NO832957L - PROCEDURE FOR MANUFACTURING A GASA MOSPHERE FOR ANGLING OF METALLIC WORKPIECES - Google Patents

PROCEDURE FOR MANUFACTURING A GASA MOSPHERE FOR ANGLING OF METALLIC WORKPIECES

Info

Publication number
NO832957L
NO832957L NO832957A NO832957A NO832957L NO 832957 L NO832957 L NO 832957L NO 832957 A NO832957 A NO 832957A NO 832957 A NO832957 A NO 832957A NO 832957 L NO832957 L NO 832957L
Authority
NO
Norway
Prior art keywords
gas
nitrogen
annealing
hydrogen
ammonia
Prior art date
Application number
NO832957A
Other languages
Norwegian (no)
Inventor
Reinhard Strigl
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Publication of NO832957L publication Critical patent/NO832957L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemical Vapour Deposition (AREA)

Description

Oppfinnelsen angår en fremgangsmåte ved fremstillingThe invention relates to a method for manufacturing

av en nitrogen- og hydrogenholdig gassatmosfære for gløding av metalliske arbeidsstykker i en ovn. of a nitrogen- and hydrogen-containing gas atmosphere for annealing metallic workpieces in a furnace.

For gløding av arbeidsstykker, f.eks. for blankgløding, rekrystalliseringsgløding eller spenningsfri gløding etc, anvendes foruten EXO-gass som beskyttelsesgass vanligvis en gassblanding som består av en inertgass, som nitrogen, og en reduserende gass, som hydrogen. Nitrogen-hydrogen-gass-blandinger vil bli vanligvis fremstilt ved én av de to følgende fremgangsmåter: Ved den ene fremgangsmåte fremstilles en nitrogen-hydrogen-blanding ved spaltning av ammoniakk i en spaltningsgassgenerator. Ammoniakkspaltningsgassen fremstilles ved at ammoniakk i generatoren ledes over en nikkelkatalysator som er oppvarmet til ca. 9 00°C. Derved fås en gassblanding som består av 75 volum% hydrogen og 25 volum% nitrogen. For en rekke anvendelsesformål er en slik høy andel av hydrogen ikke nødvendig. Av denne grunn blir gassblandingen som fremstilles i spaltningsgassgeneratoren, ofte fortynnet ved tilblanding av nitrogen. Anskaffelsen og vedlikeholdet av spaltnings-gassgeneratorer er imidlertid meget kostbart. For annealing workpieces, e.g. for bright annealing, recrystallization annealing or voltage-free annealing, etc., in addition to EXO gas as shielding gas, a gas mixture consisting of an inert gas, such as nitrogen, and a reducing gas, such as hydrogen, is usually used. Nitrogen-hydrogen-gas mixtures will usually be produced by one of the following two methods: In one method, a nitrogen-hydrogen mixture is produced by splitting ammonia in a cracking gas generator. The ammonia splitting gas is produced by passing ammonia in the generator over a nickel catalyst that is heated to approx. 900°C. This results in a gas mixture consisting of 75% hydrogen by volume and 25% nitrogen by volume. For a number of applications, such a high proportion of hydrogen is not necessary. For this reason, the gas mixture produced in the fission gas generator is often diluted by adding nitrogen. However, the acquisition and maintenance of fission gas generators is very expensive.

Det er unødvendig å anvende en generator ved den annen fremgangsmåte som hittil er blitt anvendt for fremstilling av nitrogen-hydrogen-gassblandingen. Nitrogen og hydrogen blir da lagret i lagringsbeholdere, blandet med hverandre i det nødvendige mengdeforhold i gassformig tilstand og blandingen ledes inn i ovnens innvendige rom. Nitrogen kan i dette tilfelle lagres i gassformig eller flytende tilstand alt efter forbruket. Ved denne fremgangsmåte kan mengdeforholdet mellom nitrogen og hydrogen i blandingen riktignok varieres efter ønske' (som regel velges en hydrogenandel av mellom 2 og 30 volum%), men hydrogen som leveransegass er forholdsvis kostbart . It is unnecessary to use a generator in the other method that has been used up to now for the production of the nitrogen-hydrogen gas mixture. Nitrogen and hydrogen are then stored in storage containers, mixed with each other in the required quantity ratio in a gaseous state and the mixture is led into the interior of the furnace. In this case, nitrogen can be stored in a gaseous or liquid state, depending on consumption. In this method, the quantity ratio between nitrogen and hydrogen in the mixture can of course be varied as desired (as a rule, a hydrogen proportion of between 2 and 30% by volume is chosen), but hydrogen as a delivery gas is relatively expensive.

Det tas derfor ved oppfinnelsen sikte på å tilveiebringe en fremgangsmåte for på enkel og økonomisk måte å kunne frem-stille en nitrogen- og hydrogenholdig gassblanding for gløding av arbeidsstykker i en ovn. The invention therefore aims to provide a method for producing a nitrogen- and hydrogen-containing gas mixture for annealing workpieces in a furnace in a simple and economical way.

Denne oppgave løses ifølge oppfinnelsen ved at en gass blanding som består av en inertgass og ammoniakk, ledes inn i ovnens innvendige rom som før gassblandingen ledes inn, oppvarmes til en temperatur som er tilstrekkelig for katalytisk å spalte ammoniakken. This task is solved according to the invention by introducing a gas mixture consisting of an inert gas and ammonia into the interior of the oven, which, before the gas mixture is introduced, is heated to a temperature sufficient to catalytically decompose the ammonia.

Ifølge oppfinnelsen er hverken en spaltningsgassgenerator eller levering hhv. lagring av hydrogen nødvendig. Den foreliggende fremgangsmåte er basert på den erkjennelse According to the invention, neither a fission gas generator nor the delivery or storage of hydrogen required. The present method is based on that realization

at i en glødeovns innvendige rom blir ammoniakken spaltet katalytisk til nitrogen og hydrogen, og på denne måte kan sammen med ytterligere tilført nitrogen en gassblanding dannes i ovnen som er egnet for glødebehandling av arbeidsstykker. Ovnene som anvendes for glødingen, inneholder byggedeler som ved en egnet temperatur bevirker en katalytisk spaltning av ammoniakk. Slike byggedeler som vanligvis er laget av krom-nikkel-stål, er f.eks. ovnsmuffelen eller transportbåndet. Dermed foreligger en katalysatorflate i ovnens innvendige rom som er tilstrekkelig stor til at ammoniakken vil spaltes. Ved den foreliggende fremgangsmåte anvendes derfor selve ovnen som gassgenerator. that in the inner space of an annealing furnace, the ammonia is split catalytically into nitrogen and hydrogen, and in this way, together with further added nitrogen, a gas mixture can be formed in the furnace which is suitable for annealing treatment of workpieces. The ovens used for the annealing contain components which, at a suitable temperature, cause a catalytic decomposition of ammonia. Such building parts, which are usually made of chrome-nickel steel, are e.g. the furnace muffle or the conveyor belt. There is thus a catalyst surface in the oven's interior that is sufficiently large for the ammonia to decompose. In the present method, the oven itself is therefore used as a gas generator.

Ved den foreliggende fremgangsmåte kan i varmebehandlings-ovnen en nitrogen-hydrogen-blanding tilveiebringes som er mer prisgunstig enn en gassblanding som fremstilles i en spaltningsgassgenerator eller ved å blande de enkeltvis lagrede gasser med hverandre. With the present method, a nitrogen-hydrogen mixture can be provided in the heat treatment furnace which is more cost-effective than a gas mixture which is produced in a fission gas generator or by mixing the individually stored gases with each other.

Andelen av ammoniakken i ammoniakk-nitrogen-blandingen kan på grunnlag av det kjente mengdeforhold i spaltnings-gassen lett reguleres og retter seg efter det ønskede hydrogen-innhold i glødeovnsatmosfæren. The proportion of ammonia in the ammonia-nitrogen mixture can be easily regulated on the basis of the known quantity ratio in the fission gas and follows the desired hydrogen content in the annealing furnace atmosphere.

Dersom de deler av ovnen som bevirker den katalytiske spaltning, består av krom-nikkelstål, blir ovnens innvendige rom ved den foreliggende fremgangsmåte oppvarmet til en temperatur over 500°C. If the parts of the furnace that cause the catalytic decomposition consist of chrome-nickel steel, the interior of the furnace is heated to a temperature above 500°C in the present method.

På grunn av at det er lett tilgjengelig og dessuten forholdsvis rimelig, anvendes med fordel nitrogen som inertgass da dette dessuten er enkelt å lagre. Due to the fact that it is easily available and also relatively inexpensive, nitrogen is advantageously used as an inert gas as this is also easy to store.

Ifølge en fordelaktig utførelsesform av oppfinnelsenAccording to an advantageous embodiment of the invention

som gjør det mulig å foreta en oppkullingsnøytral gløding av arbeidsstykker, blir en gass som består av hydrocarboner, which makes it possible to carry out a carburization-neutral annealing of workpieces, becomes a gas consisting of hydrocarbons,

f.eks. jordgass eller propan, ledet inn i ovnen foruten nitrogen-ammoniakk-blandingen. e.g. natural gas or propane, introduced into the furnace in addition to the nitrogen-ammonia mixture.

Den foreliggende fremgangsmåte lar seg spesielt fordelaktig anvende for gløding av krom-nikkelstål da gløde-godset i dette tilfelle selv virker som katalysator for spaltningen av ammoniakken. Den foreliggende fremgangsmåte kan imidlertid også anvendes for gløding av andre stål-kvaliteter Dg for gløding av ikke-jernmetaller, som f.eks. for gløding av deler av nysølv. The present method can be particularly advantageously used for annealing chrome-nickel steel, as the annealed material in this case itself acts as a catalyst for the decomposition of the ammonia. However, the present method can also be used for annealing other steel qualities Dg for annealing non-ferrous metals, such as e.g. for annealing parts of nickel silver.

En ytterligere gunstig anvendelse av den foreliggende fremgangsmåte er for isoterm gløding av senkesmiingsdeler eller av grått støpejern (GG), sfæroidalt støpejern (GGG), stålgods (GGS) eller aduserjern (GGT). A further beneficial application of the present method is for isothermal annealing of drop forged parts or of gray cast iron (GG), spheroidal cast iron (GGG), steel goods (GGS) or aduser iron (GGT).

Den foreliggende fremgangsmåte kan imidlertid også anvendes for gløding av andre materialer som må glødes reduserende ved en temperatur over 500°C. However, the present method can also be used for annealing other materials which must be annealed reducing at a temperature above 500°C.

Claims (4)

1. Fremgangsmåte ved fremstilling av en nitrogen- og hydrogenholdig gassatmosfære for gløding av metalliske arbeidsstykker i en ovn, karakterisert ved at en gassblanding som består av en inertgass og ammoniakk, ledes inn i ovnens innvendige rom som før gassblandingen ledes inn, oppvarmes til en temperatur som er tilstrekkelig for katalytisk spaltning av ammoniakken.1. Method for the production of a nitrogen- and hydrogen-containing gas atmosphere for annealing metallic workpieces in a furnace, characterized in that a gas mixture consisting of an inert gas and ammonia is led into the inner space of the furnace which, before the gas mixture is led in, is heated to a temperature which is sufficient for catalytic decomposition of the ammonia. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at ovnens innvendige rom oppvarmes til en temperatur over 500°C.2. Method according to claim 1, characterized by the oven's interior being heated to a temperature above 500°C. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at nitrogen tilføres som inertgass.3. Method according to claim 1 or 2, characterized in that nitrogen is supplied as an inert gas. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at en gass som består av hydrocarboner, dessuten innfø res i ovnens innvendige rom.4. Method according to claims 1-3, characterized in that a gas consisting of hydrocarbons is also introduced into the interior of the oven.
NO832957A 1982-08-18 1983-08-17 PROCEDURE FOR MANUFACTURING A GASA MOSPHERE FOR ANGLING OF METALLIC WORKPIECES NO832957L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823230723 DE3230723A1 (en) 1982-08-18 1982-08-18 METHOD FOR PRODUCING A GAS ATMOSPHERE FOR THE GLOWING OF METAL WORKPIECES

Publications (1)

Publication Number Publication Date
NO832957L true NO832957L (en) 1984-02-20

Family

ID=6171137

Family Applications (1)

Application Number Title Priority Date Filing Date
NO832957A NO832957L (en) 1982-08-18 1983-08-17 PROCEDURE FOR MANUFACTURING A GASA MOSPHERE FOR ANGLING OF METALLIC WORKPIECES

Country Status (7)

Country Link
EP (1) EP0106961B1 (en)
AT (1) AT376703B (en)
AU (1) AU1796983A (en)
BR (1) BR8301377A (en)
DE (2) DE3230723A1 (en)
NO (1) NO832957L (en)
ZA (1) ZA836052B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3440876A1 (en) * 1984-11-08 1986-05-15 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR PRODUCING A PROTECTIVE GAS ATMOSPHERE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE644980C (en) * 1930-12-20 1937-05-19 Benno Schilde Maschb Akt Ges Process for bright annealing of elongated work material made of metals and furnace to carry out the process
DE1533964B2 (en) * 1967-03-23 1975-11-13 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Oven for surface treatment of workpieces in protective or carrier gas
DE2017540C3 (en) * 1970-04-13 1973-01-04 Varta Ag, 6000 Frankfurt Method and device for splitting ammonia into hydrogen and nitrogen
GB1471880A (en) * 1973-10-26 1977-04-27 Air Prod & Chem Furnace atmosphere for the heat treatment of ferrous metal
US4049472A (en) * 1975-12-22 1977-09-20 Air Products And Chemicals, Inc. Atmosphere compositions and methods of using same for surface treating ferrous metals
DE2617962A1 (en) * 1976-04-24 1977-11-10 Eschweiler Bergwerksverein Protective atmospheres for heat treatment of metals - using mixt. of liq. nitrogen and hydrogen gas to eliminate need for gas generators
GB1575342A (en) * 1977-04-27 1980-09-17 Air Prod & Chem Production of furnace atmospheres for the heat treatment of ferrous metals

Also Published As

Publication number Publication date
EP0106961A1 (en) 1984-05-02
EP0106961B1 (en) 1986-02-19
DE3362186D1 (en) 1986-03-27
DE3230723A1 (en) 1984-02-23
ATA460482A (en) 1984-05-15
BR8301377A (en) 1984-04-17
ZA836052B (en) 1984-04-25
AT376703B (en) 1984-12-27
AU1796983A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
KR930002519A (en) Process for producing heat-treated gas body in situ using non-thermologically generated nitrogen
NO131420B (en)
Stickels Gas carburizing
ES484588A1 (en) Inert carrier gas heat treating control process
ES461548A1 (en) Method for control of the carburization of parts in a vacuum furnace
NO832957L (en) PROCEDURE FOR MANUFACTURING A GASA MOSPHERE FOR ANGLING OF METALLIC WORKPIECES
US2299138A (en) Heat treating of steel
GB1034157A (en) Case hardening ferrous articles
ES441101A1 (en) Methods of heat-treating steel
US20060048868A1 (en) Rapid cooling method for parts by convective and radiative transfer
GB1435619A (en) Treatment of sulphur plant feed gas
Southwell et al. Sulfidation behavior of a binary Fe-Mn alloy
US2287651A (en) Method of carburizing without deterioration of furnace alloys
KR860008292A (en) Heat treatment method of ferrous metal under protective atmosphere
RU2109080C1 (en) Plant for gas low-temperature thermochemical treatment of steels and alloys
GB1126246A (en) Process of gaseous carburisation of steel
US2565201A (en) Controlled atmosphere for heattreating metals
GB1185640A (en) Process for Casehardening Steels
FR2227342A1 (en) Treating double necked metal containers - e.g. gas bottles with high fracture resistance
GB952363A (en) Heat treatment of steels with a mixed gas of nitrogen and hydrocarbon
JPS5223566A (en) Process for vapor phase cracking of ammonia
Gale Continuous Heat Treatment of Metal Components
Birks et al. Mechanism of corrosion in multiple component gases at high temperatures
JPS572826A (en) Quenching method for steel
Bowes Is Nitrogen Economically Viable as a Furnace Atmosphere?