NO811890L - CATALYST MASTER, PROCEDURE FOR ITS PREPARATION AND ITS APPLICATION FOR SULFUR ACID CATALYST PROCEDURE - Google Patents

CATALYST MASTER, PROCEDURE FOR ITS PREPARATION AND ITS APPLICATION FOR SULFUR ACID CATALYST PROCEDURE

Info

Publication number
NO811890L
NO811890L NO811890A NO811890A NO811890L NO 811890 L NO811890 L NO 811890L NO 811890 A NO811890 A NO 811890A NO 811890 A NO811890 A NO 811890A NO 811890 L NO811890 L NO 811890L
Authority
NO
Norway
Prior art keywords
vanadium
catalyst
sulfuric acid
weight
solution
Prior art date
Application number
NO811890A
Other languages
Norwegian (no)
Inventor
Wolf Becker
Original Assignee
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Ag filed Critical Bayer Ag
Publication of NO811890L publication Critical patent/NO811890L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • C01B17/79Preparation by contact processes characterised by the catalyst used containing vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/77Fluidised-bed processes

Description

Oppfinnelsen vedrører en katalysatormasse for oksydasjon av svoveldioksyd til svoveltrioksyd i hvirvelsjikt og en fremgangsmåte til dens fremstilling. The invention relates to a catalyst mass for the oxidation of sulfur dioxide to sulfur trioxide in a fluidized bed and a method for its production.

lin for hvirvelsjiktfremgangsmåten egnet katalysator skal ved tilnærmet kuleform ved siden av ekstremt høy mekanisk fasthet, spesielt slitasjefasthet ha en størst mulig virksom overflate pr. volumenhet pga. av dens pore-struktur, muliggjøre en hurtig gassdiffuasjon fra katalysator-kornets overflate inn i det indre og inneholde minst mulig stoffer som nedsetter reaksjonshastigheten. Korndiameter, kornstørrelsefordeling og poreradiefordeling skal derved være avstemt på den eventuelle prosess. lin for the fluidized bed method, a suitable catalyst must, with an approximately spherical shape, in addition to extremely high mechanical strength, especially wear resistance, have the largest possible effective surface per volume unit due to of its pore structure, enable rapid gas diffusion from the surface of the catalyst grain into the interior and contain as few substances as possible that reduce the reaction rate. Grain diameter, grain size distribution and pore radius distribution must thereby be matched to the possible process.

Fra tysk patent 1 926 564 er det kjent slitasje-faste hvirvelsjiktkatalysatorer for svovelsyrefremstilling hvis bæremateriale fremstilles på basis av utfelte kiselsyrer under medanvendelse av leirmaterialer. Disse bære-materialer fremstilles ved suspendering av kiselsyrefyll-stoffene og leirmineralene under tilsetning av magnesiumoksyd i en vandig stabil kiselsol. Den gelébare blanding fordeles i en med vann ikke blandbar væske til dråper av ønsket størrelse. De stivnede gelkuler adskilles fra den organiske væske og glødes etter tørkning og konsentrering ved temperaturer på 500 til 1000°C. Etter kalsinering foregår en syrebehandling for. å "fjerne det i bærematerialet tilstedeværende aluminium best mulig. Det således oppnådde bæremateriale impregneres deretter på vanlig måte med alkaliske vanadatoppløsninger, idet det anvendes et over-skudd alkali, fortrinnsvis kalium med et molforhold alkali-oksyd til vanadinpentoksyd fra ca. 1,5 til 1 eller høyere. From German patent 1 926 564 wear-resistant fluidized bed catalysts for sulfuric acid production are known, the carrier material of which is produced on the basis of precipitated silicic acids with the co-use of clay materials. These carrier materials are produced by suspending the silicic acid fillers and the clay minerals while adding magnesium oxide in an aqueous stable silica sol. The gelable mixture is distributed in a liquid immiscible with water into droplets of the desired size. The solidified gel balls are separated from the organic liquid and annealed after drying and concentration at temperatures of 500 to 1000°C. After calcination, an acid treatment takes place for to "remove the aluminum present in the carrier material as best as possible. The carrier material thus obtained is then impregnated in the usual way with alkaline vanadate solutions, using an excess of alkali, preferably potassium with a molar ratio of alkali oxide to vanadium pentoxide of approximately 1.5 to 1 or higher.

Det er nu funnet at vesentlig forbedrede kataly-satorer kan fåes når ved deres fremstilling, på basis av utfelte kiselsyrer, bare tilsettes så meget leirmineraler at den tørre katalysatorbærer maksimalt inneholder 4% A^O^, fortrinnsvis ikke mer enn. 2% A^O^ og kalsineringen foregår ved temperaturer på ikke mer enn 600°C, fortrinnsvis ved 200 til 500°C. Dette bæremateriale impregneres deretter i tilknytningliiten foregående syrebehandling med en svak svovelsyreoppløsning av vanadyloksysulfat og tørkes deretter. Ved denne tørkningsprosess er det tilstrekkelig temperaturer fra 150° til 250°C. I et hvert tilfelle skal det utebli temperaturbehandlinger av bærere som også har ferdig katalysator, som overfører det krystallgitteret av leirmater-ialene inneholdende aluminium til en raktiv form. It has now been found that significantly improved catalysts can be obtained when during their production, on the basis of precipitated silicic acids, only so much clay minerals are added that the dry catalyst carrier contains a maximum of 4% A^O^, preferably no more than. 2% A^O^ and the calcination takes place at temperatures of no more than 600°C, preferably at 200 to 500°C. This support material is then impregnated in connection with the previous acid treatment with a weak sulfuric acid solution of vanadyloxysulphate and then dried. For this drying process, temperatures from 150° to 250°C are sufficient. In each case, there must be no temperature treatments of carriers that also have a ready-made catalyst, which transfers the crystal lattice of the clay materials containing aluminum into a reactive form.

Det er også mulig å forene begge temperaturbe-nandlinger i et trinn således at bærematerialet før impregnering bare tørker og at herdningen deretter foregår på den ferdige katalysator ved temperaturer på under 600°, fortrinnsvis ved temperaturer på 200° til 500°C. It is also possible to combine both temperature treatments in one step so that the carrier material only dries before impregnation and that the curing then takes place on the finished catalyst at temperatures below 600°, preferably at temperatures of 200° to 500°C.

Oppfinnelsens gjenstand er følgelig en fremgangsmåte for fremstilling av hvirvelsjiktkatalysatorer for oksydasjon av svoveldioksyd til svoveltrioksyd på basis av kiselsyrefyllstoffer og leirmineraler, idet fremgangsmåten erkarakterisert vedat bærematerialet som ikke inneholder mer enn 4% A1203, fortrinnsvis ikke mer enn 2% Al2<0>3 på basis av tørt bæremateriale, impregneres med en svakt svovelsur oppløsning av vanadyloksysulfat, hvori vanadium foreligger i oksydasjoirstrinn + IV og kaliumhydrogensulfat og herdningen av bærematerialet, respektiv av den ferdige katalysator foregår ved temperaturer på ikke over 600°C, fortrinnsvis ved 200° til 500°C. The object of the invention is therefore a method for the production of fluidized bed catalysts for the oxidation of sulfur dioxide to sulfur trioxide on the basis of silicic acid fillers and clay minerals, the method being characterized by the support material containing no more than 4% Al2O3, preferably no more than 2% Al2<0>3 on the basis of dry carrier material, is impregnated with a weakly sulfuric acid solution of vanadyloxysulfate, in which vanadium is present in oxidation stage + IV and potassium hydrogen sulfate, and the curing of the carrier material, respectively of the finished catalyst takes place at temperatures of no more than 600°C, preferably at 200° to 500°C .

Det fåes katalysatormasser som utmerker seg såvel ved deres høye slitasjefasthet som også ved deres jevnt-blivende høye aktivitet ved langtidsbruk. Catalyst masses are obtained which are distinguished both by their high wear resistance and also by their consistently high activity during long-term use.

Bæremassens fremstilling kan foregå såvel etter fremgangsmåten ifølge tysk patent patent 1 926 564 som også etter andre kjente granuleringsfremgangsmåter som f.eks. på granuleringstallerken. Det anvendes utfelt kiselsyrefyllstoffer med spesifik overflate ifølge BET på 40 til 80 m 2/g som fortrinnsvis inneholder ca. 5 til 10 vekt% kaliumoksyd. Fyllstoffmengden dimensjoneres således at det i bærematerialet referert til vannfritt granulat er tilstede ca. 20 til 60 vekt%, fortrinnsvis 35 til 40 vekt% fyllstoff. Dette fyllstoff blandes i en vandlig stabil kiselsyresoi med spesifik overflate fra 150 til 450 m /g ifølge BET, idet gelédannelsen foregår på kjent måte under tilsetning av mindre mengder høyaktivt magnesiumoksyd. Det foretrekkes hydratisert magnesiumoksyd i mengder fra ca. 0,1 til 3 vekt%. Ved suspendering ay fyllstoffet i kiselsol eller ved granu-leringen tilsettes leirmineralene i mengder fra ca. 10 til 15 vekt%. Som leirmaterialer egner det seg f.eks. kaolinit, montmorillonit, attapulgit, bentonit og/eller kaolin. The production of the carrier mass can take place both according to the method according to German patent patent 1 926 564 and also according to other known granulation methods such as e.g. on the granulation plate. Precipitated silicic acid fillers with a specific surface according to BET of 40 to 80 m 2 /g are used, which preferably contain approx. 5 to 10% by weight potassium oxide. The quantity of filler is dimensioned so that in the carrier material referred to as anhydrous granules there is approx. 20 to 60% by weight, preferably 35 to 40% by weight filler. This filler is mixed in an aqueous, stable silicic acid slurry with a specific surface area of 150 to 450 m/g according to BET, the gel formation taking place in a known manner with the addition of smaller amounts of highly active magnesium oxide. Hydrated magnesium oxide is preferred in amounts from approx. 0.1 to 3% by weight. When suspending the filler in silica sol or during granulation, the clay minerals are added in amounts from approx. 10 to 15% by weight. As clay materials, it is suitable, e.g. kaolinite, montmorillonite, attapulgite, bentonite and/or kaolin.

Granulatene tørkes og herdes deretter entenThe granules are dried and then hardened either

ved temperaturer på ikke over 600°C, fortrinnsvis ved 200°C til 500°C, eller tilføres etter tørkning umiddelbart til Impregnering. at temperatures not exceeding 600°C, preferably at 200°C to 500°C, or added after drying immediately to Impregnation.

Impregneringen foregår med en svovelsyreopp-løsning av vanadyloksysulfat som fortrinnsvis ikke inneholder over 6 vekt%, spesielt foretrukket 0,1 til 3 vekt% fri svovelsyre. Impregneringsoppløsningen inneholder vanadyloksysulfat hvor vanadium foreligger i oksydasjonstrinn + IV i mengder fra 5 til 30 vekt%, fortrinnsvis fra 12 til 23 vekt% og 15 til 40, fortrinnsvis 20 til 30 vekt% kaliumhydrogensulfat hver gang referert til den samlede oppløsning. Disse oppløsninger lar seg sterkt overmette således at de kan påføres på bærematerialet, såvel kaldt som også varmt. The impregnation takes place with a sulfuric acid solution of vanadyloxysulphate which preferably does not contain more than 6% by weight, particularly preferably 0.1 to 3% by weight of free sulfuric acid. The impregnation solution contains vanadyloxysulfate where vanadium is present in oxidation stage + IV in amounts from 5 to 30% by weight, preferably from 12 to 23% by weight and 15 to 40, preferably 20 to 30% by weight potassium hydrogen sulfate each time referred to the overall solution. These solutions can be highly supersaturated so that they can be applied to the carrier material, both cold and hot.

Konsentrasjonen av vanadium og kalium i den sure oppløsning er å velge således at i den-tørre katalysator foreligger et molforhold mellom kalium og vanadium på 3:1 til 2:1 og vanadininnholdet utgjør beregnet som vanadinpentoksyd 4 til 9, fortrinnsvis 5 til 7 vekt%. The concentration of vanadium and potassium in the acidic solution is chosen so that in the dry catalyst there is a molar ratio between potassium and vanadium of 3:1 to 2:1 and the vanadium content, calculated as vanadium pentoxide, amounts to 4 to 9, preferably 5 to 7% by weight .

Som salter av fireverdiga vanadium anvendes vanadylsalter, fortrinnsvis sulfater. For den ifølge oppfinnelsen foretrukkede fremstilling av impregneringsopp-løsninger i et eneste trinn has den nødvendige vannmengde, tilsettes den for reduksjon av bilsulfat tilberedningen nødvendige syremengde, deretter suspenderes den beregnede mengde vanadinpentoksyd og oppløsningen reduseres derpå Vanadyl salts, preferably sulfates, are used as salts of tetravalent vanadium. For the preparation of impregnation solutions preferred according to the invention in a single step, the required amount of water is obtained, the amount of acid required for the reduction of car sulfate preparation is added, the calculated amount of vanadium pentoxide is then suspended and the solution is then reduced

med svoveldioksyd eller svoveldioksydholdig gass så lenge, inntil samtlige vanadinpentoksyd foreligger oppløst som vana-dylsulfat (VOSO^). Deretter innføres ved en temperatur på with sulfur dioxide or gas containing sulfur dioxide until all vanadium pentoxide is dissolved as vanadyl sulphate (VOSO^). Then introduced at a temperature of

minst 40°C, fortrinnsvis fra 60° til 90°C kaliumsulfat i den sure oppløsning. Etter avsluttet disulfatdannelse foreligger et lite svovelsyreoverskudd.. Denne oppløsning kan med en gang anvendes til impregnering av bæremateriale. at least 40°C, preferably from 60° to 90°C potassium sulfate in the acidic solution. After disulfate formation has ended, there is a small excess of sulfuric acid. This solution can be used immediately for impregnation of carrier material.

Fortrinnsvis foregår impregneringen i hvirvelsjikt. Materialet fluidiseres ved en tilstrekkelig fluid-iseringshastighet og deretter besprøytes med impregnerings-oppløsningen. Deretter foregår fortrinnsvis en etterbe-handling med varm.luft (150° til 300°C) inntil materialet ikke mer avgir fuktighet. Preferably, the impregnation takes place in a fluidized bed. The material is fluidized at a sufficient fluidization rate and then sprayed with the impregnation solution. Then preferably a post-treatment with hot air (150° to 300°C) takes place until the material no longer emits moisture.

Spesielt når bærematerialet blir herdet før tørkeprosessen ved temperaturer inntil 600°C, fortrinnsvis ved temperaturer rundt 400°C, kan det anvendes umiddelbart uten reduserende forbehandling i hvirvelsjiktkatalysatoren før oksydasjon av S02til SO^. Det viser seg ved de vanlige driftstemperaturer på ca. 380° til 500°C en vesentlig høyere aktivitet enn andre hvirvelsjiktkatalysator og har også etter flere års drift ennu en høy slitasjefasthet og en uendret aktivitet. Especially when the carrier material is hardened before the drying process at temperatures up to 600°C, preferably at temperatures around 400°C, it can be used immediately without reducing pretreatment in the fluidized bed catalyst before oxidation of SO2 to SO3. This is evident at the usual operating temperatures of approx. 380° to 500°C a significantly higher activity than other fluidized bed catalysts and, even after several years of operation, still has a high wear resistance and an unchanged activity.

Foregår herdningen ikke før impregneringen kan denne herdning også foregå i tilslutning til impregneringen. Ved det nye katalysatormaterial ble det f.eks. ved en drifts-temperatur av hvirvelsjiktet på ca. 470°C og en gass, som innenolder 12 volum% svoveldioksyd i et eneste hvirvelsjikt-trinn, oppnådd en omsetning på over 93% av svovelsioksyd til svoveltrioksyd. If the hardening does not take place before the impregnation, this hardening can also take place in conjunction with the impregnation. With the new catalyst material, e.g. at an operating temperature of the fluidized bed of approx. 470°C and a gas containing 12% by volume of sulfur dioxide in a single fluidized bed stage, a conversion of over 93% of sulfur dioxide to sulfur trioxide was achieved.

Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler: The invention will be explained in more detail with the help of some examples:

Eksempel 1Example 1

Fremstilling av bærematerialeProduction of carrier material

I 10 1 vandig kiselsyresol (tetthet 1,20 g/ml,In 10 1 aqueous silica sol (density 1.20 g/ml,

30 vekt% Si0.2) med en spesifik overflate ifølge BET på30% by weight Si0.2) with a specific surface according to BET on

200 m 2/g ble det ved hjelp av en intensivblander suspendert 3410 g av et fra natrium-vannglass med kalsiumklorid og vandig saltsyre utfelt kiselsyrefyllstoff og 520 g kaolin. 200 m 2 /g, 3410 g of a silicic acid filler precipitated from a sodium-water glass with calcium chloride and aqueous hydrochloric acid and 520 g of kaolin were suspended using an intensive mixer.

Kiselsyrefyllstoffet hadde en spesifik overflate på 50 m 2/g ifølge BET og besto til 75% av Si02, 8% CaO og 17% fritt og bundet vann. Kaolinet besto til 47% av Sio2og 38% A^O-^og 15% vann samt spor av andre oksyder. Etter den kjemiske sammensetning referert til faststoff viser det seg følgende beregnede sammensetning The silicic acid filler had a specific surface area of 50 m 2 /g according to BET and consisted of 75% SiO 2 , 8% CaO and 17% free and bound water. The kaolin consisted of 47% Sio2 and 38% A^O-^ and 15% water as well as traces of other oxides. After the chemical composition referred to solids, the following calculated composition appears

Gjennom doseringspumper ble det tilført mengder på 10 l/time av nevnte suspensjon og 1,2 l/time av en vandig magnesium-oksydsuspensjon med et innhold på 80 g MgO/liter kontinuer-lig til et blandekar, hvorfra den gelébare blanding av de to suspensjoner rant opp på en roterende fordelerinnretning. Under fordelerinnretningen befant det seg en med o-diklor-benzen-fylt søyle. Quantities of 10 l/hour of said suspension and 1.2 l/hour of an aqueous magnesium oxide suspension with a content of 80 g MgO/liter were fed continuously through dosing pumps into a mixing vessel, from which the gelable mixture of the two suspensions flowed onto a rotating distributor device. Underneath the distributor was a column filled with o-dichlorobenzene.

Ved inntreden i det organiske medium fordelte suspensjonstrålene seg til kuleformede dråper som under nedsynkningen gjennom den startende gelédannelse ble fast. Upon entry into the organic medium, the suspension jets distributed into spherical droplets which solidified during the descent through the starting gel formation.

Det ennu formbare granulat ble adskilt fra o-diklorbenzen, tørket i luftstrøm og deretter oppvarmet 2 timer ved 4 30°C. Det ble dannet et perleformet, meget hardt materiale med korndiametere fra 0,4 til 2 mm. Den spesifike overflate ifølge BET utgjorde 124 m<2>/g, dets pore-volum 501 mm ' 3/g, dets slitasjetap etter dynamisk prøve-metode 1 vekt%. The still moldable granules were separated from o-dichlorobenzene, dried in a stream of air and then heated for 2 hours at 430°C. A bead-shaped, very hard material with grain diameters from 0.4 to 2 mm was formed. The specific surface area according to BET was 124 m<2>/g, its pore volume 501 mm' 3/g, its abrasion loss according to the dynamic test method 1% by weight.

Eksempel 2Example 2

Fremstilling av impregneringsoppløsningenPreparation of the impregnation solution

3 3

I et emaljert rørekar med 3 m innhold ble det ifylt 500 liter avsaltet vann. Deretter ble det i karet innslemmet 146 kg vanadinpentoksyd med 350 1 vann. Under omrøring ble det tilsatt 208,5 g 96 %-ig kjemisk ren svovelsyre. Herpå ble det ca. 60 til 90 minutter (150 til 200 m<3>/ time) under omrøring innført en svovelforbrenningsgass med et innhold mellom 16 til 19 volum% svoveldioksyd. Oppløsningen oppvarmet seg herved til ca. 60°C. Innføringen ble avsluttet når den dypblå oppløsning var klar. Deretter ble det over en trakt i karet tilsatt 2 80 g kaliumsulfat under omrøring og omrørt ved ca. 60° til 80°C inntil oppløsningen igjen var klar. Denne oppløsningen ble nu påført på bærematerialet. 500 liters of desalinated water were filled in an enameled mixing vessel with a 3 m capacity. Next, 146 kg of vanadium pentoxide with 350 l of water were mixed into the vessel. While stirring, 208.5 g of 96% chemically pure sulfuric acid was added. After that, it was approx. 60 to 90 minutes (150 to 200 m<3>/hour) with stirring introduced a sulfur combustion gas with a content between 16 to 19% by volume of sulfur dioxide. The solution was thereby heated to approx. 60°C. The introduction was terminated when the deep blue solution was clear. Then 280 g of potassium sulphate was added over a funnel in the vessel while stirring and stirred at approx. 60° to 80°C until the solution was again clear. This solution was now applied to the support material.

Eksempel 3Example 3

Fremstilling av katalysatorenPreparation of the catalyst

I en hvirvelsjiktreaktor ble det innført 1,4 tonn hvirvelkatalysatorbærer (fremstilt ifølge eksempel 1), fluid-isert med kald luft med ca. 2 til 3 ganger fluidiserings-.hastigheten. Over et dusjhode ble det påsprøytet en ifølge eksempel 1 fremstilt oppløsning (ca. 950 liter) på hvirvelsjiktet i løpet av ca. 2 timer. Deretter ble fluidiseringen fortsatt med ca. 200°C varm luft inntil materialet ikke mer avga noen fuktighet. Etter avkjøling ble det dannet ca. 2000 kg med en gang anvendbar katalysator. Dette materiale kunne anvendes direkte i katalysereaktoren og etter oppvarm-ing til en starttemperatur påkjennes direkte med maksimal ytelse av driftsanlegget. En analyse av reaktormaterialet ga 6,5 vekt% vanadinpentoksyd og 6,7 vekt% kaliumoksyd. Selvsagt kan påføringen av impregneringsoppløsninger også foregå med andre vanlige fremgangsmåter. In a fluidized bed reactor, 1.4 tonnes of fluidized catalyst carrier (manufactured according to example 1) was introduced, fluidized with cold air with approx. 2 to 3 times the fluidization rate. Above a shower head, a solution prepared according to example 1 (approx. 950 litres) was sprayed onto the fluidized bed during approx. 2 hours. The fluidization was then continued with approx. 200°C hot air until the material no longer gave off any moisture. After cooling, approx. 2000 kg of single-use catalyst. This material could be used directly in the catalytic reactor and, after heating to an initial temperature, directly subjected to maximum performance by the operating plant. An analysis of the reactor material yielded 6.5 wt% vanadium pentoxide and 6.7 wt% potassium oxide. Of course, the application of impregnation solutions can also take place with other common methods.

Claims (6)

1. Fremgangsmåte for fremstilling av hvirvelsjiktkatalysatorer for oksydasjon av svoveldioksyd til svoveltrioksyd på basis av kiselsyrefyllstoffer og leirmineraler, karakterisert ved at bærematerialet som ikke inneholder mer enn 4% A12 03 , fortrinnsvis ikke mer enn 2% A1203 på basis av tørt bærematerial, impregneres med en svakt svovelsur oppløsning av vanadyloksysulfat, hvori vanadium foreligger i oksydasjonstrinn + IV og kaliumhydrogensulfat og herdningen av bærematerialet respektiv av den ferdige katalysator foregår ved temperaturer på ikke over 600°C, fortrinnsvis ved 200° til 400°C.1. Process for the production of fluidized bed catalysts for the oxidation of sulfur dioxide to sulfur trioxide on the basis of silicic acid fillers and clay minerals, characterized in that the support material containing no more than 4% A12 03 , preferably no more than 2% A1203 on the basis of dry support material, is impregnated with a weak sulfuric acid solution of vanadyloxysulphate, in which vanadium is present in oxidation stage + IV and potassium hydrogen sulphate and the curing of the carrier material or of the finished catalyst takes place at temperatures of no more than 600°C, preferably at 200° to 400°C. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at konsentrasjonen av vanadium og kalium i den svovelsure oppløsning innstilles således at i den ferdige tørre katalysator foreligger et molforhold mellom kalium og vanadium på 3:1 til 2:1.2. Method according to claim 1, characterized in that the concentration of vanadium and potassium in the sulfuric acid solution is set so that in the finished dry catalyst there is a molar ratio between potassium and vanadium of 3:1 to 2:1. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at bærematerialet impregneres med en svovelsur oppløsning ved et slikt vanadininnhold at vanadininnholdet av den tørre katalysator utgjør 4 til 9 vekt%, fortrinnsvis 5, 0 til 7,0 vekt%, beregnet som vanadinpentoksyd.3. Method according to claim 1 or 2, characterized in that the carrier material is impregnated with a sulfuric acid solution at such a vanadium content that the vanadium content of the dry catalyst amounts to 4 to 9% by weight, preferably 5.0 to 7.0% by weight, calculated as vanadium pentoxide. 4. Fremgangsmåte ifølge et eller flere av kravene 1-3, karakterisert ved at det som vanadylsalter anvendes salter av fireverdig vanadin.4. Method according to one or more of claims 1-3, characterized in that tetravalent vanadium salts are used as vanadyl salts. 5. Fremgangsmåte ifølge et eller flere av kravene 1-4, karakterisert ved at til impreg-neringsoppløsningen settes så meget svovelsyre at denne er inneholdt i oppløsningen med 0,1 til 6 vekt%.5. Method according to one or more of claims 1-4, characterized in that so much sulfuric acid is added to the impregnation solution that this is contained in the solution by 0.1 to 6% by weight. 6. Fremgangsmåte ifølge et eller flere av kravene 1-5, karakterisert ved at impregneringen gjennomføres i hvirvelsjikt.6. Method according to one or more of claims 1-5, characterized in that the impregnation is carried out in a fluidized bed.
NO811890A 1980-06-19 1981-06-03 CATALYST MASTER, PROCEDURE FOR ITS PREPARATION AND ITS APPLICATION FOR SULFUR ACID CATALYST PROCEDURE NO811890L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803022894 DE3022894A1 (en) 1980-06-19 1980-06-19 CATALYST SIZE, METHOD FOR THEIR PRODUCTION AND THEIR USE FOR THE SULFURIC ACID CONTACT METHOD IN THE FLUID BED

Publications (1)

Publication Number Publication Date
NO811890L true NO811890L (en) 1981-12-21

Family

ID=6104938

Family Applications (1)

Application Number Title Priority Date Filing Date
NO811890A NO811890L (en) 1980-06-19 1981-06-03 CATALYST MASTER, PROCEDURE FOR ITS PREPARATION AND ITS APPLICATION FOR SULFUR ACID CATALYST PROCEDURE

Country Status (11)

Country Link
EP (1) EP0042532A1 (en)
JP (1) JPS5727131A (en)
AU (1) AU7182881A (en)
BR (1) BR8103830A (en)
DE (1) DE3022894A1 (en)
DK (1) DK268281A (en)
ES (1) ES8203636A1 (en)
FI (1) FI811904L (en)
NO (1) NO811890L (en)
PT (1) PT73160B (en)
ZA (1) ZA814119B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB334268A (en) * 1929-06-01 1930-09-01 Ici Ltd Improvements in and relating to the production of catalytic material
GB756683A (en) * 1953-10-02 1956-09-05 Ici Ltd Improvements in and relating to the conversion of sulphur dioxide to sulphur trioxide
DE1926564C3 (en) * 1969-05-23 1974-02-07 Bayer Ag, 5090 Leverkusen Pearl-shaped catalyst
GB1270224A (en) * 1970-03-19 1972-04-12 Inst Kataliza Sibirskogo Otdel Improvements relating to catalysts
US4184980A (en) * 1977-12-21 1980-01-22 Stauffer Chemical Company Sulfuric acid catalyst and process therefor

Also Published As

Publication number Publication date
ES503154A0 (en) 1982-04-16
ES8203636A1 (en) 1982-04-16
ZA814119B (en) 1982-07-28
FI811904L (en) 1981-12-20
JPS5727131A (en) 1982-02-13
DE3022894A1 (en) 1981-12-24
BR8103830A (en) 1982-03-09
PT73160A (en) 1981-07-01
AU7182881A (en) 1981-12-24
DK268281A (en) 1981-12-20
EP0042532A1 (en) 1981-12-30
PT73160B (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US6956006B1 (en) Modified titanium dioxide and a method for its preparation
US3140249A (en) Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3957689A (en) Process for preparing an attrition resistant zeolite hydrocarbon conversion catalyst
US3867279A (en) Hydrocarbon cracking with catalytic phosphate-silica-aluminosilicate compositions of improved crushing strength
EP1216092B1 (en) Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof
US6251823B1 (en) Production of spherical catalyst carrier
US4108971A (en) Method of manufacture of spherical alumina particles
CN111804347A (en) Preparation method of Janus particles and application of Janus particles in cyclohexene hydration process
US3846337A (en) Phosphate-silica-aluminosilicate compositions of improved crushing strength and methods of preparing the same
US3216953A (en) Method of making vanadium oxide-potassium oxide catalysts of selected porosity
GB1584900A (en) Production of cracking catalyst
GB2085861A (en) Thermally-stabilised/aluminium- exchanged type Y zeolite
US4300012A (en) Process for transalkylation of alkylaromatic hydrocarbons
JPH0456667B2 (en)
NO811890L (en) CATALYST MASTER, PROCEDURE FOR ITS PREPARATION AND ITS APPLICATION FOR SULFUR ACID CATALYST PROCEDURE
US3933991A (en) Sulfuric acid contact process
FI57061B (en) FOERFARANDE FOER FRAMSTAELLNING AV FLYTBAEDDKATALYSATORER FOER OXIDERING AV SVAVELDIOXID
KR910009570B1 (en) Production of elemental sulphur
JPS60197240A (en) Preparation of catalyst composition for catalitic cracking of hydrocarbon
USRE29145E (en) Catalyst for sulfuric acid contact process
SU437264A1 (en) A method for preparing a catalyst for the oxidation of sulfur dioxide
US4219446A (en) Zeolite-containing silica-alumina hydrogel catalyst and method of making same
EP0479354B1 (en) Nitrided silica
JPS6336291B2 (en)
SU1616688A1 (en) Catalyst for conversion