13 鞍山峰澜科技有限公司 一种基于光纤微腔结构的反射式挥发性有机化合物传感器
CN108507697B (zh) * 2018-02-28 2019-10-29 华北电力大学(保定) 一种基于光纤传感的海水温深剖面测量系统
CN208333699U (zh) * 2018-06-04 2019-01-04 南京邮电大学 一种基于pdms封装的高灵敏度光纤光栅温度传感器
CN109431481B (zh) * 2018-12-25 2024-03-19 苏州博思光学有限公司 微型光纤压力传感器及其制造方法、压力传感系统
CN109655176B (zh) * 2019-01-25 2020-05-08 东北大学 一种基于空腔填充型微结构光纤干涉仪的高精度温度探头
CN109781625B (zh) * 2019-02-25 2021-01-19 北京航空航天大学 一种高一致性的光声激励与检测一体式光纤探头及其制作方法、测试方法

Also Published As

Publication number Publication date
CN110530550A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Iadicicco et al. Thinned fiber Bragg gratings as refractive index sensors
US10113935B2 (en) Distributed multi-channel coherent optical fiber sensing system
NO854117L (no) Sensor med variabel fiberoptisk kobling.
CN105371785B (zh) 一种曲率测量方法
Monteiro et al. Hollow microsphere Fabry–Perot cavity for sensing applications
CN1746641A (zh) 光纤温度测量仪及其测量方法
Hayber et al. A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors
Zhu et al. Machine learning assisted high-sensitivity and large-dynamic-range curvature sensor based on no-core fiber and hollow-core fiber
CN110887525B (zh) 基于微纳光纤耦合器sagnac环的ctd传感阵列
CN110530550B (zh) 准分布式温度传感系统的信号解调方法
Romaniuk et al. Temperature sensor based on double-core optical fiber
Liu et al. Optical fiber temperature sensor based on Fabry-Perot interferometer with photopolymer material
Xu et al. Dual-parameter demodulation of fbg-fpi cascade sensors via sparse samples: A deep learning-based perspective
Liu et al. High sensitivity liquid level sensor for microfluidic applications using a hollow core fiber structure
Deng et al. Twisted tapered plastic optical fibers for continuous liquid level sensing
CN209946004U (zh) 一种基于分光比可调马赫-曾德干涉仪的光纤传感器
Li et al. SOI-based 12× 12 arrayed waveguide grating for fiber Bragg grating interrogation system
Rajan Introduction to optical fiber sensors
CN108507977A (zh) 一种基于光栅辅助型模式耦合的孔助双芯光纤传感器
Palizvan et al. High sensitive optical pressure sensor using nano-scale plasmonic resonator and metal-insulator-metal waveguides
Zhang et al. High Sensitivity Balloon-Like Sensor Based on Twin-Core and Twin-Hole Fiber
Sun et al. Application of an artificial neural network for simultaneous measurement of temperature and strain by using a photonic crystal fiber long-period grating
Zuoqin et al. Simultaneous detection of refractive index and temperature using high-order air and dielectric modes in a single photonic crystal nanobeam cavity
Upadhyaya et al. Performance analysis of optical MEMS based pressure sensor using ring resonators structure on circular diaphragm
Duan et al. Optical fiber dual-parameter sensors based on different kinds of interferometers for measuring refractive index and temperature: a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant