NO810796L - NEW PROPYLENE POLYMER. - Google Patents

NEW PROPYLENE POLYMER.

Info

Publication number
NO810796L
NO810796L NO810796A NO810796A NO810796L NO 810796 L NO810796 L NO 810796L NO 810796 A NO810796 A NO 810796A NO 810796 A NO810796 A NO 810796A NO 810796 L NO810796 L NO 810796L
Authority
NO
Norway
Prior art keywords
approx
content
propylene
polymer
electron donor
Prior art date
Application number
NO810796A
Other languages
Norwegian (no)
Inventor
Cipriano Cipriano
Harold Kurt Ficker
Charles Anton Trischman
Original Assignee
El Paso Polyolefins
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by El Paso Polyolefins filed Critical El Paso Polyolefins
Publication of NO810796L publication Critical patent/NO810796L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

De katalysatorsystemer som tidligere har vært brukt under propylenpolymerisering har vært en umodifi- The catalyst systems that have previously been used during propylene polymerization have been an unmodified

sert eller en elektron-donor-modifisert titanhalogenid-komponent, aktivert med en organoaluminium-kokatalysator. Typiske eksempler på vanlige kjente propylenpolymeriserings-katalysatorsystemer innbefatter samkrystallisert titan-triklorid-aluminiumtriklorid-katalysatorer med generell formel n-TiCl3-AlCl^/aktivert med dietylaluminiumklorid eller trietylaluminium. Det samkrystalliserte titantri-klorid-aluminiumtriklorid kan ha vært underkastet en modi-fikasjon med en egnet elektron-donor-forbindelse for å øke dens aktivitet eller stereospesifitet. Slike forbindelser innbefatter fosforforbindelser, estere av uorganiske og organiske syreetere og tallrike andre forbindelser. cert or an electron-donor-modified titanium halide component, activated with an organoaluminum cocatalyst. Typical examples of commonly known propylene polymerization catalyst systems include co-crystallized titanium trichloride-aluminum trichloride catalysts of general formula n-TiCl 3 -AlCl 3 /activated with diethylaluminum chloride or triethylaluminum. The co-crystallized titanium trichloride-aluminum trichloride may have been modified with a suitable electron-donor compound to increase its activity or stereospecificity. Such compounds include phosphorus compounds, esters of inorganic and organic acid ethers and numerous other compounds.

Det har nylig blitt utviklet nye katalysatorer som er langt mer aktive enn de forannevnte vanlige kjente katalysatorer for polymerisering av a-olefiner. Kort for-klart består nevnte katalysatorer av en titanhalogenid-katalysatorkomponent plassert på en magnesiumdihalogenid og en alkylaluminiumforbindelse som kan være tilstede som et kompleks med en elektron-donor-forbindelse. Slike katalysatorkomponenter er blant annet beskrevet i US patent nr. 3.830.787, nr. 3.953.414, nr. 4.051.313, nr. 4.115.319 New catalysts have recently been developed which are far more active than the above-mentioned commonly known catalysts for the polymerization of α-olefins. Briefly explained, said catalysts consist of a titanium halide catalyst component placed on a magnesium dihalide and an alkyl aluminum compound which may be present as a complex with an electron-donor compound. Such catalyst components are, among other things, described in US patent no. 3,830,787, no. 3,953,414, no. 4,051,313, no. 4,115,319

og nr. 4.149.990. and No. 4,149,990.

Fordelene ved å polymerisere propylen i nærværThe advantages of polymerizing propylene in the presence

av nevnte nye katalysatorer er et bedret utbytte (polymer/of said new catalysts is an improved yield (polymer/

Ti vekt/vekt) og stereospesifitet (= isotaktisk indeksTi w/w) and stereospecificity (= isotactic index).

eller % heptan-uoppløselige forbindelser), mens de mekaniske egenskaper i alt vesentlig er blitt upåvirket. or % heptane-insoluble compounds), while the mechanical properties have essentially remained unaffected.

Det er en hensikt ved foreliggende oppfinnelseIt is a purpose of the present invention

å tilveiebringe en nye propylenpolymer som har bedret bearbeidbarhet når den utdrives eller injeksjonsstøpes sammenlignet med vanlig kjent propylenpolymer. to provide a new propylene polymer which has improved processability when extruded or injection molded compared to conventional propylene polymer.

Videre er det en hensikt ved oppfinnelsen å tilveiebringe en nye polypropylen som kan bearbeides ved Furthermore, it is an aim of the invention to provide a new polypropylene that can be processed with wood

lave utdrivnings- eller støpetemperaturer og/eller lave utdrivnings- eller støpetrykk enn vanlige kjente polypropy-lenharpikser som har samme smeltestrøm. low extrusion or molding temperatures and/or low extrusion or molding pressures than conventional known polypropylene resins which have the same melt flow.

Andre hensikter og fordeler ved oppfinnelsen vil fremgå av den etterfølgende beskrivelse. Other purposes and advantages of the invention will be apparent from the following description.

Foreliggende oppfinnelse tilveiebringer en ny propylenpolymer med et smeltestrømsområde mellom 0,2 og 30 g pr. 10 minutter, en isotaktisk indeks på ikke mindre enn ca. 92%, et dimer-trimer-innhold som ikke overstiger 4 g pr. kg polymer, et krystallinsk smeltepunkt på minst ca. 165°C, og et forhold mellom den vektmidlere molekylvekt til den tallmidlere molekylvekt på minst 7, et Ti-innhold som ikke overstiger 3 ppm, et Mg-innhold som ikke overstiger ca. 4 0 ppm, et Cl-innhold som ikke overstiger ca. 100 ppm og totalt aske-innhold som ikke overstiger ca. 4 00 ppm. The present invention provides a new propylene polymer with a melt flow range between 0.2 and 30 g per 10 minutes, an isotactic index of no less than approx. 92%, a dimer-trimer content that does not exceed 4 g per kg polymer, a crystalline melting point of at least approx. 165°C, and a ratio between the weight average molecular weight and the number average molecular weight of at least 7, a Ti content not exceeding 3 ppm, a Mg content not exceeding approx. 40 ppm, a Cl content that does not exceed approx. 100 ppm and a total ash content that does not exceed approx. 400ppm.

De katalysatorkomponenter som brukes for å fremstille propylenpolymeren ifølge foreliggende oppfinnelse kan være enhver av de som nylig er utviklet, dvs. de høy-aktivitetsmagnesiumhalogenid-bårede katalysatorkomponenter og organoaluminium-samkatalysatorkomponenter som blant annet er beskrevet i US patentene nr. 3.830.787, nr. 3.953.414, nr. 4.051,313, nr. 4.115,319 og nr. 4.149.990 som her inn-går som referanser. The catalyst components used to prepare the propylene polymer according to the present invention can be any of those that have been recently developed, i.e. the high-activity magnesium halide-supported catalyst components and organoaluminium co-catalyst components which are described, among other things, in US patents no. 3,830,787, no. 3,953,414, No. 4,051,313, No. 4,115,319 and No. 4,149,990 which are incorporated herein by reference.

En slik katalysatorsammensetning består typisk av to komponenter hvor komponentene tilføres separat til polymeriseringsreaktoren. Komponent (a) i en slik sammen-setning er fordelaktig valgt fra gruppen bestående av trialkylaluminiumforbindelser med fra 1-8 karbonatomer i alkylgruppen, såsom trietylaluminium, trimetylaluminium, tri-n-butylaluminium, triisobutylaluminium, triisoheksyl-aluminium, tri-n-oktylaluminium og triisooktylaluminium. Mest foretrukket blir trialkylaluminium kompleksdannet med en elektron-donor før den tilføres polymeriseringsreaktoren. Man oppnår de beste resultater når estere av karboksylsyrer eller diaminer, da spesielt estere av aromatiske syrer, brukes som elektron-donorer. Such a catalyst composition typically consists of two components, where the components are supplied separately to the polymerization reactor. Component (a) in such a composition is advantageously selected from the group consisting of trialkylaluminum compounds with from 1-8 carbon atoms in the alkyl group, such as triethylaluminum, trimethylaluminum, tri-n-butylaluminum, triisobutylaluminum, triisohexyl-aluminum, tri-n-octylaluminum and triisooctyl aluminum. Most preferably, trialkyl aluminum is complexed with an electron donor before it is fed to the polymerization reactor. The best results are obtained when esters of carboxylic acids or diamines, especially esters of aromatic acids, are used as electron donors.

Noen typiske eksempler på slike forbindelserSome typical examples of such connections

er metyl- og etylbenzoat, metyl- og etyl-p-metoksybenzoat, dietylkarbonat, etylacetat, dimetylmaleat, trietylborat, etyl-o-klorbenzoat, etylnaftenat, metyl-p-toluat, etyl-toluat, etyl-p-butoksy-benzoat, etyl-cykloheksanoat, are methyl and ethyl benzoate, methyl and ethyl p-methoxybenzoate, diethyl carbonate, ethyl acetate, dimethyl maleate, triethyl borate, ethyl o-chlorobenzoate, ethyl naphthenate, methyl p-toluate, ethyl toluate, ethyl p-butoxybenzoate, ethyl -cyclohexanoate,

etylpivalat, N,N,N<1>,N'-tetrametylendiamin, 1,2,4-trimetyl-piperazin, 2,5-dimetylpiperazin og lignende. Det molare forhold mellom aluminiumalkyl til elektron-donor kan variere mellom 1 og 100, fortrinnsvis mellom 2 og 5. Opp-løsninger av elektron-donoren og trialkylaluminiumforbin-delsen, f.eks. i hverandre eller i et hydrokarbon såsom heksan eller heptan, blir fortrinnsvis forreagert i et visst tidsrom, vanligvis mindre enn en time, før man fører blandingen inn i polymeriseringsreaksjonssonen. ethyl pivalate, N,N,N<1>,N'-tetramethylenediamine, 1,2,4-trimethyl-piperazine, 2,5-dimethylpiperazine and the like. The molar ratio between aluminum alkyl and electron donor can vary between 1 and 100, preferably between 2 and 5. Solutions of the electron donor and the trialkyl aluminum compound, e.g. in each other or in a hydrocarbon such as hexane or heptane, are preferably pre-reacted for a certain period of time, usually less than an hour, before introducing the mixture into the polymerization reaction zone.

Den andre komponenten av katalysatorsammensetningen er enten et titantri- eller tetrahalogenid plassert på et magnesiumdihalogenid, eller et kompleks av et titantri- eller tetrahalogenid med en elektron-donorforbindelse plassert på et magnesiumdihalogenid. Halogenet i nevnte halogenider kan være klor, brom eller jod, fortrinnsvis klor. Elektron-donoren, hvis en sådan brukes for fremstilling av et kompleks, blir egnet valgt fra estere av uorganiske og organiske oksygenholdige syrer og polyaminer. Eksempler på slike forbindelser er estere av aromatiske karboksylsyrer, f.eks. benzosyre, p-metoksybenzosyre og p-toluinsyre og mer spesielt alkylestere av nevnte syrer, alkylendiaminer, f.eks. N<1>,N",N'",N""-tetrametyletylen-diamin. Det molare forhold mellom magnesium og elektron-donoren er lik eller høyere enn 1, fortrinnsvis mellom 2 og 10. Vanligvis vil titaninnholdet uttrykt i form av rent titanmetall, variere mellom 0,1 og 20 vekt-% i den bårede katalysatorkomponenten, fortrinnsvis mellom 1 og 3 vekt-%. The second component of the catalyst composition is either a titanium tri- or tetrahalide placed on a magnesium dihalide, or a complex of a titanium tri- or tetrahalide with an electron donor compound placed on a magnesium dihalide. The halogen in said halides can be chlorine, bromine or iodine, preferably chlorine. The electron donor, if such is used for the preparation of a complex, is suitably selected from esters of inorganic and organic oxygen-containing acids and polyamines. Examples of such compounds are esters of aromatic carboxylic acids, e.g. benzoic acid, p-methoxybenzoic acid and p-toluic acid and more particularly alkyl esters of said acids, alkylenediamines, e.g. N<1>,N",N'",N""-tetramethylethylenediamine. The molar ratio between magnesium and the electron donor is equal to or higher than 1, preferably between 2 and 10. Generally, the titanium content, expressed in terms of pure titanium metal, will vary between 0.1 and 20% by weight in the supported catalyst component, preferably between 1 and 3% by weight.

Fremstillingen av slike katalysatorkomponenter er tidligere beskrevet, og de er kommersielt tilgjengelige. The preparation of such catalyst components has been previously described, and they are commercially available.

Nevnte katalysatorkomponenter (a) og (b) føres inn i reaksjonssonen i slike mengder at det molare forhold mellom Al/Ti holdes i et område mellom 1 og 10.000, fortrinnsvis mellom 10 og 200. Said catalyst components (a) and (b) are introduced into the reaction zone in such quantities that the molar ratio between Al/Ti is kept in a range between 1 and 10,000, preferably between 10 and 200.

Det er viktig at den polymeriseringsprosess som brukes for å fremstille polymeren ifølge foreliggende oppfinnelse, er en hvor propylenet virker både som en for-tynnende væske så vel som utgangsmateriale for reaksjonen, bortsett fra at man bruke små mengder av inerte hydro-karboner såsom heksan, mineralolje, petrolatum etc, for å føre katalysatorkomponentene inn i reaksjonssonen. De reaksjonsbetingelser som brukes i foreliggende fremgangsmåte innbefatter polymeriseringstemperaturer fra ca. 46,1 til 7 9,4, fortrinnsvis mellom 51,6 og 71,1°C. Trykket må være tilstrekkelig forhøyet til at man i det minste holder en del av propylenet i væskefase. Egnede trykk er på It is important that the polymerization process used to prepare the polymer according to the present invention is one where the propylene acts both as a diluting liquid as well as starting material for the reaction, except that small amounts of inert hydrocarbons such as hexane, mineral oil, petrolatum etc, to introduce the catalyst components into the reaction zone. The reaction conditions used in the present method include polymerization temperatures from approx. 46.1 to 79.4, preferably between 51.6 and 71.1°C. The pressure must be sufficiently elevated to keep at least part of the propylene in the liquid phase. Suitable pressures are on

14,2 kg/cm 2 høyere, f.eks. opptil 35,7 kg/cm 2. Totale mengder faste stoffer i reaksjonssonen i dette systemet er vanligvis av størrelsesorden fra 15-50%, skjønt man selv-sagt også kan bruke høyere, f.eks. opptil 60% faste polymerstoffer. For at man imidlertid effektivt skal behandle den suspensjonen som fremstilles, er det foretrukket å holde polymeriseringen på et slikt nivå at man får de prosentsatser av faste stoffer som er angitt ovenfor. Reaksjonen er kontinuerlig og monomertilførsel og katalysatorkomponenter føres kontinuerlig til reaktoren, hvoretter en suspensjon av polymerprodukt og flytende propylen tas ut, fortrinnsvis gjennom en cyklisk uttappingsventil som simu-lerer kontinuerlig drift. Hvis det er ønskelig, kan man tilsette kjente modifiserende forbindelser såsom hydrogen. 14.2 kg/cm 2 higher, e.g. up to 35.7 kg/cm 2. Total amounts of solids in the reaction zone in this system are usually of the order of 15-50%, although of course you can also use higher, e.g. up to 60% polymer solids. However, in order to effectively treat the suspension that is produced, it is preferred to keep the polymerization at such a level that the percentages of solids stated above are obtained. The reaction is continuous and monomer supply and catalyst components are continuously fed to the reactor, after which a suspension of polymer product and liquid propylene is withdrawn, preferably through a cyclic withdrawal valve which simulates continuous operation. If desired, known modifying compounds such as hydrogen can be added.

Trykket i polymersuspensjonen slippes ned til f.eks. 3,5 kg/cm 2 eller mindre i en lavtrykkssone (det forstås her en sone som har et trykk som er lavere enn det som forefinnes i polymeriseringsreaksjonssonen), og på grunn av trykkfallet og de forskjellige ingrediensers flyktige natur, så vil det bli en utblåsning av de flyktige forbindelser fra den faste polymeren. Denne utblåsning som kan lettes ved oppvarming, gjør at man får et polymer-pulver som er i alt vesentlig tørt, og med dette begrep forstås en polymer som inneholder 5% eller mindre flyktige forbindelser. En uomsatt monomerstrøm tas ut på toppen av denne lavtrykksutblåsningssonen, og i det minste en del av denne komprimeres, kondenseres og returneres til reaktoren. Vanligvis føres polymeren til en endelig tørkesone for å fjerne rester av flyktige forbindelser. The pressure in the polymer suspension is dropped to e.g. 3.5 kg/cm 2 or less in a low pressure zone (meaning here a zone that has a pressure lower than that found in the polymerization reaction zone), and due to the pressure drop and the volatile nature of the various ingredients, there will be a blowing out the volatile compounds from the solid polymer. This blowing out, which can be eased by heating, means that you get a polymer powder that is essentially dry, and by this term is meant a polymer that contains 5% or less volatile compounds. An unreacted monomer stream is withdrawn at the top of this low pressure blowdown zone, and at least a portion thereof is compressed, condensed and returned to the reactor. Typically, the polymer is passed to a final drying zone to remove residual volatile compounds.

Alternativt kan det flytende polymeriserings- mediet filtreres eller sentrifugeres under trykk, og det flytende propylen kan returneres etter egnet rensning til reaktoren, hvorved man sparer energi i form av rekompresjon. Denne fremgangsmåte har den fordel, at visse oppløselige urenheter (såsom aluminiumalkylforbindelser og organiske estere) blir fjernet fra polymeren. Dette fører igjen til et polymerprodukt med lavere innhold av urenheter. Alternatively, the liquid polymerization medium can be filtered or centrifuged under pressure, and the liquid propylene can be returned to the reactor after suitable cleaning, thereby saving energy in the form of recompression. This method has the advantage that certain soluble impurities (such as aluminum alkyl compounds and organic esters) are removed from the polymer. This in turn leads to a polymer product with a lower content of impurities.

På grunn av den generelt høye produktivitetenBecause of the generally high productivity

man har på det nevnte katalysatorsystem uttrykt i kg polymer fremstilt pr. kg titanmetall, så er det intet behov for å fjerne katalysatorrester fra polymeren i et avasknings-trinn, noe som er tilfelle med vanlige katalysatorer. one has on the aforementioned catalyst system expressed in kg of polymer produced per kg titanium metal, then there is no need to remove catalyst residues from the polymer in a washing step, which is the case with ordinary catalysts.

Forskjellige additiver kan hvis det er ønskelig, inkorporeres i polypropylenharpiksen såsom fibrer, fyll-stoffer, antioksydasjonsmidler, metalldeaktiveringsmidler, varme og lysstabilisatorer, fargestoffer, pigmenter, smøre-midler og lignende. Various additives can, if desired, be incorporated into the polypropylene resin such as fibers, fillers, antioxidants, metal deactivators, heat and light stabilizers, dyes, pigments, lubricants and the like.

Polymerene kan med fordel brukes ved fremstillingen av fibrer, tråder og filmer ved utdrivning, av faste artikler ved injeksjonsstøpning og for fremstilling av flasker ved en blåse-støpe-teknikk. The polymers can be advantageously used in the production of fibres, threads and films by extrusion, of solid articles by injection molding and for the production of bottles by a blow molding technique.

Fordelene ved polymerer ifølge foreliggende oppfinnelse sammenlignet med polymerer fremstilt ved vanlige kjente katalysatorer og med lignende mekaniske egenskaper, innbefatter et bredere bearbeidingsområde, lavere krav med hensyn til energi under bearbeidingen, overlegen evne til å fylle tynne seksjoner og former med mange hulrom, og ved produksjon av kontinuerlige tråder eller fibrer har man bedre uttrekningsevne og høyere bearbeidingshastighet. The advantages of polymers according to the present invention compared to polymers prepared by common known catalysts and with similar mechanical properties include a wider processing area, lower requirements with regard to energy during processing, superior ability to fill thin sections and molds with many cavities, and in production of continuous threads or fibers has better drawability and higher processing speed.

Basert på spiralsmeltestrømsmålinger fant man f.eks. at polymerer ifølge foreliggende oppfinnelse med smeltestrømmer (ASTM 1238) varierende fra 2-12 g pr. 10 minutter kunne bearbeides ved støpetemperaturer som lå fra 25-15°C lavere, og ved støpetrykk som lå fra 25-10,7 kg/cm<2>lavere enn vanlige polymerer med samme smeltestrømmer Based on spiral melting current measurements, it was found e.g. that polymers according to the present invention with melt flows (ASTM 1238) varying from 2-12 g per 10 minutes could be processed at molding temperatures that ranged from 25-15°C lower, and at molding pressures that ranged from 25-10.7 kg/cm<2>lower than ordinary polymers with the same melt flows

(ASTM 1238) .(ASTM 1238) .

Man antar at det er molekylvektsfordelingen, Mw/Mn som er den egenskap som best angår forbedringer i polymerens reologiske egenskaper og dens bearbeidbarhet. Typisk polymerisering med vanlige katalysatorsystemer ville gi en polymer med et Mw/Mn-forhold på maksimalt 6,5, og vanligvis 6, mens polymerer ifølge foreliggende oppfinnelse har Mw/Mn-forhold på minst 7, f.eks. mellom ca. 7 og ca. 10. It is assumed that it is the molecular weight distribution, Mw/Mn, which is the property that best relates to improvements in the polymer's rheological properties and its processability. Typical polymerization with common catalyst systems would give a polymer with a Mw/Mn ratio of a maximum of 6.5, and usually 6, whereas polymers of the present invention have Mw/Mn ratios of at least 7, e.g. between approx. 7 and approx. 10.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

EKSEMPLENE 1 og 2EXAMPLES 1 and 2

Homopolymeriseringer av propylen ble utført iHomopolymerizations of propylene were carried out in

et stort forsøksanlegg hvor monomer og katalysatorkomponenter kontinuerlig ble ført inn i en reaktor, og hvor monomertilførselshastigheten tilsvarte en oppholdstid på a large experimental plant where monomer and catalyst components were continuously fed into a reactor, and where the monomer feed rate corresponded to a residence time of

ca. 2 timer i reaktoren. Organoaluminiumforbindelsen i katalysatorsystemet var en heksanoppløsning av enten triisobutylaluminium (TIBA) eller trietylaluminium (TEA) som på forhånd var behandlet med en heksan-oppløsning av metyl-p-toluat (MPT), en elektron-donorforbindelse. Den faste bårede titanhalogenidkatalysatorkomponenten var en kommersielt tilgjengelig katalysator.( Den bårede katalysatorkomponenten inneholdt ca. 1,5 vekt-% titan, 20,3 vekt-% magnesium, 60,0 vekt-% klor og 9,6 vekt-% hydro-karbonflyktige stoffer. Etylbenzoat var blitt brukt under fremstillingen av den bårede katalysatorkomponenten. De to katalysatorkomponentene ble tilsatt med hastigheter som var direkte proporsjonale med produksjonshastigheten av polypropylen og i tilstrekkelige mengder til at man holdt konsentrasjonen av faste polymerstoffer i reaktorsuspensjonen på en nominell verdi på ca. 40%. Katalysatorproduktiviteten (kg polymer pr. kg titanmetall) ble beregnet i hvert enkelt tilfelle fra uttakshastigheten av polymersuspensjonen, innholdet av faste stoffer i suspensjonen og tilsetnings-hastigheten av titankatalysatorkomponenten. De anvendte driftsbetingelser og resultatene er vist i tabell 1 sammen med typiske egenskaper for et kontrollprodukt fremstilt av avasket polypropylen oppnådd ved hjelp av standard katalysatorkomponenter, dvs. samkrystallisert STiCl^-AlCl^med dietylaluminiumklorid som samkatalysator. about. 2 hours in the reactor. The organoaluminum compound in the catalyst system was a hexane solution of either triisobutylaluminum (TIBA) or triethylaluminum (TEA) which had been previously treated with a hexane solution of methyl p-toluate (MPT), an electron donor compound. The solid supported titanium halide catalyst component was a commercially available catalyst. substances. Ethyl benzoate had been used during the preparation of the supported catalyst component. The two catalyst components were added at rates directly proportional to the production rate of polypropylene and in amounts sufficient to maintain the concentration of polymer solids in the reactor suspension at a nominal value of about 40 %. The catalyst productivity (kg polymer per kg titanium metal) was calculated in each case from the withdrawal rate of the polymer suspension, the content of solids in the suspension and the addition rate of the titanium catalyst component. The operating conditions used and the results are shown in Table 1 together with typical characteristics of a control product made from washed polypropylene n obtained using standard catalyst components, i.e. co-crystallized STiCl^-AlCl^ with diethyl aluminum chloride as co-catalyst.

Som angitt i tabellen ble standard ASTM-prøve-metoder brukt for å bestemme flesteparten av egenskapene på pplymerproduktet. As indicated in the table, standard ASTM test methods were used to determine most of the properties of the polymer product.

Mw/Mn-forholdet ble bestemt ved væskekromato-grafi idet man brukte o-diklorbenzen som oppløsningsmiddel. The Mw/Mn ratio was determined by liquid chromatography using o-dichlorobenzene as solvent.

Den isotaktiske indeks ble oppnådd ved å bestemme prosent uoppløselige stoffer i heptan etter at polymeren var blitt ekstrahert med kokende heptan, og dimer-trimer-innholdet ble funnet ved hjelp av gasskroma-tografiske analyser av heptanekstraktet ved romtemperatur. The isotactic index was obtained by determining the percent insolubles in heptane after the polymer had been extracted with boiling heptane, and the dimer-trimer content was found by gas chromatographic analyzes of the heptane extract at room temperature.

Det krystallinske smeltepunkt ble målt ved differensiell scanning-kalorimetri. The crystalline melting point was measured by differential scanning calorimetry.

Innholdene av Ti, Mg og Al ble bestemt ved atomabsorpsjonsanalyse av polymerasken oppløst i saltsyre, og klorinnholdet ble bestemt ved kolorimetrisk bestemmelse av en forbrent polymerprøve idet man brukte en Parr-oksygenbombe. The contents of Ti, Mg and Al were determined by atomic absorption analysis of the polymer ash dissolved in hydrochloric acid, and the chlorine content was determined by colorimetric determination of a burnt polymer sample using a Parr oxygen bomb.

Det er underforstått at man lett kan utføre It goes without saying that one can easily perform

variasjoner og modifikasjoner med propylenpolymeren ifølge foreliggende oppfinnelse. Alle slike variasjoner og modifikasjoner ansees å ligge innenfor oppfinnelsens intensjon slik den fremgår av de etterfølgende krav. variations and modifications with the propylene polymer according to the present invention. All such variations and modifications are considered to lie within the intention of the invention as it appears from the following claims.

Claims (10)

1. Propylenpolymer, karakterisert ved et smeltestrø msområde fra ca. 0,2 til 30 g pr.1. Propylene polymer, characterized by a melt flow range from approx. 0.2 to 30 g per 10 minutter, en isotaktisk indeks på ikke mindre enn ca.10 minutes, an isotactic index of no less than approx. 92%, et dimer-trimer-innhold som ikke overstiger ca.92%, a dimer-trimer content that does not exceed approx. 4 g/kg, et krystallinsk smeltepunkt på minst ca. 165°C, et forhold mellom den vektmidlere molekylvekten til den tallmidlere molekylvekten (Mw/Mn) på minst ca. 7, et Ti-innhold som ikke overstiger ca. 3 ppm, et Mg-innhold som ikke overstiger ca. 40 ppm, et Cl-innhold som ikke overstiger ca. 100 ppm og et totalt askeinnhold som ikke overstiger ca. 4 00 ppm.4 g/kg, a crystalline melting point of at least approx. 165°C, a ratio between the weight average molecular weight and the number average molecular weight (Mw/Mn) of at least approx. 7, a Ti content that does not exceed approx. 3 ppm, a Mg content that does not exceed approx. 40 ppm, a Cl content that does not exceed approx. 100 ppm and a total ash content that does not exceed approx. 400ppm. 2. Polymer ifølge krav 1, karakterisert ved at nevnte Mw/Mn-forhold varierer fra ca. 7 til ca. 10.2. Polymer according to claim 1, characterized in that said Mw/Mn ratio varies from approx. 7 to approx. 10. 3. Fremgangsmåte for fremstilling av polymer ifølge krav 1, karakterisert ved at man: kontinuerlig fører propylenmonomer og katalysatorkomponenter til en polymeriseringsreaktor, polymeriserer nevnte propylen ved en temperatur mellom 4 6 og 80°C ved et tilstrekkelig forhø yet trykk slik at man i det minste opprettholder en del av propylenet i væskefase, og hvor man tar ut produktet på en i alt vesentlig kontinuerlig måte som en suspensjon i flytende propylen, og hvor katalysatorsammensetningen består av følgende komponenter : (a) et aluminiumtrialkyl eller et aluminiumtrialkyl som i det minste delvis er kompleksdannet med en elektron-donorforbindelse, og (b) et titantri- eller tetrahalogenid båret av et magnesiumdihalogenid, eller et kompleks av et titantri- eller tetrahalogenid med en elektron-donorforbindelse båret på et magnesiumdihalogenid.3. Process for the production of polymer according to claim 1, characterized in that one: continuously feed propylene monomer and catalyst components to a polymerization reactor, polymerizes said propylene at a temperature between 46 and 80°C at a sufficiently high pressure so that at least part of the propylene is maintained in the liquid phase, and where the product is removed in an essentially continuous manner as a suspension in liquid propylene, and where the catalyst composition consists of the following components: (a) an aluminum trialkyl or an aluminum trialkyl which is at least partially complexed with an electron-donor compound, and (b) a titanium tri- or tetrahalide supported by a magnesium dihalide, or a complex of a titanium tri- or tetrahalide with an electron donor compound supported on a magnesium dihalide. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at elektron-donor-forbindelsen i komponent (a) i katalysatorsammensetningen, er en ester av en karboksylsyre eller et diamin.4. Method according to claim 3, characterized in that the electron-donor compound in component (a) in the catalyst composition is an ester of a carboxylic acid or a diamine. 5. Fremgangsmåte ifølge krav 3, karakterisert ved at det molare forhold mellom trialkylaluminium til elektron-donor varierer fra ca. 1 til ca. 100.5. Method according to claim 3, characterized in that the molar ratio between trialkyl aluminum and electron donor varies from approx. 1 to approx. 100. 6. Fremgangsmåte ifølge krav 3, karakterisert ved at komponent (a) fremstilles ved at man forreagerer aluminiumtrialkylet med elektron-donoren i mindre enn en time før polymeriseringen.6. Method according to claim 3, characterized in that component (a) is prepared by pre-reacting the aluminum trialkyl with the electron donor for less than an hour before the polymerisation. 7. Fremgangsmåte ifølge krav 14, karakterisert ved at nevnte elektron-donor er en ester av en aromatisk karboksylsyre.7. Method according to claim 14, characterized in that said electron donor is an ester of an aromatic carboxylic acid. 8. Fremgangsmåte ifølge krav 3, karakterisert ved at det molare forhold mellom nevnte magnesium og nevnte elektron-donor i komponent (b) er minst ca. 1.8. Method according to claim 3, characterized in that the molar ratio between said magnesium and said electron donor in component (b) is at least approx. 1. 9. Fremgangsmåte ifølge krav 3, karakterisert ved at titaninnholdet uttrykt som titanmetall varierer fra ca. 0,1 til ca. 20 vekt-% i den bårede katalysatorkomponenten (b).9. Method according to claim 3, characterized in that the titanium content expressed as titanium metal varies from approx. 0.1 to approx. 20% by weight in the supported catalyst component (b). 10. Fremgangsmåte ifølge krav 3, karakterisert ved at katalysatorkomponentene (a) og (b) tilføres reaksjonssonen i et molart forhold mellom Al/Ti på mellom 1 og ca. 10.000.10. Method according to claim 3, characterized in that the catalyst components (a) and (b) are added to the reaction zone in a molar ratio between Al/Ti of between 1 and approx. 10,000.
NO810796A 1980-05-30 1981-03-09 NEW PROPYLENE POLYMER. NO810796L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15470180A 1980-05-30 1980-05-30

Publications (1)

Publication Number Publication Date
NO810796L true NO810796L (en) 1981-12-01

Family

ID=22552406

Family Applications (1)

Application Number Title Priority Date Filing Date
NO810796A NO810796L (en) 1980-05-30 1981-03-09 NEW PROPYLENE POLYMER.

Country Status (5)

Country Link
JP (1) JPS5712014A (en)
FR (1) FR2483429A1 (en)
GB (1) GB2076834B (en)
IN (1) IN157544B (en)
NO (1) NO810796L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06874B2 (en) * 1991-06-19 1994-01-05 三菱油化株式会社 Propylene polymer composition injection molded product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1042180B (en) * 1975-08-29 1980-01-30 Montedison Spa PROPOLENE CRYSTAL POLYMERS AND COPOLYMERS AND PROCEDURE FOR THEIR PREPARATION

Also Published As

Publication number Publication date
GB2076834A (en) 1981-12-09
FR2483429A1 (en) 1981-12-04
JPS6366844B2 (en) 1988-12-22
IN157544B (en) 1986-04-19
GB2076834B (en) 1984-10-10
JPS5712014A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
RU2219190C2 (en) Poly-1-buten (co)polymers and a method for production thereof
US4728705A (en) Olefin polymerization catalyst composition
AU603444B2 (en) Process for producing stereoregular polymers having a narrow molecular weight distribution
US4771024A (en) Olefin polymerization catalyst composition
AU603111B2 (en) Novel propylene polymerization process
CA1052933A (en) Polypropylene molding composition and process for its preparation
NO153609B (en) Polymerization catalyst.
US4981929A (en) Catalyst productivity in the polymerization of olefins
EP0951488B1 (en) High melt flow propylene polymer produced by gas-phase polymerization
JPS62265306A (en) Production of solid catalytic component
NO149066B (en) CRYSTALLINIC PROPYLENE POLYMERS
US4520163A (en) Process of sequentially copolymerizing propylene-ethylene copolymers and catalyst therefor
NO159860B (en) CONTINUOUS BLOCK COPOLYMERIZATION PROCESS FOR THE PREPARATION OF SHOCK-RESISTANT ETHYLENE PROPYLEN POLYMERS.
NO163532B (en) PROCEDURE FOR POLYMERIZATION OF ALFA-MONO-OLEFINES.
GB2157302A (en) Copolymerization catalyst and process
CN102234338A (en) Catalyst component for olefin polymerization and catalyst comprising same
GB2081726A (en) Block copolymerization process
NO161263B (en) PROCEDURE FOR BLOCK COPOLYMERIZATION FOR PREPARING EFFECTIVE ETHYLENE PROPYLENE BLOCK POLYMERS.
NO167095B (en) PROCEDURE FOR PREPARING A BUTEN-1 POLYMER.
NO810796L (en) NEW PROPYLENE POLYMER.
AU672637B2 (en) Process for polymerizing alpha-olefin
US4711923A (en) Color of polymers
AU610749B2 (en) Solid alkene polymerization catalyst components and process for their preparation
US6201079B1 (en) Propylene polymer resin made from a high activity catalyst having a broad thermal processing window and articles made therefrom
NO157063B (en) PROCEDURE FOR PREPARING THE ETHYLEN-PROPYLENE-BLOCK COPY.