NO810292L - UTILIZATION OF MARKET EARTH LOCATED UNDER BUILDING PLACES FOR STORAGE AND / OR RECOVERY OF HEAT ENERGY - Google Patents

UTILIZATION OF MARKET EARTH LOCATED UNDER BUILDING PLACES FOR STORAGE AND / OR RECOVERY OF HEAT ENERGY

Info

Publication number
NO810292L
NO810292L NO810292A NO810292A NO810292L NO 810292 L NO810292 L NO 810292L NO 810292 A NO810292 A NO 810292A NO 810292 A NO810292 A NO 810292A NO 810292 L NO810292 L NO 810292L
Authority
NO
Norway
Prior art keywords
pile
piles
heat
liquid
stated
Prior art date
Application number
NO810292A
Other languages
Norwegian (no)
Inventor
Ulf Soederstroem
Per Olof Sahlstroem
Original Assignee
Hagconsult Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagconsult Ab filed Critical Hagconsult Ab
Publication of NO810292L publication Critical patent/NO810292L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Building Environments (AREA)
  • Piles And Underground Anchors (AREA)

Description

Foreliggende oppfinnelse går ut på utnyttelse av markjord som befinner seg under bygningsanlegg, for lagring og/eller uttak av varmeenergi. . Det er kjent å utnytte jorden for uttak og eventuell lagring av varmeenergi ved å legge ned på grunne dybder i jorden, vesentlig horisontale ledninger for væsker, over et område som vanligvis er betydelig større enn den bygning som skal oppvarmes ved hjelp av den uttatte varme, som tas ut ved hjelp av i disse ledninger sirkulerende væske og tilføres en varmepumpe. Jordlaget med ledningene oppvarmes direkte av solenergi under varme perioder i året. Ved at et jordsjikt med enda grunnere dybder benyttes, er denne metoden begrenset når det gjelder lagring av store varmemengder. En annen ulempe ved denne kjente metoden er at anvendelsesmuligheten for andre formål av det av ledningene opptatte jordareal er sterkt begrenset. En ytterligere ulempe er at det av ledningene opptatte jordområdet på grunn av at ledningene er lagt ned forholdsvis grunt, ikke effektivt kan anvendes for lagring av varme som er tilført gjennom nevnte ledninger og som kommer f.eks. fra solfangere, ettersom den største delen av den der-ved tilførte varmeenergi i løpet av kort tid ville stråle ut og ledes bort av vinden fra nevnte område. The present invention relates to the utilization of topsoil located under buildings, for the storage and/or extraction of heat energy. . It is known to utilize the earth for extraction and possible storage of heat energy by laying down at shallow depths in the earth, essentially horizontal lines for liquids, over an area which is usually considerably larger than the building to be heated with the help of the extracted heat, which is taken out with the help of liquid circulating in these lines and supplied to a heat pump. The soil layer with the wires is heated directly by solar energy during hot periods of the year. As a soil layer with even shallower depths is used, this method is limited when it comes to storing large amounts of heat. Another disadvantage of this known method is that the possibility of using the land area occupied by the lines for other purposes is severely limited. A further disadvantage is that the ground area occupied by the lines, due to the fact that the lines are laid relatively shallow, cannot be effectively used for storing heat which is supplied through said lines and which comes e.g. from solar collectors, as the largest part of the heat energy thus supplied would radiate out and be carried away by the wind from the said area within a short time.

Hovedformålet med foreliggende oppfinnelse er at for lagring og uttak av varme, særlig billig langtemperaturvarme som fortrinnsvis kommer fra solfangere, å kunne utnytte jordlag under bygningsanlegg som hviler på fundamentpåler. The main purpose of the present invention is to be able to use soil layers under buildings that rest on foundation piles for the storage and extraction of heat, especially cheap long-temperature heat that preferably comes from solar collectors.

Dette oppnås ved at pålene utføres som rørprofiler av metall-materiale og at energi ved hjelp av minst én ledning som utgjør eller opptar en del av pålens tverrseksjon, føres til eller bortledes fra pålens innervegg under varmeveksling mellom denne og jorden som omgir pålen. This is achieved by the piles being made as pipe profiles of metal material and energy being led to or away from the pile's inner wall by means of at least one wire which constitutes or occupies part of the pile's cross-section during heat exchange between this and the soil surrounding the pile.

For formålet ifølge oppfinnelsen er god varmeoverføring mellom det i pålen nedførte mediet og den omgivende jorden av største betydning. For å oppnå dette utføres pålen hoved-sakelig helt av metall-materiale, f.eks. stål, som har meget, gode varmeledningsegenskaper sammenlignet med annet påle-materiale, f.eks. betong. Hvis pålen har rørprofil, kan man også utnytte dens indre rom direkte for ledning til eller fra av det varmebærende mediet, hvorved varmeoverføringen blir vesentlig lettere. Metallpåler kan dessuten utføres med mindre veggtykkelse enn påler av annet alminnelig materiale, som er fordelaktig, sett fra et varmeoverføringssynspunkt.. Iletallpåler kan vanligvis drives ned i jorden med lettere slag-redskap enn hva som er nødvendig for andre påler. Til slutt skal påpekes at metallpåler lett kan forsynes med profiler, f.eks. frlenser eller lignende, bl.a. gjennom påsveising. For the purposes of the invention, good heat transfer between the medium lowered into the pile and the surrounding soil is of the greatest importance. To achieve this, the pile is mainly made entirely of metal material, e.g. steel, which has very good heat conduction properties compared to other pile materials, e.g. concrete. If the pile has a tubular profile, its inner space can also be used directly for conduction to or from the heat-carrying medium, whereby heat transfer becomes significantly easier. Metal piles can also be made with a smaller wall thickness than piles made of other common materials, which is advantageous from a heat transfer point of view. Iletal piles can usually be driven into the ground with lighter impact tools than is necessary for other piles. Finally, it should be pointed out that metal piles can easily be supplied with profiles, e.g. frlenser or similar, i.a. through welding.

Andre fordeler og kjennetegn ved oppfinnelsen fremgår av nedenstående beskrivelse og vedlagte tegning over et utførelses-eksempel, samt patentkravene. Other advantages and characteristics of the invention can be seen from the description below and the attached drawing of an exemplary embodiment, as well as the patent claims.

På tegningen vises skjematisk en bygning 3 med underlig-gende jordlag 1 og 2, i hvilke rørformede påler 4 med tett vegg. er drevet ned. Pålene er ved sine øvre ender 5 forbundet med bygningens bunnflate 7, og deres nedre spiss 6 er tett for å forhindre inn- og utstrømning' av væske og flytende gass. Pålene er av stål og er rustbeskyttet gjennom anbringelse av et sjikt av seigt plastmateriale på yttersiden. Rørdiameteren kan være forskjellig, avhengig av omstendighetene, hensiktsmessig 50-200 mm, f.eks. ca. 75 mm. Pålene anbringes i et rutemønster på i og for seg kjent måte. De kan slås ned til fjellgrunnen, eller kan danne såkalte friksjonspåler. The drawing schematically shows a building 3 with underlying soil layers 1 and 2, in which tubular piles 4 with a dense wall. is driven down. The piles are connected at their upper ends 5 to the bottom surface 7 of the building, and their lower tip 6 is sealed to prevent the inflow and outflow of liquid and liquefied gas. The piles are made of steel and are protected from rust by placing a layer of tough plastic material on the outside. The pipe diameter can be different, depending on the circumstances, suitably 50-200 mm, e.g. about. 75 mm. The piles are placed in a grid pattern in a manner known per se. They can be driven down to the bedrock, or can form so-called friction piles.

I pålene er nedført et indre rør eller en slange 8 for gass eller væske, hvilket rør fra sin øvre ende 9, som er til-sluttet en sirkulasjonspumpe 11, strekker seg ned til i nærheten av pålens spiss 6, hvor rørets 8 ende 10 er åpen. Ved hjelp av røret 8 nedføres oppvarmet væske eller kald væske til pålens nedre ende, beroende på om pålen skal benyttes for varmelagring i eller varmeuttak fra de omgivende jordlag 1 og 2. An inner pipe or hose 8 for gas or liquid is lowered into the piles, which pipe from its upper end 9, which is connected to a circulation pump 11, extends down to near the tip 6 of the pile, where the end 10 of the pipe 8 is open. With the help of pipe 8, heated liquid or cold liquid is brought down to the lower end of the pile, depending on whether the pile is to be used for heat storage in or heat extraction from the surrounding soil layers 1 and 2.

Til venstre på figuren vises hvordan sirkulasjonspumpen er tilknyttet det varme væskeutløpet hos en solfanger 12 ved hjelp av en ledning 14, ved at solfangerens kalde væskeinnløp er tilknyttet den rørformede pålens 4 øvre ende 5 som for øvrig To the left of the figure is shown how the circulation pump is connected to the hot liquid outlet of a solar collector 12 by means of a line 14, in that the solar collector's cold liquid inlet is connected to the upper end 5 of the tubular pile 4 as otherwise

er tett. Så snart solfangerens væsketemperatur ved utløpet overstiger temperaturen i jordlagene 1 og 2, hvilket kan stad-festes ved at et organ som er innrettet for automatisk å styre drivmotoren for sirkulasjonspumpen, starter denne, og oppvarmet is tight. As soon as the solar collector's liquid temperature at the outlet exceeds the temperature in soil layers 1 and 2, which can be confirmed by the fact that a device which is arranged to automatically control the drive motor for the circulation pump starts this, and heated

væske strømmer ned i pålen. Ved tilbakestrømning av væskenliquid flows down the pile. In case of backflow of the liquid

i kontakt med pålens inervegg går varmen i væsken over til de in contact with the inner wall of the pile, the heat in the liquid transfers to them

omgivende jordlag 1 og 2. Denne varmelagring kan skje med døgn- eller sesongvariasjoner. Så snart temperaturen hos solfangerens varmeutløp har sunket under en forutbestemt verdi, ved hvilken varme ikke går over i jorden, stopper sirkulasjonspumpen automatisk. surrounding soil layers 1 and 2. This heat storage can occur with diurnal or seasonal variations. As soon as the temperature at the solar collector's heat outlet has fallen below a predetermined value, at which no heat is transferred to the earth, the circulation pump stops automatically.

I visse tilfeller kan det lønne seg ved hjelp av en varmepumpe å "løfte opp" væsketemperaturen innen den føres ned i pålen for- lagring av varmeenergien. Istedenfor solfangere kan annen billig varmekilde anvendes, f.eks. varmt spillvann eller lignende, og også billig natt-el-strøm, hvorved elektriske ledninger og oppvarmingselement anbringes i pålene. In certain cases, it can be worthwhile using a heat pump to "raise" the temperature of the liquid before it is led down into the pile for storage of the heat energy. Instead of solar collectors, another cheap heat source can be used, e.g. hot waste water or the like, and also cheap night-time electricity, whereby electric wires and heating elements are placed in the piles.

Røret 8 kan bestå av stål, og kan eventuelt være varme-isolerende, særskilt ved sitt øvre parti, for å motvirke varmeveksling mellom væsken i røret 8 og væsken i pålen 4. The pipe 8 may consist of steel, and may optionally be heat-insulating, particularly at its upper part, to counteract heat exchange between the liquid in the pipe 8 and the liquid in the pile 4.

Til høyre på figuren vises pålen og det indre røret 8 tilknyttet en varmepumpe 15 hvis varme side er tilknyttet en varmeradiator 16. Varmepumpen innbefatter en sirkulasjonspumpe for en væske, f.eks. en vann-glykol-blanding eller olje, som bringes til å strømme ned gjennom røret 8 og strømme tilbake gjennom pålen 4 under opptakelse av varme fra jorden 1 og 2 som omgir pålen. To the right of the figure, the pile and the inner pipe 8 are shown connected to a heat pump 15 whose hot side is connected to a heat radiator 16. The heat pump includes a circulation pump for a liquid, e.g. a water-glycol mixture or oil, which is made to flow down through the pipe 8 and flow back through the pile 4 while absorbing heat from the soil 1 and 2 surrounding the pile.

De påler ved hjelp av hvilke varme tas ut fra jorden kan være andre enn de påler ved hjelp av hvilke varme lagres i jorden, i hvilket tilfelle de førstnevnte pålene kan være fortrinnsvis jevnt fordelte mellom de sistnevnte pålene. Men det er også mulig å benytte samme påle for såvel varmelagring som varmeuttak, hvorved hensiktsmessige, f.eks. automatisk styrte ventiler finnes for omkobling av pålen 4 og dét indre røret 8 mellom en varmeleverende ledning, f.eks. en solfanger, og en varmeforbruker, f.eks. en varmepumpes kalde side. The piles by means of which heat is extracted from the earth may be different from the piles by means of which heat is stored in the earth, in which case the former piles may preferably be evenly distributed between the latter piles. But it is also possible to use the same pile for both heat storage and heat extraction, whereby appropriate, e.g. automatically controlled valves exist for switching the pile 4 and the inner pipe 8 between a heat-supplying line, e.g. a solar collector, and a heat consumer, e.g. a heat pump's cold side.

I visse tilfeller kan pålene utnyttes utelukkende for opptakelse av jordvarme som tilføres jordlagene 1 og 2 på annet vis enn ved hjelp av pålene, f.eks. gjennom grunnvann som er i bevegelse. In certain cases, the piles can be used exclusively for the absorption of ground heat that is supplied to soil layers 1 and 2 in a way other than with the help of the piles, e.g. through moving groundwater.

Ved lagring av varme ved hjelp av pålene som beskrevet, kan riktignok varmelekkasje oppstå. Den største delen derav går dog automatisk tilbake til bygningen 3 gjennom grunnflaten 7 og blir således nyttiggjort. Andre tap fra varmelageret kan When storing heat using the piles as described, it is true that heat leakage can occur. The largest part of this, however, automatically returns to the building 3 through the ground surface 7 and is thus utilized. Other losses from the heat storage can

minskes gjennom en jordisolering 20 rundt bygningen.is reduced through an earth insulation 20 around the building.

Ved å fylle pålens nedre, varmeoverførende del med et høyt-gjennomtrengelig materiale som danner en turbulent strømning av væsken, øker varmeutbyttet ved den omgivende jorden, da grensesjikt-strømning unngås på denne måten. By filling the lower, heat-transferring part of the pile with a highly permeable material that forms a turbulent flow of the liquid, the heat yield at the surrounding soil increases, as boundary layer flow is avoided in this way.

I de tilfeller hvor grunnvann strømmer inn i friksjons-jorden 2 og pålene skal anvendes for varmelagring, støpes den nedre delen av pålene igjen med betong 17 for å unngå borttransportering av varme gjennom det strømmende grunn-vannet. Pålen 4 kan være en skjøtepåle, f.eks. i og for seg kjente såkalte stål-plast-påler , sammenskjøtet ved hjelp av varme galvaniserte stålhylser som smeltes fast i skjøten til en momentstiv, strekkfast forbindelse. Lignende påler av ca. 75 mm stålrør kan ta last opp til ca. 14 tonn. In cases where ground water flows into the friction soil 2 and the piles are to be used for heat storage, the lower part of the piles is again cast with concrete 17 to avoid transport of heat away through the flowing ground water. The pile 4 can be a joint pile, e.g. in and of themselves known so-called steel-plastic piles, joined together using hot galvanized steel sleeves which are fused into the joint to form a moment-rigid, tensile-resistant connection. Similar piles of approx. 75 mm steel pipe can take loads of up to approx. 14 tons.

For å øke pålenes varmeoverføringskapasitet like overfor den omgivende jorden, kan de forsynes med langsgående stålflenser, eller også kan pålene forsynes med ikke-rundt, f.eks. kvadratisk, rektangulært, kryssformet eller stjerne-formet tverrsnitt. To increase the heat transfer capacity of the piles directly opposite the surrounding soil, they can be provided with longitudinal steel flanges, or the piles can be provided with non-round, e.g. square, rectangular, cross-shaped or star-shaped cross section.

Uttørkingseffekten hos jordmaterialet og dermed forringet varmeoverføring og varmelagring kan forhindres ved at dreneringsvann ledes frem til hver påle, slik som antydet ved 19. The drying effect of the soil material and thus impaired heat transfer and heat storage can be prevented by directing drainage water to each pile, as indicated at 19.

Pålenes lengde beror på grunnleggingsforholdene og The length of the piles depends on the foundation conditions and

bygningsanleggets størrelse. Vanligvis er pål-lengden ca. 5-10 m. the size of the building. Usually the pile length is approx. 5-10 m.

For å unngå korrosjon skjer væskesirkulasjonen gjennom pålen hensiktsmessig i et sluttet system. To avoid corrosion, liquid circulation through the pile takes place appropriately in a closed system.

Ved at varmelagringen .ifølge oppfinnelsen utnytter for bygningens grunnlegning allerede nødvendige eller hensiktsmessige påler for overføring av varme fra en billig varmekilde til jorden og uttak av varme fra denne, blir de utover dette nødvendige anleggsomkostningene for varmelagringen så lave at varmelagring av eksempelvis solenergi kan være et realistisk alternativ allerede til dagens prisforhold på energimarkedet. By the fact that the heat storage according to the invention utilizes piles already necessary or suitable for the building's foundation for transferring heat from a cheap heat source to the earth and extracting heat from it, the necessary installation costs for the heat storage are, in addition to this, so low that heat storage of, for example, solar energy can be a realistic alternative already to the current price conditions on the energy market.

Claims (14)

1. Fremgangsmåte for å utføre og/eller bortlede varme til, respektive fra, under en bygning eller annet anlegg værende jordgrunn hvori det er nedført fundamenteringspåler, karakterisert ved av pålene (4) utføres som rørprofiler av metallmateriale og at energi ved hjelp av minst én ledning (8) som utgjør eller opptar en del av pålens (4) tverrseksjon, tilføres til og/eller bortledes fra pålens innervegg under varmeveksling mellom denne og jorden som omgir pålen.1. Procedure for carrying out and/or removing heat to, respectively from, under a building or other facility being ground in which foundation piles have been driven, characterized by the piles (4) being carried out as pipe profiles of metal material and that energy with the help of at least one wire (8) which forms or occupies part of the cross-section of the pile (4), is supplied to and/or led away from the inner wall of the pile during heat exchange between this and the soil surrounding the pile. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at pålene (4) utgjøres av. enkeltprof iler og at nevnte ledning.utgjøres av en i pålen nedført ledning (8), f.eks. en elektrisk ledning eller en ledning for væske.2. Method as stated in claim 1, characterized in that the piles (4) are made up of. single profiles and that said wire is made up of a wire (8) lowered into the pile, e.g. an electrical line or a line for liquid. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at pålene (4) utgjøres av plastmantle-de skjøtepåler av stål, bestående av flere ved hjelp av stålhylser tettende sammenskjøtede rørseksjoner.3. Method as specified in claim 1 or 2, characterized in that the piles (4) are made up of plastic-sheathed joint piles made of steel, consisting of several pipe sections sealed together by means of steel sleeves. 4. Fremgangsmåte som angitt i krav 2, karakterisert ved at pålens nedre del fylles med høyt-gjennom-trengelig materiale, f.eks. singel for dannelse av turbulent strømning gjennom pålen.4. Method as stated in claim 2, characterized in that the lower part of the pile is filled with highly permeable material, e.g. shingle for the formation of turbulent flow through the pile. 5. Fremgangsmåte som angitt i hvilket som helst av foregående krav, karakterisert ved at varmeenergi som under en valgfri tidsperiode lagres i den jorden som omgir pålene, uttas fra nevnte jord ved hjelp av en væske, eller gass-formet væske under en derpå følgende tidsperiode.5. Method as stated in any of the preceding claims, characterized in that heat energy which is stored during an optional period of time in the soil surrounding the piles, is extracted from said soil using a liquid, or gaseous liquid during a subsequent period of time . 6. Fremgangsmåte som angitt i hvilket som helst av foregående krav, karakterisert ved at varmeenergi som er oppnådd ved hjelp av solfangere tilføres den jord som omgir pålene ved hjelp av en energibærende væske og senere, ved hjelp av den samme eller annen væske, tas ut derfra.6. Method as stated in any of the preceding claims, characterized in that heat energy obtained by means of solar collectors is supplied to the soil surrounding the piles by means of an energy-carrying liquid and later, by means of the same or another liquid, is taken out from there. 7. Fremgangsmåte som angitt i hvilket som helst av foregående krav, karakterisert ved at energi til-føres jorden ved hjelp av bestemte påler og uttas fra jorden ved hjelp av andre påler som er fordelt mellom de førstnevnte påler.7. Method as stated in any of the preceding claims, characterized in that energy is supplied to the earth by means of certain piles and extracted from the earth by means of other piles which are distributed between the first-mentioned piles. 8. Fremgangsmåte som angitt i foranstående krav, karakterisert ved at dreneringsvann ledes frem til pålen for å sikre god varmeledning mellom påle og omgivende jordmateriale.8. Procedure as specified in the preceding requirements, characterized by drainage water being led to the pile to ensure good heat conduction between the pile and surrounding soil material. 9. Anordning for utførelse av fremgangsmåten som angitt i hvilket som helst av foregående krav, karakterisert ved en jordpåle med rørprofil innbefattende en kanal for nedføring av væske til i nærheten av pålens spiss og en annen kanal for tilbakeføring av væsken til i nærheten av pålens øvre ende.9. Device for carrying out the method as stated in any of the preceding claims, characterized by an earth pile with a tubular profile including a channel for lowering liquid to near the tip of the pile and another channel for returning the liquid to near the upper end of the pile. 10. Anordning som angitt i krav 7, karakterisert ved at pålens spiss er tett,, at en av kanalene utgjøres av den rørformede <på> len og den andre kanalen av en i pålen nedført ledning for væske.10. Device as stated in claim 7, characterized in that the tip of the pile is closed, that one of the channels is formed by the tubular <on> len and the other channel by a line for liquid lowered into the pile. 11. Anordning som angitt i krav 10, karakterisert ved at pålens nedre del fylles med betong for å unngå varmetap til jordlag med strø mmende grunnvann.11. Device as stated in claim 10, characterized in that the lower part of the pile is filled with concrete to avoid heat loss to soil layers with flowing groundwater. 12. Anordning som angitt i krav 7 eller 8, karakterisert ved at den rørformede pålen er utformet med langsgående stålflenser for økning av pålens varmeoverførings-egenskaper like overfor den jorden som omgir pålen.12. Device as specified in claim 7 or 8, characterized in that the tubular pile is designed with longitudinal steel flanges to increase the pile's heat transfer properties just opposite the soil surrounding the pile. 13. Anordning som angitt i krav 7 eller 8, karakterisert ved at den rørformede pålen har ikke-rundt tverrsnitt utformet for økning av pålens varmeoverførings-egenskaper like overfor jorden'som omgir pålen.13. Device as stated in claim 7 or 8, characterized in that the tubular pile has a non-round cross-section designed to increase the heat transfer properties of the pile just opposite the earth surrounding the pile. 14. Anvendelse av under en bygning eller annet anlegg værende rørformede jordpåler, for tilførsel til og/eller bortledning av varmeenergi fra den jorden som omgir pålene.14. Application of tubular earth piles under a building or other facility, for the supply to and/or removal of heat energy from the soil surrounding the piles.
NO810292A 1979-05-30 1981-01-28 UTILIZATION OF MARKET EARTH LOCATED UNDER BUILDING PLACES FOR STORAGE AND / OR RECOVERY OF HEAT ENERGY NO810292L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7904732A SE7904732L (en) 1979-05-30 1979-05-30 UTILIZATION OF UNDER CONSTRUCTION FACILITIES EXISTING MARKET FOR STORAGE AND / OR EXTRACTION OF HEAT ENERGY

Publications (1)

Publication Number Publication Date
NO810292L true NO810292L (en) 1981-01-28

Family

ID=20338175

Family Applications (1)

Application Number Title Priority Date Filing Date
NO810292A NO810292L (en) 1979-05-30 1981-01-28 UTILIZATION OF MARKET EARTH LOCATED UNDER BUILDING PLACES FOR STORAGE AND / OR RECOVERY OF HEAT ENERGY

Country Status (5)

Country Link
DK (1) DK34281A (en)
FI (1) FI801751A (en)
NO (1) NO810292L (en)
SE (2) SE7904732L (en)
WO (1) WO1980002736A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2873943A (en) * 1955-08-15 1959-02-17 John L Williams Stock valve having removable seat
US2835468A (en) * 1956-02-13 1958-05-20 Clary Corp Valve construction
US2980389A (en) * 1958-07-11 1961-04-18 John L Williams Stock valve having yieldable gate engaging elements
US4448237A (en) * 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
DE3238055A1 (en) * 1982-10-14 1984-04-19 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Device for extraction of ground heat from groundwater and/or the ground
EP0189733B1 (en) * 1985-02-01 1989-04-26 Leo Gut Heat pump installation for heat extraction from the ground
GB8902662D0 (en) * 1989-02-07 1989-03-30 Ridett Alan H Improvements in or relating to buildings
GB2249623B (en) * 1990-10-04 1994-08-24 David Thomas Percival Direct sun store
US5216577A (en) * 1991-10-25 1993-06-01 Comtronics Enclosures Corporation Stable thermal enclosure for outdoor electronics
NL1017655C2 (en) * 2001-03-20 2002-09-23 Beton Son Bv Geothermal pole with a cavity flowable through a fluid.
WO2003056892A1 (en) * 2002-01-04 2003-07-10 Metalurgica Casbar, S.A. Method of dissipating the heat generated in cabinets containing electronic equipment in underground telecommunication networks
GB2434200A (en) * 2006-01-14 2007-07-18 Roxbury Ltd Heat exchanger component for a geothermal system
FR2922634B1 (en) * 2007-10-18 2010-01-08 Saunier Associes METHOD AND DEVICE FOR PERFORMANCE OPTIMIZATION OF A CALORIFIC TRANSFER FACILITY USING A GEOTHERMAL NATURE CALORIFIC ENERGY SOURCE
TR200800946A2 (en) * 2008-02-13 2009-08-21 Aydin Ahmet Hot water system with underground heating.
EP2098791A1 (en) * 2008-03-05 2009-09-09 Roth Werke GmbH Device for heating water
CA2704820A1 (en) * 2009-05-19 2010-11-19 Thermapan Industries Inc. Geothermal heat pump system
US7966780B2 (en) * 2009-05-29 2011-06-28 Encon Environmental Construction Solutions Inc. Thermally conductive wall structure
FR2956197A1 (en) * 2010-02-05 2011-08-12 Vincent Louis Marcel Besch Device for collecting and accumulating solar energy e.g. solar thermic low energy, in basement of houses, has sensor sensing solar energy at coolant, underground heat diffuser and control device applying controlling mode
GB2478130B (en) * 2010-02-25 2015-10-21 Nicholas James Wincott Load bearing construction pile
US9897347B2 (en) 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
FR3017694A1 (en) * 2014-02-17 2015-08-21 Bernard Amrhein THERMAL ENERGY STORAGE AND RESTITUTION DEVICE
ITBO20150241A1 (en) * 2015-05-12 2016-11-12 Teleios Srl LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM
US11624530B2 (en) * 2020-10-29 2023-04-11 Shaanxi Xixian New Area Fengxi New City Energy Development Co., Ltd Medium-deep non-interference geothermal heating system and method based on loose siltstone geology
US11953237B2 (en) 2021-08-12 2024-04-09 Bernard J. Gochis Piles providing support and geothermal heat exchange

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601325A1 (en) * 1968-01-05 1971-01-07 Schantz Dipl Ing Hugo Evaporator unit of a heat pump system for combined air heating and hot water preparation
US4062489A (en) * 1976-04-21 1977-12-13 Henderson Roland A Solar-geothermal heat system
SE408087B (en) * 1977-09-26 1979-05-14 Platell Ove Bertil SEE THAT IN A GROUND BODY STORES THERMAL ENERGY
DK140233B (en) * 1977-03-04 1979-07-09 Robert Nielsen Pilot pole.

Also Published As

Publication number Publication date
SE8100327L (en) 1981-01-21
FI801751A (en) 1980-12-01
WO1980002736A1 (en) 1980-12-11
SE7904732L (en) 1980-12-01
DK34281A (en) 1981-01-26

Similar Documents

Publication Publication Date Title
NO810292L (en) UTILIZATION OF MARKET EARTH LOCATED UNDER BUILDING PLACES FOR STORAGE AND / OR RECOVERY OF HEAT ENERGY
AU2003257096B2 (en) Sealed well direct expansion heating and cooling system
US7234314B1 (en) Geothermal heating and cooling system with solar heating
NO142762B (en) PROCEDURE FOR MARKING STORAGE OF HEAT, e.g. SOLAR
US10126019B2 (en) Seasonal heat-cold energy storage and supply pool and seasonal heat-cold energy storage and supply system comprising the same
Dannemand Andersen et al. Large thermal energy storage at Marstal district heating
JP2007333296A (en) Heat storage system
JP2007333295A (en) Heat storage system
Givoni Underground longterm storage of solar energy—An overview
US4173212A (en) Self-contained solar greenhouse
EP2619509B1 (en) System for storing thermal energy, heating assembly comprising said system and method of manufacturing said system
JP2008308963A (en) Ground surface snow melting system
EP3118558B1 (en) Ground heat accumulator
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
JP4360690B1 (en) Rainwater infiltration type underground heat exchange system
US9593868B2 (en) Horizontal ground-coupled heat exchanger for geothermal systems
US10345051B1 (en) Ground source heat pump heat exchanger
JP2008121960A (en) Direct heat utilization heating apparatus
DE102005049930A1 (en) Device for gaining heat via renewable energy has earth heat collector embedded in mud, other renewable energy extracting device(s) whose flowing medium is fed to collector if it exceeds temperature in collector and is not otherwise needed
AU2013338643B2 (en) Termal energy storage comprising an expansion space
RU2683059C1 (en) Method of extraction and use of geothermal heat for cooling soils around subway tunnels
JP5968499B1 (en) Solar heat utilization system
US11022345B1 (en) Ground source heat pump heat exchanger
KR101996552B1 (en) Pile and Slab complex type ground heat exchanger
KR20160140309A (en) Single wells underground heat exchanger system with water intake and water exchange position is separated