NO843995L - PROCEDURE FOR THE PREPARATION OF A THERMALLALLY INSULATIVE ENVIRONMENT OR CHANNEL FOR ONE OR MORE ROUTES - Google Patents

PROCEDURE FOR THE PREPARATION OF A THERMALLALLY INSULATIVE ENVIRONMENT OR CHANNEL FOR ONE OR MORE ROUTES

Info

Publication number
NO843995L
NO843995L NO843995A NO843995A NO843995L NO 843995 L NO843995 L NO 843995L NO 843995 A NO843995 A NO 843995A NO 843995 A NO843995 A NO 843995A NO 843995 L NO843995 L NO 843995L
Authority
NO
Norway
Prior art keywords
foam
surface layer
plastic
calibration
pipe
Prior art date
Application number
NO843995A
Other languages
Norwegian (no)
Inventor
Johan Brenner
Helge Lindstroem
Original Assignee
Neste Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neste Oy filed Critical Neste Oy
Publication of NO843995L publication Critical patent/NO843995L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/22Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/32Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements
    • B29C44/322Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements the preformed parts being elongated inserts, e.g. cables
    • B29C44/324Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements the preformed parts being elongated inserts, e.g. cables the preformed parts being tubular or folded to a tubular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Molding Of Porous Articles (AREA)
  • Resistance Heating (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

Den foreliggende oppfinnelse vedrører en framgangsmåte for framstilling av et rør av isolerende materiale, omfattende ett eller flere indre rør, skumplastisolasjon og et overflatelag av plast, i hvilken framgangsmåte skumstoff blir ført til å omgi det indre rør, og på samme måte plastråmateriale for dannelse av et overflatelag, hvorved det rundt det indre rør blir framstilt en skumplastisolasjon og et overflatelag samtidig i et trinn,, og i hvilken framgangsmåte overflatelaget blir avkjølt til ønsket dimensjon i et kalibreringsorgan, idet overflaten blir presset mot organets indre flate ved hjelp av et kalibreringstrykk. The present invention relates to a method for producing a pipe of insulating material, comprising one or more inner pipes, foam plastic insulation and a surface layer of plastic, in which method foam material is led to surround the inner pipe, and in the same way plastic raw material for the formation of a surface layer, whereby a foam plastic insulation and a surface layer are simultaneously produced around the inner pipe in one step, and in which procedure the surface layer is cooled to the desired dimension in a calibration device, the surface being pressed against the internal surface of the device by means of a calibration pressure.

For tiden blir fjernvarmerørelementer framstilt ved to forskjellige framgangsmåter. I en av dem, den såkalte innvendige oppskummingsframgangsmåten, blir det først framstilt et tynn-vegget PEH-rør. Inne i dette rør blir et stålrør fiksert ved hjelp av støttestag. Mellomrommet mellom PEH- og stålrøret blir deretter fylt med uretanskum. Currently, district heating pipe elements are produced by two different methods. In one of them, the so-called internal foaming method, a thin-walled PEH pipe is first produced. Inside this pipe, a steel pipe is fixed by means of support rods. The space between the PEH and steel pipe is then filled with urethane foam.

I den andre framgangsmåte, den såkalte beleggframgangsmåten, blir et stålrør plassert i en form, hvori oppskumming av uretan utføres. I et separat arbeidstrinn, blir skummet belagt med polyetylen. Ved denne framgangsmåte er det også blitt framstilt isolasjonskanaler, hvor oppskummingen er ut-ført rundt et glassfiberarmert polyesterrør. Skummet blir belagt slik som ovenfor nevnt. Herved kan stålrør eller slanger av forskjellige størrelser bli innført i polyester-røret. In the second method, the so-called coating method, a steel pipe is placed in a mold, in which foaming of urethane is carried out. In a separate work step, the foam is coated with polyethylene. With this method, insulation channels have also been produced, where the foaming is carried out around a glass fiber-reinforced polyester pipe. The foam is coated as mentioned above. In this way, steel pipes or hoses of different sizes can be introduced into the polyester pipe.

Disse framgangsmåter har det felles trekk at de omfatter et stort antall separate arbeidstrinn med mellomlagring. De er meget arbeidskrevende, og de er vanskelige å automatisere. These procedures have the common feature that they include a large number of separate work steps with intermediate storage. They are very labor-intensive, and they are difficult to automate.

I begge framgangsmåter må understøttelser anordnes for det indre rør, og disse kan øke varmeledningen. I tillegg omfatter begge framgangsmåter behandling av uretanskum i et ikke-skjermet rom. Det er også kjent en innretning ved hvilken et plastbelagt rør av isolerende materiale kan framstilles i en kontinuerlig ekstruderingsprosess. I tillegg til overflatelaget, kan det indre rør også være framstilt ved ekstrudering, og plastskum blir sprøytet inn mellom det indre- og overflate-lagene i forbindelse med ekstruderingsprosessen. In both methods, supports must be arranged for the inner pipe, and these can increase the heat conduction. In addition, both procedures include treatment of urethane foam in an unshielded room. A device is also known by which a plastic-coated tube of insulating material can be produced in a continuous extrusion process. In addition to the surface layer, the inner tube can also be produced by extrusion, and plastic foam is injected between the inner and surface layers in connection with the extrusion process.

I det finske patent nr. 54878 er beskrevet en innretning ved hvilken det indre rør kan bli belagt med et skumlag og et plastoverflatelag i ett trinn ved hjelp av en ekstruderings-presse. Innretningens skumdyse er anordnet til å følge etter overflatelagdysen på en slik måte at plastskumisolasjonen kan bli sprøytet inn i rommet som avgrenses av overflatelaget og det indre rør, mellom dysehodet og kalibreringsinnretningen. Kalibreringsinnretningen, primært en vakuumkalibreringsinn-retning, er blitt anbragt i avstand fra overflatelagdysen, In the Finnish patent no. 54878, a device is described by which the inner tube can be coated with a foam layer and a plastic surface layer in one step by means of an extrusion press. The device's foam nozzle is arranged to follow the surface layer nozzle in such a way that the plastic foam insulation can be injected into the space defined by the surface layer and the inner tube, between the nozzle head and the calibration device. The calibration device, primarily a vacuum calibration device, has been placed at a distance from the surface layer nozzle,

slik at overflatelaget kan bli kjølt ned til en hensiktsmessig kalibreringstemperatur. so that the surface layer can be cooled down to an appropriate calibration temperature.

Ulempene ved innretningen ifølge nevnte finske patentThe disadvantages of the device according to the aforementioned Finnish patent

nr. 54878 omfatter plasseringen av skumdysen så langt tilbake som etter overflatelagdysen i rørets bevegelsesretning, hvorved det dannes et tomt rom bak skumdysen. Hvis luften i det tomme rom blir revet med av skummet, frambringes et undertrykk inne i overflatelaget rett etter dysen. Dette vil bevirke at det myke overflatelag blir trukket mot skumdysen, og produk-sjonen vil stoppe opp. Det tomme rom kan også bli fylt med herdet skum, hvilket har en ødeleggende virkning på overflate-lagets kvalitet. No. 54878 includes the placement of the foam nozzle as far back as after the surface layer nozzle in the direction of movement of the pipe, whereby an empty space is formed behind the foam nozzle. If the air in the empty space is entrained by the foam, a negative pressure is produced inside the surface layer immediately after the nozzle. This will cause the soft surface layer to be pulled towards the foam nozzle, and production will stop. The empty space can also be filled with hardened foam, which has a devastating effect on the quality of the surface layer.

En annen ulempe ved innretningen ifølge nevnte finske patent nr. 54878 er plasseringen av kalibreringsinnretningen i avstand fra overflatelagdysen. Dette medfører bruk av vakuumkalibrering, hvilket også er påpekt i nevnte patent. Imidler-tid er framstilling av store rørdimensjoner (over 100 mm) med vakuumkalibrering lite hensiktsmessig på grunn av den vanskelige oppgave å tilveiebringe en tettende kontakt mellom røret og kalibreringsrøret. Another disadvantage of the device according to said Finnish patent no. 54878 is the location of the calibration device at a distance from the surface layer nozzle. This entails the use of vacuum calibration, which is also pointed out in the aforementioned patent. However, the production of large pipe dimensions (over 100 mm) with vacuum calibration is not appropriate due to the difficult task of providing a sealing contact between the pipe and the calibration pipe.

Hensikten med den foreliggende oppfinnelse er å tilveiebringe en forbedring ved de kjente framgangsmåter. Nærmere bestemt går oppfinnelsen ut på å angi en framgangsmåte, ved hvilken oppskummingen og framstillingen av det ytre rør kan oppnås samtidig i et trinn rundt det indre rør, og i hvilken det ikke er nødvendig med noen vakuumkalibrering. Det er også et formål ved den foreliggende oppfinnelse å tilveiebringe en framgangsmåte som er like hensiktsmessig for et rør framstilt av stål som for ett av plast. The purpose of the present invention is to provide an improvement to the known methods. More specifically, the invention aims to specify a method in which the foaming and the production of the outer tube can be achieved simultaneously in a step around the inner tube, and in which no vacuum calibration is necessary. It is also an aim of the present invention to provide a method which is just as suitable for a pipe made of steel as for one made of plastic.

Hensikten med den foreliggende oppfinnelse oppnås ved en framgangsmåte som er hovedsakeligkarakterisert vedat kalibreringstrykket blir frambragt ved hjelp av oppskummingen, og at utslipping av kalibreringstrykket forhindres av pluggen som skummet danner, idet det størkner. The purpose of the present invention is achieved by a method which is mainly characterized by the fact that the calibration pressure is produced by means of the foaming, and that the release of the calibration pressure is prevented by the plug that the foam forms as it solidifies.

De andre karakteristiske trekk ved framgangsmåten ifølge oppfinnelsen er angitt i det etterfølgende uselvstendige krav 2. The other characteristic features of the method according to the invention are stated in the following non-independent claim 2.

Ved framgangsmåten ifølge oppfinnelsen oppnås flere bemerkelses-verdige fordeler. Oppfinnelsen muliggjør for eksempel en framgangsmåte for framstilling av fjernvarmerørelementer, ved hvilke oppskummingen og framstillingen av den ytre hud kan oppnås samtidig i et trinn rundt et stål- eller polyesterrør. The method according to the invention achieves several remarkable advantages. The invention enables, for example, a method for the production of district heating pipe elements, whereby the foaming and the production of the outer skin can be achieved simultaneously in one step around a steel or polyester pipe.

I framgangsmåten ifølge oppfinnelsen trenges heller ingen vakuumkalibrering, hvilket var tilfelle for eksempel ved innretningen ifølge det finske patent nr. 54878. Framgangsmåten ifølge oppfinnelsen passer like godt for innerrør av stål og av plast. In the method according to the invention, no vacuum calibration is needed either, which was the case, for example, with the device according to the Finnish patent no. 54878. The method according to the invention is equally suitable for steel and plastic inner tubes.

Som oppskummingsmateriale i framgangsmåten ifølge oppfinnelsen kan det nyttes ethvert skum som har karakteristikker slik som varmetoleranse og isolasjonsevne passende for formålet. Et hensiktsmessig skummateriale er for eksempel polyuretan. As foaming material in the method according to the invention, any foam can be used which has characteristics such as heat tolerance and insulating ability suitable for the purpose. A suitable foam material is, for example, polyurethane.

Oppfinnelsen er i det etterfølgende beskrevet i detalj med henvisning til en fordelaktig utførelsesform av oppfinnelsen, som vist i figuren i den etterfølgende tegning, til hvilken The invention is hereinafter described in detail with reference to an advantageous embodiment of the invention, as shown in the figure in the following drawing, to which

dog oppfinnelsen ikke er ment å være begrenset.however, the invention is not intended to be limited.

Tegningsfiguren viser en fordelaktig utførelsesform av innretningen, som nyttes ved framgangsmåten ifølge oppfinnelsen, The drawing shows an advantageous embodiment of the device, which is used in the method according to the invention,

i lengdesnitt.in longitudinal section.

I tegningsfiguren er innretningen som nyttes i framgangsmåten ifølge oppfinnelsen angitt generelt med henvisningstallet 10. In the drawing figure, the device used in the method according to the invention is indicated generally with the reference number 10.

I den foreliggende utførelsesform omfatter innretningen 10 en plastrørdyse 11, utstyrt med en huldor, en føringsunder-støttelse 12 for det indre rør 17, forsynt med sentrerings-mulighet, en kombinert innerrørføring og skumdyselegeme 13, In the present embodiment, the device 10 comprises a plastic pipe nozzle 11, equipped with a hollow mandrel, a guide support 12 for the inner pipe 17, provided with a centering option, a combined inner pipe guide and foam nozzle body 13,

et ytre vannkjølt kalibreringsrør 14, rør 15 for tilførsel av skummaterialer, og tilførselskanaler 19 for plastråmateriale til overflatelaget. Plastoverflatelaget til isolasjonsrøret framstilt ved framgangsmåten ifølge oppfinnelsen er angitt med henvisningstallet 16 og skumplastisolasjonen ved henvisningstallet 18. an outer water-cooled calibration tube 14, tube 15 for supplying foam materials, and supply channels 19 for plastic raw material to the surface layer. The plastic surface layer of the insulation pipe produced by the method according to the invention is indicated by the reference number 16 and the foam plastic insulation by the reference number 18.

Ved framgangsmåten ifølge oppfinnelsen blir en skumplast-isolas jon 18 og et overflatelag 16 dannet rundt det indre rør 17 samtidig i et arbeidstrinn. Ved skummingen blir det frambragt et kalibreringstrykk, som kan kontrolleres ved reguler-ing av råmaterialtilførselen og temperaturen til skumrå-materialene. Utvendig kjøling 14 blir tilført for å kjøle overflatelaget 16 ved korrekt dimensjon. Ettersom det størkner, danner skummet en plugg, som forhindrer kalibreringstrykket fra å unnvike. Bevegelseshastigheten, skummets bestanddeler og lengden av kalibreringsrøret 14 må velges slik at skummet er blitt fast i det øyeblikk elementet løper ut fra kalibrer-ingsrøret 14. Den ytterligere kjøleinnretning og trekkinn-retning kan være innretninger som vanligvis nyttes ved framstilling av rør, og det samme gjelder innretningen for mating av innerrøret 17. In the method according to the invention, a foam plastic insulation 18 and a surface layer 16 are formed around the inner tube 17 simultaneously in one work step. During the foaming, a calibration pressure is produced, which can be controlled by regulating the raw material supply and the temperature of the foaming raw materials. External cooling 14 is supplied to cool the surface layer 16 at the correct dimension. As it solidifies, the foam forms a plug, which prevents the calibration pressure from escaping. The speed of movement, the components of the foam and the length of the calibration tube 14 must be chosen so that the foam has become solid at the moment the element runs out of the calibration tube 14. The additional cooling device and drawing device can be devices that are usually used in the manufacture of tubes, and the same applies to the device for feeding the inner tube 17.

Skumdyselegemet 13 tjener også som et føringslegeme for det indre rør 17. Dyselegemet 13 er isolert fra rørdysen 11 og kan være vannkjølt, hvis nødvendig. I dyselegemet 13 kan det være anordnet et flertall skumdyser for å framstille ensartet skum, og trykkfølere for kontroll av doseringen. Skumdysene er installert slik at skummet fyller hele rommet mellom overflatelaget 16 og det indre rør 17 umiddelbart etter overflatelagdysen. Åpningen mellom det indre rør 17 og dyselegemet 13 er tettet ved hjelp av konvensjonell teknikk. Hvis nødvendig, kan også en luftventileringsventil bli montert på dyselegemet 13, idet denne ventil blir operert i den innledende fase. Utformingen av dyselegemet 13 kan også være av det slag som er utstrakt i maskinretningen. og på den måten vil det forkjøle den indre flate av den beskyttende hud 16. Kalibreringsrøret 14 er plassert hosliggende til dysen 11, slik som er nødvendig ved trykkalibreringsteknikken. The foam nozzle body 13 also serves as a guide body for the inner tube 17. The nozzle body 13 is isolated from the pipe nozzle 11 and can be water-cooled, if necessary. A plurality of foam nozzles can be arranged in the nozzle body 13 to produce uniform foam, and pressure sensors to control the dosage. The foam nozzles are installed so that the foam fills the entire space between the surface layer 16 and the inner tube 17 immediately after the surface layer nozzle. The opening between the inner tube 17 and the nozzle body 13 is sealed using conventional techniques. If necessary, an air ventilation valve can also be mounted on the nozzle body 13, this valve being operated in the initial phase. The design of the nozzle body 13 can also be of the type that is extended in the machine direction. and in that way it will cool the inner surface of the protective skin 16. The calibration tube 14 is placed adjacent to the nozzle 11, as is necessary in the pressure calibration technique.

Rørdysen 11 kan være utstyrt med konvensjonell sentrering og med en skrueformet fordeler eller ekvivalente utforminger, kjent innen teknikkens stand. Plastblandingen kan mates inn i dysen 11 ved hjelp av en eller flere ekstrudere. For framstilling av overflatehuden 16 kan også ko-ekstruderingsfram-gangsmåter nyttes. The pipe nozzle 11 can be equipped with conventional centering and with a screw-shaped distributor or equivalent designs, known in the state of the art. The plastic mixture can be fed into the nozzle 11 by means of one or more extruders. For the production of the surface skin 16, co-extrusion methods can also be used.

Tverrsnittet av dysens 11 sliss og til kalibreringsrøret 14 behøver ikke være sirkulært: en oval eller andre former kan være mer fordelaktige, når to eller flere rør blir isolert. The cross-section of the nozzle 11 slot and of the calibration tube 14 need not be circular: an oval or other shapes may be more advantageous, when two or more tubes are isolated.

Ved den foreliggende framgangsmåte kan det framstilles fjern-varmerørelementer i et arbeidstrinn. Ved den nye type trykk-kalibrering, kan det også framstilles elementer av store, dimensjoner. Tykkelsesprofilen til beskyttelseshuden 16 kan bli nøyaktig kontrollert og overflaten på beskyttelseshuden 16 er jevn og svarer nøyaktig til dimensjon. Plasseringen av skumdysene i forbindelse med overflatelagdysen sikrer at det ikke etterlates lommer i skummet. Framgangsmåten sikrer også god adhesjon mellom skummet og det indre rør 17, og mellom skummet og overflatelaget. With the present method, district heating pipe elements can be produced in one work step. With the new type of pressure calibration, elements of large dimensions can also be produced. The thickness profile of the protective skin 16 can be precisely controlled and the surface of the protective skin 16 is even and corresponds exactly to dimension. The placement of the foam nozzles in connection with the surface layer nozzle ensures that no pockets are left in the foam. The method also ensures good adhesion between the foam and the inner tube 17, and between the foam and the surface layer.

Claims (2)

1. Framgangsmåte for framstilling av et rør av isolerende materiale, omfattende ett eller flere innerrør (17), en plast-skumisolasjon (18) og et plastoverflatelag (16), i hvilken framgangsmåte skummateriale blir ført til å omgi det indre rør (17) for frambringelse av en skumplastisolasjon (18), og tilsvarende plastråmateriale for framstilling av et overflatelag (16), og hvor skumplastisolasjonen (18) og overflatelaget (16) blir framstilt rundt det indre rør (16) samtidig i ett arbeidstrinn, og i hvilken framgangsmåte overflatelaget (16) blir kjølt til ønsket dimensjon i en kalibreringsinnretning (14) mot hvis indre flate overflatelaget (16) blir presset ved hjelp av et kalibreringstrykk, karakterisert ved at kalibreringstrykket frambringes ved hjelp av oppskummingen, idet frigjøring av kalibreringstrykket forhindres av den plugg som dannes av skummet når det størkner.1. Method for producing a tube of insulating material, comprising one or more inner tubes (17), a plastic foam insulation (18) and a plastic surface layer (16), in which method foam material is led to surround the inner tube (17) for the production of a foam plastic insulation (18), and corresponding plastic raw material for the production of a surface layer (16), and where the foam plastic insulation (18) and the surface layer (16) are produced around the inner tube (16) simultaneously in one work step, and in which procedure the surface layer (16) is cooled to the desired dimension in a calibration device (14) against whose inner surface the surface layer (16) is pressed by means of a calibration pressure, characterized in that the calibration pressure is produced by means of the foaming, the release of the calibration pressure being prevented by the plug which formed by the foam when it solidifies. 2. Framgangsmåte ifølge krav 1, karakterisert ved at kontroll av kalibreringstrykket oppnås ved å regulere tilførselen av skumråmaterialet og temperaturen til råmaterialet.2. Method according to claim 1, characterized in that control of the calibration pressure is achieved by regulating the supply of the foam raw material and the temperature of the raw material.
NO843995A 1983-02-14 1984-10-04 PROCEDURE FOR THE PREPARATION OF A THERMALLALLY INSULATIVE ENVIRONMENT OR CHANNEL FOR ONE OR MORE ROUTES NO843995L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI830487A FI830487L (en) 1983-02-14 1983-02-14 FOERFARANDE FOER TILLVERKNING AV EN VAERMEISOLERANDE MANTEL ELLER KANAL FOER ETT ELLER FLERA ROER.

Publications (1)

Publication Number Publication Date
NO843995L true NO843995L (en) 1984-10-04

Family

ID=8516751

Family Applications (1)

Application Number Title Priority Date Filing Date
NO843995A NO843995L (en) 1983-02-14 1984-10-04 PROCEDURE FOR THE PREPARATION OF A THERMALLALLY INSULATIVE ENVIRONMENT OR CHANNEL FOR ONE OR MORE ROUTES

Country Status (10)

Country Link
BE (1) BE898894A (en)
DE (1) DE3490043T1 (en)
DK (1) DK482484A (en)
FI (1) FI830487L (en)
FR (1) FR2540782B1 (en)
GB (1) GB2146286A (en)
NL (1) NL8420024A (en)
NO (1) NO843995L (en)
SE (1) SE441732B (en)
WO (1) WO1984003066A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204759C1 (en) * 1992-02-18 1992-12-03 Friedrich Theysohn Gmbh, 3012 Langenhagen, De
DE102007045900A1 (en) * 2007-09-26 2009-04-09 Rehau Ag + Co Composite body and method for its production
DE202009007391U1 (en) 2009-05-23 2009-08-13 Kraussmaffei Technologies Gmbh Device for applying a plastic material to the surface of a tubular body
AT509229B1 (en) * 2010-02-26 2011-07-15 Isoplus Fernwaermetechnik Ges M B H METHOD FOR PRODUCING A COMPOSITE TUBE
EA018820B1 (en) * 2010-06-28 2013-10-30 Общество С Ограниченной Ответственностью "Смит-Ярцево" Method for manufacturing a thermally insulated flexible tube
EA020500B1 (en) * 2010-09-20 2014-11-28 Общество С Ограниченной Ответственностью "Смит-Ярцево" Line for manufacturing a heat-insulated flexible pipe
DE102015110401B4 (en) 2015-06-29 2019-08-01 Brugg Rohrsysteme Gmbh Method and device for coating a pipeline
CN109402545B (en) * 2017-08-18 2024-04-12 东莞中集专用车有限公司 Traction pin protection device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938666A (en) * 1960-01-18 1963-10-02 Ici Australia Ltd Method and apparatus for forming shaped articles from foaming materials
FR1374382A (en) * 1963-06-21 1964-10-09 Plastival S A Process for manufacturing composite profiles, machine device for implementing the process and profiles obtained by implementing the process
US3327030A (en) * 1963-09-25 1967-06-20 Friedrich A Reifenhauser Method and apparatus for forming elongated members
FR1470412A (en) * 1966-01-13 1967-02-24 Fresse S A Method and device for the manufacture of bodies with a cellular structure of indefinite length in expanded thermoplastic material
GB1211860A (en) * 1967-10-03 1970-11-11 Ici Ltd A process for the production of pipe
FR2038718A5 (en) * 1969-03-27 1971-01-08 Plastival Sa Extruded section with expanded lightweight - core
US3733382A (en) * 1969-04-10 1973-05-15 Shell Oil Co Method of centrifugally applying foam insulation to a pipe
BE789774A (en) * 1972-02-18 1973-02-01 Sinclair Koppers Co PROCESS AND APPARATUS FOR THE MANUFACTURE OF FOAM PROFILES
FI54878C (en) * 1973-01-25 1979-04-10 Rakennusmuovi Oy ANORDING FOR FOUNDATION FROM ISOLERROER
JPS5435231B2 (en) * 1974-03-09 1979-11-01
SE389054B (en) * 1975-11-18 1976-10-25 Lundbergs Fab Ab N NOZZLE FOR SUPPLY OF TWO COMPONENTS IN THE MANUFACTURE OF A CELL PLACE BETWEEN A RUBBER AND AN SURROUNDING SHAPE
DE2758632C2 (en) * 1977-12-29 1985-08-14 Sekisui Kaseihin Kogyo K.K., Nara Device for the production of a foamed body with the structure of wood from crystalline plastics

Also Published As

Publication number Publication date
GB8425636D0 (en) 1984-11-14
GB2146286A (en) 1985-04-17
SE8405008L (en) 1984-10-08
SE441732B (en) 1985-11-04
FR2540782B1 (en) 1988-07-22
NL8420024A (en) 1984-12-03
FI830487A0 (en) 1983-02-14
DK482484D0 (en) 1984-10-09
FI830487L (en) 1984-08-15
BE898894A (en) 1984-05-30
FR2540782A1 (en) 1984-08-17
SE8405008D0 (en) 1984-10-08
DK482484A (en) 1984-10-09
WO1984003066A1 (en) 1984-08-16
DE3490043T1 (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US20080099584A1 (en) Drip Irrigation pipe
US5366674A (en) Process for producing expanded plastics with skin
US20110308659A1 (en) Method for manufacturing a thermally insulated conduit pipe
NO843995L (en) PROCEDURE FOR THE PREPARATION OF A THERMALLALLY INSULATIVE ENVIRONMENT OR CHANNEL FOR ONE OR MORE ROUTES
US6748721B2 (en) Thermoforming method for film on blister packing machines and apparatus for it
US4399086A (en) Process for manufacturing foamed plastic sheets
JPH09207200A (en) Manufacture of thick wall pipe of polyethylene
CN111425672A (en) Heat-preservation integrated continuous fiber prepreg tape reinforced composite pipe and processing method
EA020500B1 (en) Line for manufacturing a heat-insulated flexible pipe
AU2004208646A1 (en) Drip irrigation pipe
US20060115549A1 (en) Internal bubble cooling unit for extruded thin wall thermoplastic sheet
US3142865A (en) Method and apparatus for producing thermoplastic tubing and sheeting
JP4791961B2 (en) Apparatus for producing a double-walled thermoplastic tube with a connecting sleeve
EP2586602B1 (en) Method for manufacturing a thermally insulated flexible tube
JPS6220886B2 (en) Manufacturing device for cavity-shaped structure consisting of thermoplastic substance
JPS6218340B2 (en)
US1544255A (en) Art of making nonporous tubes and other articles
KR101108225B1 (en) Manufacturing apparatus and method of integral multi pipe for airconditioning system
EP1867460A2 (en) Corrugated plastic pipe production
GB2182603A (en) Transversely expanding and calibrating an extruded hollow product
NO154119B (en) PROCEDURE AND DEVICE FOR PREPARING A MATERIAL COAT OF FOAMED THERMOPLAST.
EP0163571A1 (en) Method of producing light, rigid tubes from thermoplastic materials by multiple extrusion
JPH0571375B2 (en)
JP3939164B2 (en) Method and apparatus for molding thermoplastic resin foam
KR980008374A (en) Method of manufacturing insulated conduits