NO853038L - Catalyst for the removal of nitrous oxide from exhaust gases. - Google Patents

Catalyst for the removal of nitrous oxide from exhaust gases.

Info

Publication number
NO853038L
NO853038L NO853038A NO853038A NO853038L NO 853038 L NO853038 L NO 853038L NO 853038 A NO853038 A NO 853038A NO 853038 A NO853038 A NO 853038A NO 853038 L NO853038 L NO 853038L
Authority
NO
Norway
Prior art keywords
catalyst
carrier
catalysts
approx
solution
Prior art date
Application number
NO853038A
Other languages
Norwegian (no)
Inventor
Michael Schneider
Karl Kochloefl
Ditmar Prigge
Original Assignee
Sued Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie Ag filed Critical Sued Chemie Ag
Publication of NO853038L publication Critical patent/NO853038L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

Oppfinnelsen vedrører en katalysator til fjerning av nitrogenoksyder fra avgasser, særlig fra svoveloksydinneholdende avgasser, ved katalytisk reduksjon av nitrogenoksydene til nitrogen, hvis katalysator inneholder et eller flere edel-metaller på en bærer. The invention relates to a catalyst for the removal of nitrogen oxides from exhaust gases, in particular from exhaust gases containing sulfur oxides, by catalytic reduction of the nitrogen oxides to nitrogen, whose catalyst contains one or more noble metals on a carrier.

Under avgasser forstår man i henhold til oppfinnelsenUnder exhaust gases is understood according to the invention

særlig avgassene fra fyringsanlegg, foreksempel fra kraft-verker, kjøleanlegg, avgasser fra motorer og turbiner så especially the exhaust gases from combustion plants, for example from power plants, cooling plants, exhaust gases from engines and turbines, etc.

som avgasser fra kjemiske anlegg og fra metallbeiserier. such as off-gases from chemical plants and from metal pickling plants.

Under nitrogenoksyder forstår man i henhold til oppfinnelsen NO, NO2, N2°4' N2°5°g N2°'SOm 9enereHt kjennetegnes ved formelen NO^. Det viktigste nitrogen-oksyd er NO. According to the invention, under nitrogen oxides is meant NO, NO2, N2°4' N2°5°g N2°'SOm 9enereHt characterized by the formula NO^. The most important nitrogen oxide is NO.

Under svoveloksyder forstår man i henhold til oppfinnelsen SO2og SO^, som kjennetegnes ved formelen SO^. According to the invention, sulfur oxides are understood to mean SO2 and SO^, which are characterized by the formula SO^.

Ved den fremgangsmåten som nesten utelukkende anvendes i praksis ved fjerning av nitrogenoksyder, blir nitrogenoksydene redusert med ammoniakk som reduksjonsmiddel til nitrogen. For det hyppigste forekommende NO forløper reaksjonen i henhold til de følgende ligninger: henholdsvis når 0^foreligger i avgassen: In the method that is almost exclusively used in practice for the removal of nitrogen oxides, the nitrogen oxides are reduced with ammonia as a reducing agent to nitrogen. For the most frequently occurring NO, the reaction proceeds according to the following equations: respectively when 0^ is present in the exhaust gas:

Eksempler på slike fremgangsmåter er beskrevet i de tyske utlegningsskrifter 2.458.888, 2.539.003, 2.603.910, 2.705. 901, 2.832.002 og 3.031.286. Som katalysatorer for disse reduksjonsfremgangsmåter med NH^anvendes foreksempel katalysatorer på basis av jernoksyd eller kobberoksyd. Når slike katalysatorer dog i nærvær av SO^lett omvandles i de tilsvarende sulfater, noe som kan føre til en desaktiv- ering eller til og med en mekanisk ødeleggelse av katalysatoren har man allerede innført katalysatorer som er bestan-dige ovenfor SO^. Ved disse katalysatorer handler det seg som regel om katalysatorer på et bærermateriale som er bestandig mot S0x, foreksempel på basis av titandioksyd med tilsetninger av vanidinpentpentoksyd, kromtrioksyd, molybdentrioksyd, wolframtrioksyd og lignende substanser. Examples of such methods are described in German patent documents 2,458,888, 2,539,003, 2,603,910, 2,705. 901, 2,832,002 and 3,031,286. Catalysts for these reduction methods with NH 3 are used, for example, catalysts based on iron oxide or copper oxide. However, when such catalysts in the presence of SO2 are easily converted into the corresponding sulfates, which can lead to deactivation or even mechanical destruction of the catalyst, catalysts which are resistant to SO2 have already been introduced. These catalysts are usually catalysts on a carrier material that is resistant to S0x, for example based on titanium dioxide with additions of vanidine pentpentoxide, chromium trioxide, molybdenum trioxide, tungsten trioxide and similar substances.

Reduksjonen av nitrogenoksydene i nærvær av oksygen ogThe reduction of nitrogen oxides in the presence of oxygen and

SC>2 kan gjennomføres med NH^. Oksydasjonen av SO^SC>2 can be carried out with NH^. The oxidation of SO^

til SO^bør dog unngås da dette reagerer med ammoniakk til ammoniumbisulfat. Ammoniumbisulfatet felles ut på an-ordningen, hvori gjennom en mekanisk forstoppelse av ledn-ingssystemet og den etterkoblede varmeutveksler kan opptre. to SO^ should, however, be avoided as this reacts with ammonia to form ammonium bisulphate. The ammonium bisulphate precipitates on the device, in which a mechanical blockage of the wiring system and the connected heat exchanger can occur.

Videre er det kjent å redusere de i avgassen inneholdte nitrogenoksyder med hydrogen, karbonmonoksyd eller metan. Reduksjonen av nitrogenoksydene med hydrogen og karbonmonoksyd følger (for NO det vanligste forekommende nitrogen-oksyd) følgende ligninger: Furthermore, it is known to reduce the nitrogen oxides contained in the exhaust gas with hydrogen, carbon monoxide or methane. The reduction of the nitrogen oxides with hydrogen and carbon monoxide follows (for NO the most commonly occurring nitrogen oxide) the following equations:

En slik fremgangsmåte er foreksempel kjent fra DE-OS 24 33 479. Det ble anvendt katalysatorer på basis av kobber, elimentene fra alkali- og/eller jordalkali- og/eller over-gangsmetallgruppene med et lavt innhold av edelmetaller, fortrinnsvis rodium og/eller rutenium, på aluminiumoksyd som bærer. Anvendelse av kobber som katalysatorkomponent ble ansett som vesentlig. Katalysatorene er først virk-somme ved temperaturer på mer enn 300^C. En annen ulempe ved denne fremgangsmåte er at innsetning av reduksjons-gasser som hydrogen, medfører betraktelige transport- og lagerproblemer, da disse gasser må holdes under trykk. Such a method is known, for example, from DE-OS 24 33 479. Catalysts were used based on copper, the elements from the alkali and/or alkaline earth and/or transition metal groups with a low content of precious metals, preferably rhodium and/or ruthenium, on aluminum oxide as carrier. Use of copper as a catalyst component was considered essential. The catalysts are only effective at temperatures of more than 300°C. Another disadvantage of this method is that the introduction of reducing gases such as hydrogen entails considerable transport and storage problems, as these gases must be kept under pressure.

Fra DOS 25 39 346 er det kjent en fremgangsmåte til fjern ing av nitrogenoksyder fra gassblandinger, foreksempel fra forbrenningsavgasser, ved katalytisk reduksjon, hvorved det som reduksjonsmiddel anvendes alifatiske alkoholer med 1 til 10 karbonatomer. Det foretrukne reduksjonsmiddel er metanol. Reduksjonen utføres ved temperaturer på ca. 250 til 450^C. Som katalysatorer kan bl.a. metallene fra platingruppen, særlig iridium på et bærermaterial som leire anvendes. From DOS 25 39 346, a method is known for removing nitrogen oxides from gas mixtures, for example from combustion exhaust gases, by catalytic reduction, whereby aliphatic alcohols with 1 to 10 carbon atoms are used as the reducing agent. The preferred reducing agent is methanol. The reduction is carried out at temperatures of approx. 250 to 450°C. As catalysts, i.a. the metals from the platinum group, especially iridium on a support material such as clay are used.

Katalysatorene som anvendes ved alle kjente fremgangsmåter viser en tilfredstillende aktivitet ved forholdsvis høy temperatur, dvs. generellt i et temperaturområde på ca. 300 til 500^C. Det katalytiske rensetrinn måtte foreksempel ved behandlingen av avgasser fra fyringsanlegg anordnes før dampdanneren noe som ikke bare ville medføre plassproblemer men også problemer ved utvalg av de temperaturbestandige re ak tor ar be i ds rna te r i aler . The catalysts used in all known methods show a satisfactory activity at a relatively high temperature, i.e. generally in a temperature range of approx. 300 to 500°C. The catalytic cleaning step, for example in the treatment of exhaust gases from combustion plants, had to be arranged before the steam generator, which would not only cause space problems but also problems when selecting the temperature-resistant reactors to work in the reactors.

Foruten dette inneholder disse avgasser fremdeles støv-formige forurensinger som kan sette seg på katalysatoren når det katalytiske rensetrinn anordnes før støvavskilleren Videre ble det observert at de kjente høytemperaturkatalys-atorer også katalyserer omsetningen av reduksjonsgassene med det oksygen som vanligvis er i avgassene, dvs. at katalysatorene ikke er selektive med hensyn til reduksjon av ni trogenoksydene. In addition to this, these exhaust gases still contain dust-like contaminants that can settle on the catalyst when the catalytic cleaning step is arranged before the dust separator. Furthermore, it was observed that the known high-temperature catalysts also catalyze the conversion of the reduction gases with the oxygen that is usually in the exhaust gases, i.e. that the catalysts are not selective with respect to the reduction of the nitrogen oxides.

Oppfinnelsen har derfor til hensikt å fremstille en katalysator av den innledningsvis definerte art, som har en god lavtemperaturaktivitet og selektivitet. The invention therefore aims to produce a catalyst of the type defined at the outset, which has good low-temperature activity and selectivity.

Til løsning av denne oppgave er katalysatorene i henhold til oppfinnelsen kjennetegnet ved at bæreren inneholder en inert grunnbærer, på hvilken er anordnet et mellomsjikt av ^- Al^ O^, en silitiumoksyd eller en alumosilikat, eventuelt sammen med et oksyd av lantan og/eller av lantanidene og at det i eller på dette mellomsjikt er anbragt et eller flere edelmetaller fra gruppen rutenium, rodium, palladium To solve this problem, the catalysts according to the invention are characterized in that the carrier contains an inert base carrier, on which is arranged an intermediate layer of ^- Al^ O^, a silicon oxide or an aluminosilicate, possibly together with an oxide of lanthanum and/or of the lanthanides and that one or more precious metals from the group ruthenium, rhodium, palladium are placed in or on this intermediate layer

og/eller platin.and/or platinum.

Ved hjelp av katalysatoren i henhold til oppfinnelsen er det mulig å gjennomføre reduksjonen av nitrogenoksydene ved temperaturer under 300^C. Videre kan reduksjonen av nitrogenoksydene gjennomføres ved hjelp av katalysatorene i henhold til oppfinnelsen i nærvær av en oksygenholdig blanding av avgass og gassformige reduksjonsmiddel. Det ble overraskende funnet at oksygenet som inneholdes i reak-sjonsblandingen kun reagerer med reduksjonsgassene i liten utstrekning. Det skjer altså en selektiv reduksjon av nitrogenoksydene. Dette resultat er av spesiell økonomisk betydning da foreksempel røkgass kan inneholde opp til 10% oksygen. Også i nærvær av svoveloksyder skjer en selektiv reduksjon av nitrogenoksydene. With the help of the catalyst according to the invention, it is possible to carry out the reduction of the nitrogen oxides at temperatures below 300°C. Furthermore, the reduction of the nitrogen oxides can be carried out using the catalysts according to the invention in the presence of an oxygen-containing mixture of exhaust gas and gaseous reducing agent. It was surprisingly found that the oxygen contained in the reaction mixture only reacts with the reducing gases to a small extent. There is thus a selective reduction of nitrogen oxides. This result is of particular economic importance as, for example, flue gas can contain up to 10% oxygen. Also in the presence of sulfur oxides, a selective reduction of the nitrogen oxides takes place.

Under begrepet "silitiumdioksyd" forstår man i henhold til oppfinnelsen Si02så som høykondensert kieselsyre med vekslende vanninnhold, slik som man eksempelvis oppnår ved inntørkning og kalsinering av kieselsyresoler. Disse kieselsyresoler inneholder kolloidalt, amorft Si02i konsentrasjoner opp til 60 vekt-% (sammenlign Rompps Chemie According to the invention, the term "silicon dioxide" means SiO2 as highly condensed silicic acid with varying water content, such as is obtained, for example, by drying and calcining silicic acid sols. These silicic acid sols contain colloidal, amorphous SiO2i concentrations up to 60 wt% (compare Rompps Chemie

-Lexikon, 8. utgave, 1983, side 2108/2109).-Lexikon, 8th edition, 1983, pages 2108/2109).

Under begrepet "aluminiumsilikat" forstås i henhold til oppfinnelsen forbindelser med forskjellige andeler av M^ O^ og Si02. Forbindelser i hvilke aluminium inn- According to the invention, the term "aluminium silicate" means compounds with different proportions of M^ O^ and SiO 2 . Compounds in which aluminum in-

tar gitterplasser istedet for silitium betegnes som alumo-silikater. Aluminiumsi1ikatene kan foreksempel dannes ved omsetning av kieselsyresoler og alumosoler, hvorved det oppnås tilsvarende temperaturen som anvendes ved omsetningen henholdsvis ved kalsineringen, produkter med varierende vanninnhold. Begrepet "alumosol" anvendes herved i til-knytning til begrepet "alumogel" for en vandig dispersjon av aluminiumhydroksyder med varierende sammensetning (for-hold A1203:H20). take lattice sites instead of silicon are referred to as alumino-silicates. The aluminum silicates can, for example, be formed by the reaction of silicic acid sols and aluminosols, whereby the corresponding temperature used in the reaction or in the calcination is obtained, products with varying water content. The term "alumosol" is used here in connection with the term "alumogel" for an aqueous dispersion of aluminum hydroxides with varying composition (ratio A1203:H20).

Under begrepet "inert grunnbaerer" forstår man baerematerial-er, særlig med en spesifisk BET-overflate på mindre enn 50 m<2>/g, fortrinnsvis mindre enn 25m2 , som fortrinnsvis ikke danner sulfater med svoveloksydene som foreligger i avgassene. Fortrinnsvis utgjør andelen av porene med en diameter på mer enn 95 nm mer enn 50%. Foretrukne inerte grunnbærere er oC-aluminiumoksyd, titandioksyd (eventuelt i blanding med vanadinoksyd), kjemiske materialer og/eller aluminium-magnesiumsilikat. The term "inert base carrier" is understood to mean carrier materials, in particular with a specific BET surface area of less than 50 m<2>/g, preferably less than 25 m2 , which preferably do not form sulfates with the sulfur oxides present in the exhaust gases. Preferably, the proportion of the pores with a diameter of more than 95 nm is more than 50%. Preferred inert base carriers are oC aluminum oxide, titanium dioxide (possibly in mixture with vanadium oxide), chemical materials and/or aluminium-magnesium silicate.

Andelen av mellomsjiktmateriale kan varieres innenfor vide grenser, fortrinnsvis utgjør denne andel ca. 0,1 til 15 vekt-%, særlig ca. 1,0 til 10,0 vekt-% av hele katalysatoren . The proportion of intermediate layer material can be varied within wide limits, preferably this proportion amounts to approx. 0.1 to 15% by weight, in particular approx. 1.0 to 10.0% by weight of the whole catalyst.

Edelmetallkonsentrasjonen av katalysatoren i henhold til oppfinnelsen utgjør fortrinnsvis ca. 0,01 til 1,0 vekt-%, særlig ca. 0,2 til 0,6 vekt-% basert på hele katalysatoren. The noble metal concentration of the catalyst according to the invention is preferably approx. 0.01 to 1.0% by weight, especially approx. 0.2 to 0.6% by weight based on the whole catalyst.

En hensikt med foreliggende oppfinnelse er videre en fremgangsmåte ved fremstilling av den forut definerte katalysator, hvorved denne fremgangsmåte erkarakterisert vedat man impregnerer grunnbæreren med en oppløsning av et alu-miniumsalt, en kieselsol eller en blanding av en kieselsol og en alumosol og eventuelt med en oppløsning av et salt av lantan og/eller lantanidene, tørker den slik behandlede grunnbærer og kalsinerer, for å danne mellomsjiktet av#-A^O^, et silitiumoksyd og en aluminiumsilikat og eventuelt oksydene av lantan og/eller lantanidene og at man impregnerer mellomsjiktet med en eller flere edelmetallsalter og tørker og kalsinerer det slik dannede produkt. Another purpose of the present invention is a method for the production of the previously defined catalyst, whereby this method is characterized by impregnating the base support with a solution of an aluminum salt, a silica sol or a mixture of a silica sol and an alumosol and optionally with a solution of a salt of lanthanum and/or the lanthanides, the base carrier thus treated is dried and calcined, to form the intermediate layer of #-A^O^, a silicon oxide and an aluminum silicate and possibly the oxides of lanthanum and/or the lanthanides and that the intermediate layer is impregnated with one or more noble metal salts and drying and calcining the product thus formed.

Til impregnering av grunnbæreren anvendes særlig en alumi-niumnitratoppløsning og eventuelt en oppløsning av nitratene av lantan og/eller lantanidene, mens det til impregnering av mellomsjiktet anvendes en oppløsning av en eller flere edelmetallklorider. An aluminum nitrate solution and possibly a solution of the nitrates of lanthanum and/or the lanthanides are used in particular for impregnating the base carrier, while a solution of one or more noble metal chlorides is used for impregnating the intermediate layer.

For å danne mellomsjiktet av silitiumdioksyd henholdsvis aluminiumsilikat dynker man grunnbæreren fortrinnsvis med en vandig kieselsyresol henholdsvis en blanding av en vandig kieselsyre-aluminiumhydroksydsol, hvoretter man tørker og kalsinerer det slik impregnerte produkt. To form the intermediate layer of silicon dioxide or aluminum silicate, the base carrier is preferably impregnated with an aqueous silicic acid sol or a mixture of an aqueous silicic acid-aluminum hydroxide sol, after which the thus impregnated product is dried and calcined.

Anvendelsen av 1avtemperaturkatalysatoren i henhold til oppfinnelsen ved temperaturer under 300^C er også gjenstand for oppfinnelsen. The use of the low-temperature catalyst according to the invention at temperatures below 300 °C is also subject to the invention.

Katalysatoren i henhold til oppfinnelsen innsettes fortrinnsvis i oksygenholdige avgasser da den ikke katalyserer omsetningen av oksygen med reduksjonsgassene. Katalysatoren innsettes fortrinnsvis i avgasser med et oksygeninnhold opp til ca. 7 vol.-%, særlig fra 3 til 5 vol.-%. The catalyst according to the invention is preferably used in oxygen-containing exhaust gases as it does not catalyze the reaction of oxygen with the reducing gases. The catalyst is preferably used in exhaust gases with an oxygen content of up to approx. 7 vol.-%, especially from 3 to 5 vol.-%.

Katalysatorene i henhold til oppfinnelsen muliggjør reduksjonen av nitrogenoksyder i nærvær av svoveloksyder. Foruten dette katalyseres ikke reduksjonen av svoveloksyder til hydrogensulfid selv ikke ved et høyt nivå med reduk-sjonsgasser (særlig hydrogen). Vanligvis innsettes katalysatorene i henhold til oppfinnelsen ved avgasser hvis svoveloksydinnhold er ca. 1000 ppm. The catalysts according to the invention enable the reduction of nitrogen oxides in the presence of sulfur oxides. Besides this, the reduction of sulfur oxides to hydrogen sulphide is not catalysed even at a high level of reducing gases (especially hydrogen). Usually, the catalysts according to the invention are used in exhaust gases whose sulfur oxide content is approx. 1000ppm.

Til reduksjon av de nitrogenoksyder som inneholdes i avgassene kan alle kjente reduksjonsmidler anvendes. Eksempelvis kan man som reduksjonsmiddel innsette ammoniakk særlig i temperaturområdet fra ca. 130 til 240^C. All known reducing agents can be used to reduce the nitrogen oxides contained in the exhaust gases. For example, ammonia can be used as a reducing agent, particularly in the temperature range from approx. 130 to 240°C.

Videre kan det som reduksjonsmiddel anvendes hydrogen, karbonmonoksyd og/eller metan. Videre kan det som reduksjonsmiddel anvendes metanol for nitrogenoksydene. En slik fremgangsmåte er kjent fra DE-OS 25 39 346, hvorved det dog anvendes andre katalysatorer. Herved kan ved reduksjonen av nitrogenoksydene i nærvær av svovelforbindelser dannes H^ S, som minsker aktiviteten til katalysatoren. Dette problem opptrer dog ikke ved katalysatorene i henhold til oppfinnelsen. Videre ble det ved spalting av metanol på de kjente N0x-reduksjonskatalysatorene dannet uønskede biprodukter som formaldehyd, maursyre og dietyleter, som des-aktiverer katalysatorene ved langtidsanvendelse og er miljøskadelige. Disse biprodukter opptrer ikke ved anvendelsen av katalysatorene i henhold til oppfinnelsen. Hydrogen, carbon monoxide and/or methane can also be used as reducing agents. Furthermore, methanol can be used as a reducing agent for the nitrogen oxides. Such a method is known from DE-OS 25 39 346, in which, however, other catalysts are used. Hereby, the reduction of the nitrogen oxides in the presence of sulfur compounds can form H^S, which reduces the activity of the catalyst. However, this problem does not occur with the catalysts according to the invention. Furthermore, by splitting methanol on the known N0x reduction catalysts, unwanted by-products such as formaldehyde, formic acid and diethyl ether were formed, which deactivate the catalysts during long-term use and are harmful to the environment. These by-products do not occur when using the catalysts according to the invention.

Som reduksjonmiddel for nitrogenoksydene kan en gassblanding som erholdes ved katalytisk spalting henholdsvis ved vanndampreformering av metanol særlig i temperaturområdet fra 150 til 300°C innsettes. As a reducing agent for the nitrogen oxides, a gas mixture obtained by catalytic cracking or by water vapor reforming of methanol, particularly in the temperature range from 150 to 300°C, can be used.

En slik fremgangsmåte er (med andre katalysatorer) gjenstand for den tyske patentsøknad P 33 45 657.4-43. Denne fremgangsmåte har overfor fremgangsmåten med anvendelse av metanol den fordel at intet H^S dannes i nærvær av svovelforbindelser og at ingen bireaksjoner opptrer som fører til dannelse av formaldehyd, maursyre og dimetyleneter. Videre kan ved hjelp av denne fremgangsmåten reaksjonen styres med hensyn til en forandring av H^/ CO forholdet. Denne styringsmulighet er ønsket for maksimal NO^ omsetning, da denne bestemmes avhengig av temperaturen av H^/ CO forholdet. Foruten dette har anvendelsen av metanol som utgangsmaterial for den reduserende gassblanding den fordel at den i motsetning til komprimerte gasser lett kan trans-porteres og lagres. Such a method is (with other catalysts) the subject of the German patent application P 33 45 657.4-43. Compared to the method using methanol, this method has the advantage that no H^S is formed in the presence of sulfur compounds and that no side reactions occur which lead to the formation of formaldehyde, formic acid and dimethyl ether. Furthermore, by means of this method, the reaction can be controlled with regard to a change in the H^/CO ratio. This control option is desired for maximum NO^ conversion, as this is determined depending on the temperature by the H^/CO ratio. Besides this, the use of methanol as starting material for the reducing gas mixture has the advantage that, unlike compressed gases, it can be easily transported and stored.

Den katalytiske spaltning av metanolen følger ligningen The catalytic splitting of the methanol follows the equation

og den katalytiske vanndampreformering ligningen and the catalytic steam reforming equation

Ved variering av molforholdet mellom metanol og vann kan man altså variere forholdet mellom de til reduksjon av NO^anvendte gassformige reaksjonsprodukter CO og H c 9 L i vide grenser. Fortrinnsvis anvender man ved vanndampre formering et molforhold mellom metanol og vann fra ca. 1 til 5. Også ved metanolspaltingen er et visst F^O innhold ønskelig for å unngå karbonutfelling på katalysatoren (molforhold H20 : CH3OH = 0,05 - 0,2 : 1). By varying the molar ratio between methanol and water, one can thus vary the ratio between the gaseous reaction products CO and H c 9 L used for the reduction of NO^ within wide limits. Preferably, a molar ratio between methanol and water of approx. 1 to 5. Also in the methanol cleavage, a certain F^O content is desirable to avoid carbon precipitation on the catalyst (molar ratio H20 : CH3OH = 0.05 - 0.2 : 1).

For spalting henholdsvis vanndampreformering av metanol kan det anvendes i og for seg kjente katalysatorer eksempelvis edelmetall-bærerkatalysatorer, særlig på titandioksyd, zirkoniumdioksyd eller seriumdioksyd henholdsvis kobberholdige katalysatorer. For cleavage or steam reforming of methanol, catalysts known per se can be used, for example precious metal carrier catalysts, in particular on titanium dioxide, zirconium dioxide or cerium dioxide or copper-containing catalysts.

Spesielt foretrukket anvender man som vanndamp-reformerings-katalysator en katalysator som inneholder It is particularly preferred to use as steam reforming catalyst a catalyst which contains

A) en metallkomponent av en eller flere av elementene i den 8. sidegruppe i det periodiske system på et bærermaterial på basis A) a metal component of one or more of the elements in the 8th side group of the periodic table on a carrier material based on

) av Ti02eller CeO^eventuelt i blanding med andre ildfaste metalloksyder og/eller hydrauliske bindere eller ) of TiO2 or CeO^possibly in a mixture with other refractory metal oxides and/or hydraulic binders or

B^) av Ti02som er anbragt på overflaten til det forformede ildfaste materiale av A^O^eller kjeramikk B^) of TiO2 placed on the surface of the preformed refractory material of A^O^ or ceramics

En slik katalysator er gjenstand for den tyske patentsøknad P 33 40 596.7. Metallkomponentene til denne katalysator er fortrinnsvis en eller flere edelmetaller, særlig platin og/ eller palladium og/eller rodium. Edelmetallkonsentrasjonen er fortrinnsvis 0,03 til 3 vekt-%, særlig 0,15 til 0,5 vekt-% på basis av den samlede katalysator. Som ildfast metalloksyd inneholder katalysatoren fortrinnsvis A^O^ og/eller Cr^ O^ og som hydraulisk binder kalsium-alumi-natsement, hvorved konsentrasjonen av disse tilsetninger er fra 2 til 50 vekt-% særlig 5 til 25 vekt-% på basis av den samlede katalysator. Such a catalyst is the subject of the German patent application P 33 40 596.7. The metal components of this catalyst are preferably one or more noble metals, particularly platinum and/or palladium and/or rhodium. The noble metal concentration is preferably 0.03 to 3% by weight, in particular 0.15 to 0.5% by weight, based on the total catalyst. As refractory metal oxide, the catalyst preferably contains A^O^ and/or Cr^O^ and which hydraulically binds calcium-aluminate cement, whereby the concentration of these additions is from 2 to 50% by weight, in particular 5 to 25% by weight on the basis of the overall catalyst.

Katalysatoren kan dannes ved at man fremstiller et form legeme ved sammenpressing av TiC»2eH-er Ce02eventuelt med andre ildfaste metalloksyder, kalsinerer dette og impregnerer med metallkomponenten. Herved kan man tilsette til titandioksydet en hydraulisk binder, fremstille et formlegeme etter tilsetning av vann ved sammenpressing, tørke dette, kalsinere og impregnere med metallkomponenten. Videre kan man tilsette den masse som skal presses et smøremiddel som aluminiumstearat og/eller grafitt. Etter en annen utføringsform kan denne katalysator fremstilles ved at man påfører TiC^på overflaten til et forformed ildfast materiale som A^O^eller kjeramikk, kalsinerer det slik behandlede formlegeme, og impregnerer med metallkomponenten. TiC>2påføres herved fortrinnsvis ved impregnering av formlegeme med alkoksytitanater, etterfølg-ende hydrolyse og kalsinering. Ved formlegemene handler det seg fortrinnsvis om forformede kuler, tabletter, ringer eller waber. Av A^O^ eller kjeramikk. Impregneringen med metallkomponenten gjennomføres fortrinnsvis under an-endelse av vannoppløselige edelmetallsalter, særlig H-PtCl, eller (NH.)_Pt+Cl, eller de tilsvarende The catalyst can be formed by producing a shaped body by compressing TiC»2eH-er Ce02, possibly with other refractory metal oxides, calcining this and impregnating it with the metal component. In this way, a hydraulic binder can be added to the titanium dioxide, a molded body can be produced after adding water by compression, dried, calcined and impregnated with the metal component. Furthermore, a lubricant such as aluminum stearate and/or graphite can be added to the mass to be pressed. According to another embodiment, this catalyst can be produced by applying TiC^ to the surface of a pre-formed refractory material such as A^O^ or ceramics, calcining the shaped body thus treated, and impregnating with the metal component. TiC>2 is thereby preferably applied by impregnation of the molded body with alkoxy titanates, subsequent hydrolysis and calcination. The shaped bodies are preferably preformed spheres, tablets, rings or wafers. Of A^O^ or pottery. The impregnation with the metal component is preferably carried out in the presence of water-soluble noble metal salts, especially H-PtCl, or (NH.)_Pt+Cl, or the corresponding

2 6 4 2 6 2 6 4 2 6

Pd eller Rh-salter. Kalsineringen av det med metallkomponenten impregnerte bærermateriale utføres fortrinnsvis ved temperaturer mellom 450 og 650^C særlig mellom 550 og 640°C. Pd or Rh salts. The calcination of the carrier material impregnated with the metal component is preferably carried out at temperatures between 450 and 650 °C, in particular between 550 and 640 °C.

Den forut nærmere beskrevet katalysator gjør det mulig å gjennomføre omsetningen med metanol enten ved metanol spaltningsbetingelser (ligning 5) eller under metanol damp-reformeringbetingelser (ligning 6) hvorved kun mengden av tilsatt vanndamp varieres. Katalysatoren er stabil ved forskjellige fremgangsmåtebetingelser og viser ikke tendens til koksdannelse under betingelsene for reaksjonen i henhold til ligning 5. Videre kan denne katalysator også innsettes i nærvær av oksygen, altså under betingelser ved hvilke de kjente ikke-edelmetallkatalysatorene (særlig kobberkatalysatorer) ikke er stabile. The previously described catalyst makes it possible to carry out the reaction with methanol either under methanol splitting conditions (equation 5) or under methanol steam reforming conditions (equation 6) whereby only the amount of added steam is varied. The catalyst is stable under different process conditions and does not show a tendency to coke formation under the conditions for the reaction according to equation 5. Furthermore, this catalyst can also be used in the presence of oxygen, i.e. under conditions in which the known non-precious metal catalysts (especially copper catalysts) are not stable .

Spaltingen henholdsvis reformeringen av metanol gjennomfør- es fortrinnsvis ved temperaturer i området fra ca. 400 til 600^C. Romhastigheten ligger vanligvis i området fra ca. 0,5 til 20 liter/time x liter katalysator (på basis av det vannholdige metanol ) . Oppfinnelsen skal belyses ved de nedenfor oppførte eksempler. The splitting or reforming of methanol is preferably carried out at temperatures in the range from approx. 400 to 600°C. The space velocity is usually in the range from approx. 0.5 to 20 litres/hour x liter of catalyst (on the basis of the aqueous methanol). The invention shall be illustrated by the examples listed below.

Eksemplene 1 til og med 17 beskriver fremstillingen av bærer henholdsvis katalysatorer, i anvendelseseksemplene 1 og 2 er de resultater som er oppnådd ved fjerning av nitrogenoksyder fra avgasser med NH^henholdsvis H_ som reduksjonsmiddel oppført. Examples 1 to 17 describe the preparation of carriers and catalysts respectively, in application examples 1 and 2 the results obtained by removing nitrogen oxides from exhaust gases with NH 3 or H 3 respectively as reducing agent are listed.

Eksemplene 1 til og med 17Examples 1 to 17 inclusive

A Fremstilling av bærerenA Preparation of the carrier

Bærer T 1:Carrier T 1:

147,2 g A1(N03)3.9 H20 ble løst i destillert vann og oppløsningen ble fortynnet til et volum på 245 ml. 200 g av en CX-A^O-^-bærer (tabletter med 3,7 mm diameter og 3,5 mm høyde; BET-overflate = 4,0 m<2>/g; Hg-porevolum = 0,24 ml/g; vannopptagningskapasitet = 0,25 ml/g) ble neddyppet i 20 minutter i en aluminiumnitratoppløsning som var oppvarmet til 70 til 80^C. Etter avdrypping av overskuddsopp-løsning ble tablettene kalsinert 2 timer ved 400^C, hvorved Al-nitratet ble omvandlet i (^- Al^ O^. Den slik erholdte bærer T 1 inneholdt 2,0 vol-%£Al?03. 147.2 g of Al(NO 3 ) 3.9 H 2 O were dissolved in distilled water and the solution was diluted to a volume of 245 ml. 200 g of a CX-A^O-^ carrier (tablets of 3.7 mm diameter and 3.5 mm height; BET surface area = 4.0 m<2>/g; Hg pore volume = 0.24 ml /g; water absorption capacity = 0.25 ml/g) was immersed for 20 minutes in an aluminum nitrate solution heated to 70 to 80°C. After draining off the excess solution, the tablets were calcined for 2 hours at 400°C, whereby the Al nitrate was converted into (^-Al^O^. The carrier T 1 thus obtained contained 2.0 vol-%£Al?O3.

Bærer T 2Carrier T 2

100 g av et konversielt aluminiumhydrat ble innført under røring i 400 ml 1,2% HN03. I den dannede dispersjon ble neddykket 150 g«-Al203-tabletter (som ved Tl) i 20 minutter. Etter avdrypping av den overflødige dispersjon ble tablettene kalsinert 3 timer ved 400^C. Den slik erholdte bærer T 2 inneholdt 2,1% tf-Al203. 100 g of a convertible aluminum hydrate was introduced with stirring into 400 ml of 1.2% HN0 3 . 150 g of Al 2 O 3 tablets (as in T1) were immersed in the resulting dispersion for 20 minutes. After draining off the excess dispersion, the tablets were calcined for 3 hours at 400°C. The carrier T 2 thus obtained contained 2.1% tf-Al 2 O 3 .

Bærer T 3Carrier T 3

132,5 g Al(N03)3.9 H20 og 5,3 La(N03)3.6 H20 132.5 g Al(N03)3.9 H20 and 5.3 La(N03)3.6 H20

ble oppløst i destillert vann og oppløsningen på et volum på 245 ml ble fortynnet. 150 g av en £>(-Al203-bærer (som ved T 1) ble neddykket i en nitratoppløsning oppvarmet til 70-80^ og avdryppet 3 timer ved kalsinering ved 400°. Den slik erholdte bærer T 3 inneholdt 1,8% #-Al203 og 0,2 % La2C>3. was dissolved in distilled water and the solution to a volume of 245 ml was diluted. 150 g of a £>(-Al 2 O 3 support (as in T 1) was immersed in a nitrate solution heated to 70-80° and drained for 3 hours by calcination at 400°. The support T 3 thus obtained contained 1.8% # -Al2O3 and 0.2% La2C>3.

Bærer T 4Carrier T 4

132,5 g A1(N03)3.9 U^ O og 4,5 g nitratblanding av de sjeldne jordalkalimetaller (nitratblandingen gir ved den termiske spalting en oksidblanding,REOmed 60% La203, 132.5 g A1(N03)3.9 U^ O and 4.5 g nitrate mixture of the rare earth alkaline metals (the nitrate mixture yields an oxide mixture during the thermal decomposition, REO with 60% La203,

15% CeO-, 17,5 % Nd_0o, 7,5 % Pr,0,,) ble løst i15% CeO-, 17.5% Nd_0o, 7.5% Pr,0,,) was dissolved in

Z. /6D 11 Z. /6D 11

destillert vann og oppløsningen ble fylt opp til et volum på 245 ml. 150 g av en o(-Al.0,-bærer (som i T 1) ble dyppet ned i den til 70-80 0C oppvarmede nitratoppløsning og etter avdrypping av overskuddsoppløsing ble det kalsinert 3 timer ved 400^C. Den erholdte bærer T 4 inneholdt 1,8 % £-Al203 og 0,2 % REO. distilled water and the solution was made up to a volume of 245 ml. 150 g of an o(-Al.0, carrier (as in T 1) was dipped into the nitrate solution heated to 70-80 0C and after draining off the excess solution, it was calcined for 3 hours at 400°C. The obtained carrier T 4 contained 1.8% £-Al 2 O 3 and 0.2% REO.

Bærer T 5Carrier T 5

147,2 g A1(N03)3.9 H20 ble løst i destillert vann og bragt til et volum på 245 ml. 150 g av en corderitbærer (2 MgO.2 Al203.5 Si02; 4,0 extrudat med BET-overf1ate = 147.2 g of Al(NO3)3.9 H20 were dissolved in distilled water and brought to a volume of 245 ml. 150 g of a corderite carrier (2 MgO.2 Al203.5 Si02; 4.0 extrudate with BET-overf1ate =

0,5 m<2>/g; vannopptagelse = 0,24 ml/g) ble i 20 minutter neddykket i en nitratoppløsning oppvarmet til 70-80^C, etter avdrypping av overskuddsoppløsning ble det kalsinert 3 timer ved 400^C. Den erholdte bærer T 5 inneholdt 2,1% #-Al203. 0.5 m<2>/g; water absorption = 0.24 ml/g) was immersed for 20 minutes in a nitrate solution heated to 70-80°C, after draining off the excess solution it was calcined for 3 hours at 400°C. The carrier T 5 obtained contained 2.1% #-Al 2 O 3 .

Bærer T 6Carrier T 6

375,4 g av et kommersielt høydispergert titandioksyd ble blandet tørt med 35,1 g finmalt NH^V03og deretter knadd til en deig under porsjonsvis tilsetning av 130 ml H20. Produktet ble tørket over natt ved 120°C, der- 375.4 g of a commercial highly dispersed titanium dioxide was mixed dry with 35.1 g of finely ground NH 2 VO 3 and then kneaded into a dough with portionwise addition of 130 ml H 2 O. The product was dried overnight at 120°C, where

etter granulert gjennom en 0,4 mm sil, blandet tørt med 28,7 g aluminiums tearat og presset til sylindriske tabletter med diameter 4,5 mm og 4,5 mm høyde. Tablettene ble deretter kalsinert 3 timer ved 550^C. after granulated through a 0.4 mm sieve, dry mixed with 28.7 g of aluminum tearate and pressed into cylindrical tablets of diameter 4.5 mm and height 4.5 mm. The tablets were then calcined for 3 hours at 550°C.

Bærer T 7Carrier T 7

150 g av en corderitbærer (2MgO . A1203 . 5 Si02; 4,0150 g of a corderite carrier (2MgO . A1203 . 5 SiO 2 ; 4.0

mm extrudat med en BET-overflate på 0,5m<2>/g; vannopptagn- mm extrudate with a BET surface area of 0.5m<2>/g; water absorption

ingskapasitet = 0,24 ml/g) ble i 20 minutter neddykket i en kieselsol med et 10 % SiC^-innhold; etter avdrypping av overskuddsoppløsningen ble den kalsinert 3 timer ved 400°C. Den erholdte bærer T 7 inneholdt 2,5 % Si02. ing capacity = 0.24 ml/g) was immersed for 20 minutes in a silica sol with a 10% SiC^ content; after draining off the excess solution, it was calcined for 3 hours at 400°C. The carrier T 7 obtained contained 2.5% SiO 2 .

Bærer T 8Carrier T 8

150 g av en corderitbærer (som ved bærer T 7) ble neddykket i 20 minutter i en blanding av like deler kieselsol med 10 % SiC>2og Alumosol med 10 % Al-jO^; etter avdrypping av overskuddsoppløsning ble den kalsinert 3 ganger ved 400°C. Den erholdte bærer T 8 inneholdt 1, 2 % Si062 og 1,2 % Al2°3- 150 g of a corderite carrier (as in carrier T 7) was immersed for 20 minutes in a mixture of equal parts of silica sol with 10% SiC>2 and Alumosol with 10% Al-jO^; after draining off excess solution, it was calcined 3 times at 400°C. The carrier T 8 obtained contained 1.2% Si062 and 1.2% Al2°3-

B Fremstilling av katalysatorene B Preparation of the catalysts

Sammenligningskatalysator A:Comparative Catalyst A:

v ,,r.0-,-bærer (4x4 mm tabletter med BET-over-100 g av #-A162 3 (4x4 flate = 181 m<2>/g; Hg-porevolum = 0,16 ml/g; vannopptagnings kapasitet = 0,42 ml/g) ble besprutet med en oppløsning av 0,98 g rodium (III)-kloridhydrat i 15 ml r^O og som beskrevet ved K 1 tørket og kalsinert. De fysikalske og kjemiske data for katalysatoren er oppført i tabell 1. v ,,r.0-,-carrier (4x4 mm tablets with BET-over-100 g of #-A162 3 (4x4 surface = 181 m<2>/g; Hg pore volume = 0.16 ml/g; water absorption capacity = 0.42 ml/g) was sprayed with a solution of 0.98 g of rhodium (III) chloride hydrate in 15 ml of r^O and as described under K 1 dried and calcined. The physical and chemical data for the catalyst are listed in table 1.

Katalysator K 1 (eksempel 1):Catalyst K 1 (example 1):

100 g av bæreren T 1 ble regelmessig besprutet med en opp-løsning av 0,40 g H2PtCl6.6H20 (37,7 % Pt) i 15 ml H_0. Deretter ble tablettene tørket i 2 timer ved 100 g of the carrier T 1 was regularly sprayed with a solution of 0.40 g of H2PtCl6.6H20 (37.7% Pt) in 15 ml of H0. The tablets were then dried for 2 hours with

0 0 0 0

120 C og deretter 1 time ved 200 C og 2 timer ved 400^C kalsinert. De fysikalske og kjemiske data for den slik dannede katalysator K 1 er oppført i tabell I 120 C and then 1 hour at 200 C and 2 hours at 400^C calcined. The physical and chemical data for the thus formed catalyst K 1 are listed in Table I

Katalysator K 2 (eksempel 2):Catalyst K 2 (example 2):

100 g av bæreren T 1 ble besprutet med en oppløsning av 0,93 g H2PtCl6.6 H20 (37,7 % Pt) i 15 ml H20, og kalsinert som beskrevet i eksempel 1. De fysikalske og kjemiske data for katalysator K 2 er oppført i tabell I. 100 g of support T 1 was sprayed with a solution of 0.93 g H2PtCl6.6 H20 (37.7% Pt) in 15 ml H20, and calcined as described in example 1. The physical and chemical data for catalyst K 2 are listed in Table I.

Katalysator K 3 (eksempel 3):Catalyst K 3 (example 3):

100 g av bæreren T 1 ble besprutet med en oppløsning av 0,42 g rodium-(IIl)-kloridhydrat (35,8 % Rh) i 15 ml H20, og kalsinert som beskrevet i eksempel 1. De fysikalske og kjemiske data for katalysator K 3 er oppført i tabell 1. 100 g of support T 1 was sprayed with a solution of 0.42 g of rhodium-(IIl) chloride hydrate (35.8% Rh) in 15 ml of H 2 O, and calcined as described in Example 1. The physical and chemical data for catalyst K 3 is listed in Table 1.

Katalysator K 4 (eksempel 4):Catalyst K 4 (example 4):

100 g av bæreren T 1 ble besprutet med en oppløsning av 0. 98 g rodium-(IIl)-kloridhydrat (35,8 % Rh) i 15 ml H20, viderebehandlet analogt med eksempel 1. De fysikalske og kjemiske data for katalysator K 4 er oppført i tabell 1. 100 g of the carrier T 1 was sprayed with a solution of 0.98 g of rhodium-(IIl) chloride hydrate (35.8% Rh) in 15 ml of H 2 O, further treated analogously to example 1. The physical and chemical data for catalyst K 4 are listed in Table 1.

Katalysator K 5 (eksempel 5):Catalyst K 5 (example 5):

100 g av bæreren T 1 ble besprutet med en oppløsning av 1,01 g PdCl2. 2 H20 (49,9 % Pd) i 15 ml H20, og viderebehandlet som beskrevet i eksempel 1. De fysikalske og kjemiske data for katalysator 5 er oppført i tabell I. 100 g of the carrier T 1 was sprayed with a solution of 1.01 g of PdCl 2 . 2 H 2 O (49.9% Pd) in 15 ml H 2 O, and further treated as described in Example 1. The physical and chemical data for catalyst 5 are listed in Table I.

Katalysator K 6 (eksempel 6):Catalyst K 6 (Example 6):

100 g av bæreren T 1 ble besprutet med en oppløsning av 1,12 g rutenium-(III)-kloridhydrat (35,65 % Ru) i 15 ml H20, og så tørket og kalsinert som beskrevet i eksempel 1. De fysikalske og kjemiske data for katalysator 6 er oppført i tabell I. 100 g of the support T 1 was sprayed with a solution of 1.12 g of ruthenium (III) chloride hydrate (35.65% Ru) in 15 ml of H 2 O, and then dried and calcined as described in example 1. The physical and chemical data for catalyst 6 are listed in Table I.

Katalysator K 7 (eksempel 7):Catalyst K 7 (Example 7):

100 g av bæreren T 3 ble besprutet analogt med eksempel 1 med en oppløsning av 0,40 g H2PtClg.6H20 (37,7 % Pt) 100 g of the carrier T 3 was sprayed analogously to example 1 with a solution of 0.40 g of H2PtClg.6H20 (37.7% Pt)

og viderebehandlet. De fysikalske og kjemiske data for katalysator K 7 er oppført i tabell I. and further processed. The physical and chemical data for catalyst K 7 are listed in Table I.

Katalysator K 8 (eksempel 8):Catalyst K 8 (Example 8):

100 g av bæreren T 6 ble besprutet med en oppløsning av 0,93 g H2PtCl6. 6 H20 (37,7 % Pt) i 12 ml H20, og tørket og kalsinert som i eksempel 1. De fysikalske og kjemiske data for katalysator K 8 er oppført i tabell I. 100 g of the carrier T 6 were sprayed with a solution of 0.93 g of H 2 PtCl 6 . 6 H 2 O (37.7% Pt) in 12 ml H 2 O, and dried and calcined as in Example 1. The physical and chemical data for catalyst K 8 are listed in Table I.

Katalysator K 9 (eksempel 9):Catalyst K 9 (Example 9):

3 00 g av bæreren T 6 ble besprutet med en oppløsning av 0,98 g rodium-(III)-kloridhydrat (35,8 % Rh) i 12 ml H20, og viderebehandlet analogt med eksempel 1. De fysikalske og kjemiske data for katalysator K 9 er oppført i tabell I. 300 g of the carrier T 6 was sprayed with a solution of 0.98 g of rhodium (III) chloride hydrate (35.8% Rh) in 12 ml of H 2 O, and further treated analogously to example 1. The physical and chemical data for catalyst K 9 is listed in Table I.

Katalysator K 10 (eksempel 10):Catalyst K 10 (Example 10):

100 g av bæreren T 1 ble regelmessig besprutet med en opp-løsning av 0,98 g rodium-(III)-kloridhydrat (35,8 % Rh) i 15 ml H_0. Deretter ble tablettene tørket i 2 timer ved 100 g of the support T 1 was regularly sprayed with a solution of 0.98 g of rhodium (III) chloride hydrate (35.8% Rh) in 15 ml of H 0 . The tablets were then dried for 2 hours with

0 0 0 0

120 C og så 1 time ved 200 C og kalsinert 2 timer ved 400^C. De fysikalske og kjemiske data for katalysator K 10 er oppført i tabell I. 120 C and then 1 hour at 200 C and calcined for 2 hours at 400°C. The physical and chemical data for catalyst K 10 are listed in Table I.

Katalysator K 11 (eksempel 11):Catalyst K 11 (Example 11):

100 g av bæreren T 2 ble, som beskrevet ved K 10) belagt med Rh. De fysikalske og kjemiske data for katalysator K 11 er oppført i tabell I. 100 g of the carrier T 2 was, as described at K 10), coated with Rh. The physical and chemical data for catalyst K 11 are listed in Table I.

Katalysator K 12 (eksempel 12):Catalyst K 12 (Example 12):

100 g av bæreren T 3 ble, som beskrevet ved K 10, belagt med Rh. De fysikalske og kjemiske data for katalysator K 12 er oppført i tabell I. 100 g of the carrier T 3 was, as described at K 10, coated with Rh. The physical and chemical data for catalyst K 12 are listed in Table I.

Katalysator K 13 (eksempel 13):Catalyst K 13 (Example 13):

100 g av bæreren T 4 ble, som beskrevet ved K 10, belagt med Rh. De fysikalske og kjemiske data for katalysator K 13 er oppført i tabell I. 100 g of the carrier T 4 was, as described at K 10, coated with Rh. The physical and chemical data for catalyst K 13 are listed in Table I.

Katalysator K 14 (eksempel 14):Catalyst K 14 (Example 14):

100 g av bæreren T 5 ble, som beskrevet ved K 10, belagt med Rh. De fysikalske og kjemiske data for katalysator K 14 er oppført i tabell I. 100 g of the carrier T 5 was, as described at K 10, coated with Rh. The physical and chemical data for catalyst K 14 are listed in Table I.

Katalysator K 15 (eksempel 15):Catalyst K 15 (Example 15):

100 g av bæreren T 1 ble regelmessig besprutet med en opp-løsning av 1,12 g rutenium-(III)-kloridhydrat (35,65 % Ru) i 15 ml F^O. Tørkingen og kalsineringen fulgte som beskrevet ved katalysator K 10. De fysikalske og kjemiske data for katalysator K 15 er oppført i tabell I 100 g of the support T 1 was regularly sprayed with a solution of 1.12 g of ruthenium (III) chloride hydrate (35.65% Ru) in 15 ml of F₂O. The drying and calcination followed as described for catalyst K 10. The physical and chemical data for catalyst K 15 are listed in Table I

Katalysator K 16 (eksempel 16):Catalyst K 16 (Example 16):

100 g av bæreren T 7 ble, som beskrevet ved K 10, belagt med Rh. De fysikalske og kjemiske data for katalysator K 16 er oppført i tabell I. 100 g of the carrier T 7 was, as described at K 10, coated with Rh. The physical and chemical data for catalyst K 16 are listed in Table I.

Katalysator K 17 (eksempel 17):Catalyst K 17 (Example 17):

100 g av bæreren T 8 ble, som beskrevet ved K 19, belagt med Rh. De fysikalske og kjemiske data for katalysator K 17 er oppført i tabell I. 100 g of the carrier T 8 was, as described in K 19, coated with Rh. The physical and chemical data for catalyst K 17 are listed in Table I.

Anvendelseseksempel 1 Application example 1

En modellgass med sammensetning: NO = 1000 ppm, SO2=A model gas with composition: NO = 1000 ppm, SO2=

1000 ppm, 0„ = 3 vol.-%, HO = 10 vol.-%, rest N„ ble ledet i en forsøksreaktor ved 220 0C med ammoniakk som re-duks jonsgass over de i tabell I (del 1) oppførte katalysatorer K 1 til K 9 og sammenligningskatalysatoren A. Molforholdet mellom NH^i reaksjonsgassen og NO i avgassen var 1,1 : 1. Romhastigheten var 3000 liter avgass/time x liter katalysator. De oppnådde omsetninger med de enkelte katalysatorer er oppført i tabell II. Fra tabell II ser man at man med sammenligningskatalysator A oppnår en lavere NO^omsetning enn med katalysatorene i henhold til oppfinnelsen . 1000 ppm, 0„ = 3 vol.-%, HO = 10 vol.-%, remainder N„ was led into a test reactor at 220 0C with ammonia as reduct ion gas over the catalysts K listed in table I (part 1) 1 to K 9 and the comparison catalyst A. The molar ratio between NH 2 in the reaction gas and NO in the exhaust gas was 1.1 : 1. The space velocity was 3000 liters of exhaust gas/hour x liters of catalyst. The conversions achieved with the individual catalysts are listed in Table II. From table II it can be seen that with comparison catalyst A a lower NO conversion is achieved than with the catalysts according to the invention.

Anvendelseseksempel 2 Application example 2

En modellgass med sammensetning: NO = 1000 ppm, SO2=A model gas with composition: NO = 1000 ppm, SO2=

1000 ppm, O = 3 vol.-%, H90 = 10 vol.-%, rest N_ ble ledet i en forsøksreaktor ved 240 0C med en ved katalytisk dampreformering av metanol dannet reduksjonsgass over de i tabell I (del 2) oppførte katalysatorer K 10 til og med 15 så som over den i tabell I (del 1) oppførte sammenligningskatalysator A. Romhastigheten var 3000 liter avgass/time x katalysator; molforholdet mellom H ? i reaksjonsgassen og NO i avgassen var 5.1. 1000 ppm, O = 3 vol.-%, H90 = 10 vol.-%, rest N_ was led into an experimental reactor at 240 0C with a reduction gas formed by catalytic steam reforming of methanol over the catalysts K listed in Table I (part 2) 10 through 15 so as above the comparative catalyst A listed in Table I (part 1). The space velocity was 3000 liters of exhaust gas/hour x catalyst; the molar ratio of H ? in the reaction gas and NO in the exhaust gas was 5.1.

De oppnådde NO-omsetninger med de enkelte katalysatorer er oppført i tabell III. Tabell III viser at de nye katalysatorer K 10 til K 17 ovenfor sammenligningskatalysatoren A gir tydelig høyere NO-omsetninger. Videre ble det konstatert at aktiviteten til sammenligningskatalysatoren A avtok raskere ved lang-tidsforsøk enn de til de nye katalysatorer K 10 til og med K 17. The NO conversions achieved with the individual catalysts are listed in Table III. Table III shows that the new catalysts K 10 to K 17 above the comparison catalyst A give clearly higher NO conversions. Furthermore, it was established that the activity of the comparison catalyst A decreased more quickly in long-term tests than that of the new catalysts K 10 up to and including K 17.

Claims (17)

1. Katalysator til fjerning av nitrogenoksyder fra avgasser, særlig fra avgasser som inneholder svoveloksyder, ved katalytisk reduksjon av nitrogenoksydene til nitrogen, som inneholder et eller flere edelmetaller på en bærer, karakterisert ved at bæreren inneholder en inert grunnbærer på hvilken det er påført et mellomsjikt av^-A^O^ , et si li tiumdioksyd eller et aluminiumsilikat, eventuelt sammen med et oksyd av lantan og/eller lantanidene, og at det i eller på dette mellomsjikt er påført et eller flere edelmetaller av gruppen rutenium, rodium, palladium og/eller platin.1. Catalyst for the removal of nitrogen oxides from exhaust gases, in particular from exhaust gases containing sulfur oxides, by catalytic reduction of the nitrogen oxides to nitrogen, which contains one or more precious metals on a carrier, characterized in that the carrier contains an inert base carrier on which an intermediate layer has been applied av^-A^O^ , a silicon dioxide or an aluminum silicate, possibly together with an oxide of lanthanum and/or the lanthanides, and that one or more noble metals from the group ruthenium, rhodium, palladium and /or platinum. 2. Katalysator i henhold til krav 1, karakterisert ved at den inerte grunnbærer utgjøres av c<-aluminiumoksyd, titandioksyd, et kjera-misk material og/eller et aluminium-magnesiumsilikat.2. Catalyst according to claim 1, characterized in that the inert base carrier consists of α-alumina, titanium dioxide, a ceramic material and/or an aluminium-magnesium silicate. 3. Katalysator i henhold til krav 1 eller 2, karakterisert ved at den inerte grunnbærer har en spesifisk overflate på mindre enn 50 m <2> /g og at andelen av porene med en diameter på mer enn 25 nano-meter er mer enn 50%.3. Catalyst according to claim 1 or 2, characterized in that the inert base carrier has a specific surface of less than 50 m <2> /g and that the proportion of pores with a diameter of more than 25 nano-meters is more than 50 %. 4. Katalysator i henhold til et av kravene 1 til og med 3, karakterisert ved at andelen av materiale til mellomsjiktet utgjør ca. 0,1 til 15 vekt-% av hele katalysatoren, fortrinnsvis 1,0 til 10 vekt-%.4. Catalyst according to one of claims 1 to 3, characterized in that the proportion of material for the intermediate layer is approx. 0.1 to 15% by weight of the whole catalyst, preferably 1.0 to 10% by weight. 5. Katalysator i henhold til et av kravene 1 til og med 4, karakterisert ved at edelmetallkonsentrasjonen utgjør ca. 0,01 til 1 vekt-% fortrinnsvis ca. 0,2 til 0,6 vekt-% basert på den samlede katalysator.5. Catalyst according to one of claims 1 to 4, characterized in that the precious metal concentration is approx. 0.01 to 1% by weight, preferably approx. 0.2 to 0.6% by weight based on the total catalyst. 6. Fremgangsmåte ved fremstilling av katalysatoren i henhold til et eller flere av kravene 1 til og med 5, karakterisert ved at man impregnerer grunnbæreren med en opplø sning av aluminiumsaltet, en kieselsol eller en blanding av kieselsol og en alumosol og eventuelt med en oppløsning av et salt av lantan og/eller lantanidene, tørker den slik behandlede grunnbærer og kalsinerer, for å danne mellomsjiktet av ^- Al^ O^-, et silitiumdioksyd eller en aluminiumsilikat og eventuelt oksidene til lantan og/eller lantanidene, og at man impregnerer mellomsjiktet med et eller flere edelmetallsalter og tørker og kalsinerer det slik dannede produkt.6. Method for producing the catalyst according to one or more of claims 1 to 5, characterized in that the base carrier is impregnated with a solution of the aluminum salt, a silica sol or a mixture of silica sol and an alumosol and optionally with a solution of a salt of lanthanum and/or the lanthanides, the thus treated base carrier is dried and calcined, to form the intermediate layer of ^- Al^ O^-, a silicon dioxide or an aluminum silicate and possibly the oxides of lanthanum and/or the lanthanides, and that the intermediate layer is impregnated with one or more noble metal salts and dries and calcines the product thus formed. 7. Fremgangsmåte i henhold til krav 6, karakterisert ved at man til impregnering av grunnbæreren anvender en aluminiumnitratoppløsning og eventuelt en oppløsning av nitratene av lantan og/eller lantanidene og til impregnering av mellomsjiktet anvender en oppløsning av et eller flere edelmetallklorider.7. Method according to claim 6, characterized in that an aluminum nitrate solution and possibly a solution of the nitrates of lanthanum and/or the lanthanides are used for impregnation of the base carrier and a solution of one or more noble metal chlorides is used for impregnation of the intermediate layer. 8. Anvendelse av katalysatoren i henhold til et eller flere av kravene 1 til og med 7 som lavternperaturkatalysa-tor ved temperaturer under 300^C.8. Use of the catalyst according to one or more of claims 1 to 7 inclusive as a low-temperature catalyst at temperatures below 300 °C. 9. Anvendelse i henhold til krav 8, karakterisert ved at surstoffinnholdet til avgassen er opptil 7 vol.-%, fortrinnsvis ca. 3 til 5 vol.-%.9. Application according to claim 8, characterized in that the oxygen content of the exhaust gas is up to 7 vol.-%, preferably approx. 3 to 5% by volume. 10. Anvendelse i henhold til krav 8 eller 9, karakterisert ved at svoveloksydinnholdet til avgassen er opptil 1000 ppm.10. Use according to claim 8 or 9, characterized in that the sulfur oxide content of the exhaust gas is up to 1000 ppm. 11. Anvendelse i henhold til et av kravene 8 til og med 10, karakterisert ved at man anvender ammoniakk i temperaturområdet fra 130 til 240^C som reduksjonsmiddel for nitrogenoksydet.11. Use according to one of claims 8 to 10, characterized in that ammonia is used in the temperature range from 130 to 240 °C as a reducing agent for the nitrogen oxide. 12. Anvendelse i henhold til et av kravene 8 til og med 10, karakterisert ved at man anvender metanol eller en ved katalytisk spalting henholdsvis ved vanndamp reformering av metanol dannet gassblanding i temperaturområdet fra 150 til 300^C som reduksjonsmiddel for nitrogenoksyder .12. Use according to one of claims 8 to 10, characterized in that methanol or a gas mixture formed by catalytic cleavage or steam reforming of methanol in the temperature range from 150 to 300 °C is used as a reducing agent for nitrogen oxides. 13. Anvendelse i henhold til krav 11 eller 12, karakterisert ved at man anvender i og for seg kjente reformeringskatalysatorer for spaltingen henholdsvis vanndampreformeringen av metanolet.13. Application according to claim 11 or 12, characterized in that known per se reforming catalysts are used for the splitting or steam reforming of the methanol. 14. Anvendelse i henhold til krav 10. karakterisert ved at man anvender edelmetall-baererkatalysatorer , særlig på titandioksyd, cirkon-iumdioksyd, eller seriumdioksyd henholdsvis kobberholdige katalysatorer.14. Application according to claim 10. characterized in that precious metal carrier catalysts are used, particularly on titanium dioxide, zirconium dioxide, or cerium dioxide or copper-containing catalysts. 15. Anvendelse i henhold til et av kravene 11 til og med 13, karakterisert ved at man som re-formerinskatalysator anvender en katalysator som inneholder A) en metallkomponent av en eller flere av elementene fra den 8. sidegruppe i det periodiske system på et bærermaterial på basis av ) TiC^ eller CeC^ , eventuelt i blanding med andre ildfaste metalloksyder og/eller hydrauliske bindere eller15. Application according to one of claims 11 to 13, characterized in that a catalyst containing A) a metal component of one or more of the elements from the 8th side group of the periodic table on a carrier material based on ) TiC^ or CeC^ , possibly in a mixture with other refractory metal oxides and/or hydraulic binders or 10>2 ) TiC^ , som er påført på overflaten av det f orf ormede ildfaste materiale av A^O ^ eller kjeramikk.10>2 ) TiC^ , which is applied to the surface of the f ormed refractory material of A^O ^ or ceramics. 16. Anvendelse i henhold til et av kravene 11 til og med 15, karakterisert ved at man ved vann-dampref ormer ingen anvender et molforhold mellom metanol og vann på ca. 1 til og med 5.16. Application according to one of claims 11 to 15, characterized in that in water-steam reformers a mole ratio between methanol and water of approx. 1 through 5. 17. Anvendelse i henhold til et av kravene 11 til og med 16, karakterisert ved at man gjennom-fører spaltingen henholdsvis vanndampreformeringen av meta- noi ved temperaturer i området på ca. 400 til 600^C.17. Application according to one of claims 11 to 16, characterized in that the splitting or the steam reforming of methane is carried out at temperatures in the range of approx. 400 to 600°C.
NO853038A 1984-07-31 1985-07-31 Catalyst for the removal of nitrous oxide from exhaust gases. NO853038L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3428232A DE3428232A1 (en) 1984-07-31 1984-07-31 CATALYST FOR REMOVING NITROGEN OXIDS FROM EXHAUST GAS

Publications (1)

Publication Number Publication Date
NO853038L true NO853038L (en) 1986-02-03

Family

ID=6242032

Family Applications (1)

Application Number Title Priority Date Filing Date
NO853038A NO853038L (en) 1984-07-31 1985-07-31 Catalyst for the removal of nitrous oxide from exhaust gases.

Country Status (6)

Country Link
EP (1) EP0169939A3 (en)
JP (1) JPS6146245A (en)
DE (1) DE3428232A1 (en)
DK (1) DK347085A (en)
NO (1) NO853038L (en)
ZA (1) ZA855787B (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3525871A1 (en) * 1985-07-19 1987-01-22 Peter Siegfried Process for removing sulphur oxides and/or nitrogen oxides from gases containing them
CA1284984C (en) * 1986-04-30 1991-06-18 International Fuel Cells Corporation Steam reforming catalyst
US4695438A (en) * 1986-06-13 1987-09-22 Johnson Matthey, Inc. Selective catalytic reduction catalysts
DE3634243A1 (en) * 1986-10-08 1988-04-21 Kali Chemie Ag ZEOLITE CATALYST AND METHOD FOR CATALYTICALLY REDUCING NITROXIDE
JP2619470B2 (en) * 1988-04-20 1997-06-11 株式会社日立製作所 Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPH02233124A (en) * 1989-03-03 1990-09-14 Hitachi Zosen Corp Removal of nitrogen oxide
EP0614692A1 (en) * 1990-05-03 1994-09-14 Sakai Chemical Industry Co., Ltd., Catalysts and methods for denitrization
KR950007916B1 (en) * 1991-05-10 1995-07-21 스미도모킨조구고오상 가부시기가이샤 Method for removing nitrogen exides from exhaust gases
US5294225A (en) * 1991-11-21 1994-03-15 K.K. Aoyama Seisakusho Synthetic resin grommet
US5203051A (en) * 1991-12-06 1993-04-20 K.K. Aoyama Seisakusho Grommet and method of inserting grommet
DE102006031660A1 (en) 2006-07-08 2008-01-17 Man Nutzfahrzeuge Ag Arrangement for reducing nitrogen oxides in exhaust gases
DE102006031661B4 (en) * 2006-07-08 2016-02-25 Man Truck & Bus Ag Arrangement for reducing nitrogen oxides in exhaust gases
DE102006031650B4 (en) * 2006-07-08 2014-11-20 Man Truck & Bus Ag Arrangement for reducing nitrogen oxides in exhaust gases
DE102006038288A1 (en) 2006-08-16 2008-02-21 Man Nutzfahrzeuge Aktiengesellschaft aftertreatment system
DE102006038289A1 (en) 2006-08-16 2008-02-21 Man Nutzfahrzeuge Aktiengesellschaft aftertreatment system
DE102006038290A1 (en) 2006-08-16 2008-02-21 Man Nutzfahrzeuge Aktiengesellschaft Exhaust gas after treatment system with nitrogen oxide and particle reduction during operation of internal combustion engine such as diesel engine, has oxidation catalyst arranged in part of exhaust gas stream and particle separator
DE102007019460A1 (en) 2007-04-25 2008-11-06 Man Nutzfahrzeuge Ag aftertreatment system
DE102007033424A1 (en) 2007-07-18 2009-01-22 Man Nutzfahrzeuge Ag Self-cleaning exhaust aftertreatment system
DE102007061005A1 (en) 2007-12-18 2009-06-25 Man Nutzfahrzeuge Ag A method for improving the hydrolysis of a reducing agent in an exhaust aftertreatment system
DE102008008786A1 (en) 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Device for reducing dibenzo-dioxin and dibenzo-furan emissions from transition metal-containing catalysts
DE102008008785A1 (en) 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Device for reducing dibenzo-dioxin, dibenzo-furan and particulate emissions
DE102008010071A1 (en) 2008-02-19 2009-08-20 Man Nutzfahrzeuge Ag Compact exhaust aftertreatment system
DE102008000890A1 (en) 2008-03-31 2009-10-01 Carbotech Ac Gmbh Activated carbon catalyst
DE102008017280B4 (en) 2008-04-04 2017-01-26 Man Truck & Bus Ag Arrangement for influencing the conversion behavior of catalytic converters
DE102008017279A1 (en) 2008-04-04 2009-10-08 Man Nutzfahrzeuge Ag Method for increasing the nitrogen dioxide content in the exhaust gas
DE102008018519A1 (en) 2008-04-12 2009-10-15 Man Nutzfahrzeuge Ag Sulfur-resistant exhaust aftertreatment system for the oxidation of NO
DE102008041530A1 (en) 2008-08-25 2010-03-04 Dirk Dombrowski Process and exhaust system for the purification of SOx-containing exhaust gases, in particular marine propulsion engines
DE102008046381B4 (en) 2008-09-09 2011-12-22 Man Truck & Bus Ag Process for reducing nitrogen oxides in the exhaust gas stream of internal combustion engines
DE102009012092A1 (en) 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Method for adjusting the metered amount of a reducing agent for selective catalytic reduction
DE102009012093A1 (en) 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Method for adjusting the dosages of the reducing agent with selective catalytic reduction
DE102011004900A1 (en) 2011-03-01 2012-09-06 Dirk Dombrowski Combined, mineral desulfurizing- and reducing agent, useful e.g. for desulfurization, denitrogenation and/or neutralization of hydrogen chloride and/or hydrogen fluoride of exhaust gases from combustion processes, comprises porous granules
DE102012203574A1 (en) 2011-05-31 2012-12-06 Akretia Gmbh Exhaust gas purification device for reducing nitrogen oxides in the exhaust gas stream of internal combustion engines
DE102012006448B4 (en) 2012-03-30 2023-05-17 Man Truck & Bus Se Method for use in connection with an exhaust aftertreatment system
DE102012007890B4 (en) 2012-04-23 2014-09-04 Clariant Produkte (Deutschland) Gmbh Emission control system for cleaning exhaust gas streams from diesel engines
DE102012008523A1 (en) 2012-05-02 2013-11-07 Man Truck & Bus Ag aftertreatment system
DE102012021929A1 (en) 2012-11-09 2014-05-15 Man Truck & Bus Ag Method and device for operating a sensor for determining exhaust gas components, in particular for a motor vehicle
CN110479264B (en) * 2018-12-26 2020-02-21 南京工业大学 Preparation method of porous ceramic membrane catalyst by taking waste rare earth-based denitration catalyst as raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1405405A (en) * 1971-06-25 1975-09-10 Johnson Matthey Co Ltd Platinum group metal catalysts
GB1417546A (en) * 1971-11-22 1975-12-10 Johnson Matthey Co Ltd Catalytic reduction of oxides of nitrogen
GB1437216A (en) * 1972-08-04 1976-05-26 Engelhard Min & Chem Oxidation of carbonaceous material
US3993572A (en) * 1972-08-04 1976-11-23 Engelhard Minerals & Chemicals Corporation Rare earth containing catalyst composition

Also Published As

Publication number Publication date
ZA855787B (en) 1986-03-26
EP0169939A2 (en) 1986-02-05
EP0169939A3 (en) 1987-12-02
DK347085A (en) 1986-02-01
DE3428232A1 (en) 1986-02-06
JPS6146245A (en) 1986-03-06
DK347085D0 (en) 1985-07-31

Similar Documents

Publication Publication Date Title
NO853038L (en) Catalyst for the removal of nitrous oxide from exhaust gases.
US4613584A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
KR101165499B1 (en) Highly acidic composition containing zirconium oxide, titanium oxide and tungsten oxide, method for preparing the same and use thereof in the treatment of exhaust gases
JP5722790B2 (en) Composite oxide, method for producing the same and exhaust gas purification catalyst
KR20170083606A (en) Afx zeolite
KR100338005B1 (en) Method for Treating Exhaust Gas of Internal Combustion Engines Functioning with Sulfur-Containing Fuel
GB2116868A (en) Silica-alumina co-gel catalyst manufacture
WO1991018832A1 (en) Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
CA2057634A1 (en) Catalyst for purification of exhaust gases
JPH01266850A (en) Catalyst for purifyying exhaust gas of internal combustion engine, and its production and use
JPS58174237A (en) Reforming catalyst of methanol
US7001866B2 (en) Modification of the pore structure of metal oxide and mixed metal oxide supports for catalysts synthesis
CN113198490A (en) Palladium-cobalt-loaded alloy catalyst for low-temperature combustion of methane and preparation method thereof
US5853679A (en) Removal of nitrogen oxide from exhaust gas
JPH0236288B2 (en)
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP3190034B2 (en) Oxide-based catalyst, method for producing the same, method for catalytic hydrogenation of CO2 using the catalyst, and method for producing liquid hydrocarbons from CO2 and H2 using the catalyst
JP3622211B2 (en) Methane oxidation method
JP3190035B2 (en) Manufacturing method of oxide-based catalyst
JP3882071B2 (en) Method for producing styrene monomer
KR100371089B1 (en) Preparation of Hybrid Molecular Sieve de-NOx Catalyst Containing Highly Dispersed Noble Metals
JPS60153925A (en) Removal of nitrogen oxide from waste gas
Wang et al. Templated synthesis and catalytic properties of an Rh/ceria-zirconia catalyst
JPH10128115A (en) Carried noble metal catalyst and its preparation