JP2008121960A - Direct heat utilization heating apparatus - Google Patents

Direct heat utilization heating apparatus Download PDF

Info

Publication number
JP2008121960A
JP2008121960A JP2006305304A JP2006305304A JP2008121960A JP 2008121960 A JP2008121960 A JP 2008121960A JP 2006305304 A JP2006305304 A JP 2006305304A JP 2006305304 A JP2006305304 A JP 2006305304A JP 2008121960 A JP2008121960 A JP 2008121960A
Authority
JP
Japan
Prior art keywords
heat
fluid
building
pipe
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305304A
Other languages
Japanese (ja)
Inventor
Kenji Omiya
健次 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006305304A priority Critical patent/JP2008121960A/en
Publication of JP2008121960A publication Critical patent/JP2008121960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use direct heat to a roof in summer or its high temperature atmosphere for heating in winter. <P>SOLUTION: Fluid heat collecting pips are arranged between roof rafters of a building, fluid heat radiating pipes are arranged under the ground surrounding a heat insulating material directly under the building, and fluid circulating pipes 21, 22, 23 are arranged in the wall surface of the building 1 to form a fluid circulating piping system in the building. The circulating system stores fluid energy of heat collected in the roof in summer by a pump in underground soil 3. The soil 3 has poor heat conductivity, and several months are required for heat storage. This time lag is thereby utilized to attain geothermal heating of the building 1 with the radiation heat in winter to provide an energy-saving heating apparatus 2 low in cost. Heat storage is stopped in winter, while heating with stored heat can be assisted by switching to a floor heating piping system 24 during the daytime in winter. There is neither impairment of design of the building 1 due to the exposure of a solar panel with a sense of incongruity to the roof nor impairment of landscape caused by the installment of a heat storage tank in a site. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,建造物の暖房装置に関し,例えば,夏場に得られる直射熱を地中の土壌に蓄熱することによって冬場の暖房に使用するようにした直射熱利用の暖房装置に関する。   The present invention relates to a building heating apparatus, for example, a direct heating apparatus using direct heat that is used for heating in winter by storing direct heat obtained in summer in soil in the ground.

太陽エネルギーを利用して暖房を行うものとして,例えば,屋外に蓄熱層を設置することによる増改築の障害,床下地中に蓄熱層を設置することによる工事の期間と費用,メンテナンスの困難性を解消する目的で,建造物の屋根に設置したエアコレクター,太陽熱温水器等を太陽エネルギーの採熱機とし,該採熱機から昼間に採熱したエア乃至温水を,屋根と床間の配管を介して床面の下位に設置した蓄熱層に導き,該蓄熱層に充填した蓄熱材に放熱させ,該蓄熱材に蓄熱することによって,夜間に該蓄熱材の輻射熱によって建造物の暖房を行うようにしたものが提案されている。   Heating using solar energy, for example, obstruction of expansion and remodeling by installing a heat storage layer outdoors, construction period and cost by installing a heat storage layer in the floor, and maintenance difficulties. In order to solve this problem, an air collector, solar water heater, etc. installed on the roof of the building is used as a solar energy collector, and air or hot water sampled from the heat collector in the daytime is passed through a pipe between the roof and the floor. The building is heated at night by the radiant heat of the heat storage material by guiding it to the heat storage layer installed below the floor, dissipating heat to the heat storage material filled in the heat storage layer, and storing the heat in the heat storage material. Things have been proposed.

特開平8−193722号公報JP-A-8-193722

この場合,太陽エネルギーを有効に利用して暖房を行うことによって省エネルギーに寄与するものとなし得るが,建造物の屋根にエアコレクターや太陽熱温水器等,太陽エネルギーの採熱機を設置することによって,陸屋根の建造物は別としても,切妻屋根,寄棟屋根,片流れ屋根等,住宅に一般に採用される屋根においては,これら採熱機の設置によって建造物のデザインと調和せず,建造物の外観を損なって違和感を与えるものとなることが多く,その普及が阻害され易いという問題点が残されている。また太陽エネルギーを有効利用するように蓄熱槽を使用するものであっても,夏場は暖房が不要であるから,冬場において昼間の太陽エネルギーを蓄熱して,夜間に暖房を行うように使用されるものとされるものであり,冬場の日射時間が短く太陽エネルギーが弱いために暖房を必ずしも的確になし得ないし,また曇天,雨天等の場合や,屋根に積雪がある場合には,太陽エネルギーによる採熱それ自体をなし得ずに暖房が不能になるという問題点が残されている。またこれを補うために,例えばヒートポンプを使用することによって冬場の暖房を補い,更には冷房を行うことも想定されるが,この場合には必然的にシステムの複雑化,設置費用の高額化を招き易いという問題点が生じるに至る。   In this case, it is possible to contribute to energy conservation by heating the solar energy effectively, but by installing solar energy collectors such as air collectors and solar water heaters on the roof of the building, Apart from flat roof structures, roofs commonly used in houses, such as gable roofs, dormitory roofs, and single-floored roofs, do not harmonize with the design of the building by installing these heat collectors, and the appearance of the building In many cases, it causes a sense of incongruity, and the problem remains that it is difficult to disseminate. Even if a heat storage tank is used to make effective use of solar energy, heating is unnecessary in the summer, so it is used to store solar energy during the daytime in the winter and to heat it at night. Heating is not always possible due to the short solar radiation time in winter and the solar energy is weak, and in the case of cloudy weather, rainy weather, or when there is snow on the roof, it depends on solar energy. There remains a problem that heating cannot be done without heat collection itself. In order to compensate for this, for example, heat pumps may be used to supplement winter heating and further cooling. In this case, however, the system will inevitably become complicated and the installation costs will increase. The problem that it is easy to invite arises.

本発明はかかる事情に鑑みてなされたもので,その解決課題とするところは,可及的簡易な構造にして耐久性に富むとともに設置費用を可及的に安価として,建造物の外観に与える影響を解消又は可及的に減少する一方,天候に左右されることなく,暖房の必要時期を通じて,昼夜を問わずに安定した温度による継続的な暖房をなし得るようにした直射熱利用暖房装置を提供するにある。   The present invention has been made in view of such circumstances, and the problem to be solved is to give the appearance of the building a structure that is as simple as possible and rich in durability and installation costs as low as possible. A direct-heating-type heating device that eliminates the influence or reduces it as much as possible, but enables continuous heating at a stable temperature regardless of the day and night, regardless of the weather. To provide.

上記課題に沿って鋭意研究したところ,建造物の屋根や壁面の屋根材,サイディング等の外装材やコンクリート躯体は,直射日光によって,例えば夏場の日中には80℃程度の高温に至る程度に加熱されて,これら外装材やコンクリート躯体が直射熱(その雰囲気温度を含む)を有しているから,例えば外装材の背面,即ち屋根にあっては野地板背面の垂木間スペース,サイディング背面の胴縁間スペース,コンクリート躯体の厚さ方向中間部位等に配管を配置すれば,上記外装材やコンクリート躯体の直射熱やその雰囲気温度によって配管内の流体に採熱することが可能となること,種類によって幾分の相違があるも,一般に土壌は熱伝導性が悪いが,時間を掛けてこれに上記採熱した流体の放熱を繰り返すことによって,建造物直下の土壌を蓄熱層としてこれに上記直射熱の蓄熱が可能であること,即ち一般に地表は外気温の影響を大きく受けて温度変化が激しいが,地表から深くなるにつれて外気温の影響による温度変化が少なく,例えば2〜3m深さ部分における温度変化幅は,年間で数度に止まるとともに該温度変化は外気温に数ヶ月遅れて生じることに示されるように,地中の土壌における熱伝導性は上記の如くに悪いが,この熱伝導性の悪さに基づいて該土壌に蓄熱するには該数ヶ月程度を必要とすることから,上記夏場の直射熱によって建造物直下の土壌に7月〜9月頃の数ヶ月間を掛けて蓄熱すれば,直射熱の太陽エネルギーを得られる時期と暖房を必要とする時期との間の数ヶ月のタイムラグによって,該蓄熱エネルギーの輻射熱によって11月乃至12月頃以降の冬場の地熱暖房として利用することが可能となること,冬場の暖房温度は,蓄熱したエネルギー量によって変化するところ,該蓄熱エネルギー量は,採熱の期間及び蓄熱体としての土壌の容積,即ち上記地熱暖房面積は一定であるから,結局地表からの深さによってコントロール可能であること,直射熱を採熱し,これを土壌に蓄熱するには,屋根及び/又は壁面に採熱用の配管を施す一方,地中に放熱用の配管を施して,これらの間で流体循環用の配管系をなすことによって,可及的簡易にして設置費用の高額化を回避するとともにトラブルやメンテナンスを可及的に不要化乃至減少したものとし得ること,上記外装材背面のスペースに配置し,またコンクリート躯体に埋込配置するように配管を施せば,採熱のための配管が,違和感を与える屋根や壁面に露出して建造物の外観を損なう可能性を解消できるし,また,例えば壁面に溝条付きのサイディングを用いることによってその溝条に嵌合配置すれば露出しても違和感がなく同様に建造物の外観を損なう可能性を解消できること,従って夏場の直射熱によって建造物直下の土壌を,例えば東京で10〜15℃程度を蓄熱することによって土壌温度を25乃至30℃程度として,これを冬場の暖房として使用すれば,土壌の容積分に応じて,昼夜を問わずに安定した温度による継続的な暖房を行うことが可能となることを知見して,本発明をなすに至ったものであって,即ち請求項1に記載の発明を,建造物の屋根及び/又は壁に配置して該屋根及び/又は壁面の直射熱を採熱する流体採熱用配管と,建造物直下の地中土壌に放熱して該地中土壌を蓄熱体としてこれに蓄熱する流体放熱用配管と,これら流体採熱用及び流体放熱用配管を連結して流体をこれらの間で循環する流体循環用配管とを一連に備えてなることを特徴とする直射熱利用暖房装置としたものである。   As a result of diligent research in line with the above-mentioned issues, building roofs, wall roofing materials, exterior materials such as siding, and concrete enclosures reach a high temperature of about 80 ° C during direct sunlight, for example, during summer days. When heated, these exterior materials and concrete frames have direct heat (including their ambient temperature). For example, on the back of the exterior material, that is, on the roof, the space between the rafters on the back of the field plate, the back of the siding If pipes are arranged in the space between the torso, in the middle of the concrete frame in the thickness direction, etc., it will be possible to collect heat into the fluid in the pipes by the direct heat of the exterior materials and concrete frames and the ambient temperature, Although there are some differences depending on the type, the soil generally has poor thermal conductivity, but it takes time to repeat the heat dissipation of the collected fluid over time, so that the soil directly under the building It is possible to store the above-mentioned direct heat in the heat storage layer, that is, the surface of the earth is generally greatly affected by the outside air temperature, and the temperature changes drastically. For example, the temperature change width at a depth of 2 to 3 m is only a few degrees per year, and the temperature change occurs several months later than the outside air temperature. However, it takes about several months to store heat in the soil based on this poor thermal conductivity. Therefore, the direct heat in the summertime puts the soil directly under the building around July-September. If the heat is stored over several months, the heat radiated heat generates a lag of several months between the period when solar energy of direct heat is obtained and the period when heating is required. It can be used for geothermal heating in winter, and the heating temperature in winter varies depending on the amount of stored energy. The amount of stored energy is the period of heat collection and the volume of soil as the heat storage body, In other words, since the geothermal heating area is constant, it can be controlled by the depth from the ground surface, and in order to collect direct heat and store it in the soil, piping for heat collection on the roof and / or wall surface. On the other hand, by installing piping for heat dissipation in the ground and forming a piping system for fluid circulation between them, it is possible to simplify the installation as much as possible, avoiding high installation costs, and enabling troubles and maintenance. It can be made unnecessary or reduced as much as possible, and if piping is placed in the space behind the exterior material and embedded in the concrete frame, the piping for heat collection is uncomfortable. The possibility of damaging the appearance of the building by exposing it to roofs and walls that give rust can be eliminated, and for example, if siding with grooves is used on the wall surface, it will feel strange even if exposed Similarly, the possibility of damaging the appearance of the building can be eliminated. Therefore, the soil temperature is about 25 to 30 ° C. by storing the soil directly under the building by direct heat in summer, for example, about 10 to 15 ° C. in Tokyo. Therefore, if this is used as heating in winter, it is possible to perform continuous heating at a stable temperature regardless of day or night according to the volume of the soil. In other words, the invention according to claim 1 is arranged on the roof and / or wall of a building and the fluid heat collecting pipe for collecting the direct heat of the roof and / or the wall surface; Underground soil directly under the building A fluid heat dissipating pipe that radiates heat to the ground and stores the ground soil as a heat accumulator, and a fluid circulation pipe that connects the fluid heat collecting and fluid heat dissipating pipes to circulate the fluid between them. It is a direct-heat-use heating device characterized by being provided in series.

請求項2に記載の発明は,上記に加えて,冬場の直射熱が弱まる時期は,その採熱した太陽エネルギーを上記蓄熱に利用することなく,蓄熱体の土壌による地熱暖房に加えて,これを直接に放熱して暖房に使用することによって,昼間の暖房効果を向上するように,これを,上記流体採熱用,流体放熱用及び流体循環用配管に加えて,建造物の床又は基礎コンクリートに配置して,上記流体放熱用配管との流体の切替によって採熱を直接放熱する流体暖房用配管を一連に備えてなることを特徴とする請求項1に記載の直射熱利用暖房装置としたものである。   In addition to the above, the invention described in claim 2 can be used in addition to the above-described geothermal heating by the soil of the heat storage body without using the collected solar energy for the heat storage when the direct heat in winter is weakened. In addition to the fluid heat collection, fluid heat radiation and fluid circulation pipes, this is added to the floor or foundation of the building so as to improve the daytime heating effect by directly dissipating the heat. The direct heat utilization heating device according to claim 1, further comprising a series of fluid heating pipes arranged on the concrete and directly dissipating heat by switching the fluid to the fluid heat radiation pipe. It is a thing.

請求項3に記載の発明は,同じく上記に加えて,夏場の直射熱による蓄熱体の土壌への蓄熱には,上記土壌の熱伝導率が悪いことによって時間が掛るところ,一般に蓄熱体とする地中土壌は,その深さが1mを下回ると,蓄熱体の地中土壌の蓄熱量が不足することによって,冬場の暖房に適した,例えば25乃至30℃程度の温度の暖房を継続的に行うことができず,また5mを上回ると,蓄熱体の地中土壌の容積が過大となり,夏場の直射熱によって上記冬場の暖房に適した温度の蓄熱を行うことが不能となり,従って地中土壌に対する配管の設置は,これを1乃至5mの深さとすることが冬場の暖房を安定した温度で継続的に行う上で好ましい形態とし得ることから,これを,上記蓄熱体とする地中土壌を,建造物直下の地表から1〜5mの深さまでの範囲に設定し且つ上記流体放熱用配管を該範囲の設定深さ位置に埋込配置してなることを特徴とする請求項1又は2に記載の直射熱利用暖房装置としたものである。   In addition to the above, the invention according to claim 3 is generally a heat storage body where heat storage to the soil by direct heat in summer takes time due to the poor thermal conductivity of the soil. If the depth of underground soil is less than 1 m, the heat storage body's underground soil lacks the amount of heat stored, so it is suitable for winter heating, for example, at a temperature of about 25-30 ° C. If it cannot be performed, and if it exceeds 5 m, the underground soil volume of the heat storage body will be excessive, and it will be impossible to store heat at a temperature suitable for heating in the winter season due to direct heat in summer. As for the installation of the pipe, the depth of 1 to 5 m can be a preferable form for continuously performing the heating in the winter at a stable temperature. , 1-5 from the ground surface directly under the building 3. The direct heat utilization heating device according to claim 1 or 2, wherein the fluid heat radiation pipe is embedded and arranged at a set depth position within the range. It is.

請求項4に記載の発明は,同じく上記に加えて,配管にパイプを用いるとともにその配置を採熱及び/又は放熱の面積を可及的に拡大して,配管による採熱及び/又は放熱を可及的有効且つ確実に行うとともに配管及びその配置工事を可及的簡易にして低コストのものとし得るように,これを,上記流体採熱用配管及び/又は流体放熱用配管を,蛇行,屈曲,螺旋状巻回等配置として,直線配置するものに対して採熱及び/又は放熱の面積を拡大した流体移送用にして一連のパイプ配管によって形成してなることを特徴とする請求項1,2又は3に記載の直射熱利用暖房装置としたものである。   In addition to the above, the invention described in claim 4 uses pipes for piping and increases the area of heat collection and / or heat dissipation as much as possible to reduce the heat collection and / or heat dissipation by piping. In order to make the piping and its installation work as simple as possible and to be low-cost, it is possible to meander the above fluid heat collection piping and / or fluid heat radiation piping, 2. An arrangement such as bending, spiral winding, etc. is formed by a series of pipe pipes for fluid transfer with an increased area of heat collection and / or heat dissipation with respect to a linear arrangement. , 2 or 3.

請求項5に記載の発明は,同じく上記に加えて,幾分コストアップするとしても,上記配管を井桁乃至格子状のものとすることによって,同様に採熱及び/又は放熱の面積を同様に可及的に拡大し,配管による採熱及び/又は放熱を可及的有効且つ確実に行うことが可能となるから,これを,上記流体採熱用及び/又は流体放熱用配管を,面方向端部一対の基管と,該一対の基管を交差方向に連結した多数の分岐管とによって形成した単一又は複数連結の流体移送用の井桁乃至格子状配管によって形成してなることを特徴とする請求項1,2又は3に記載の直射熱利用暖房装置としたものである。   In the invention of claim 5, in addition to the above, even if the cost is somewhat increased, the area of heat collection and / or heat dissipation is similarly increased by making the piping in a cross-girder or lattice shape. Since it is possible to expand as much as possible and heat collection and / or heat radiation by piping can be performed as effectively and reliably as possible, this can be applied to the above-mentioned fluid heat collection and / or fluid heat radiation piping in the surface direction. It is formed by a single or multiple-connected fluid transfer grid or grid-like pipe formed by a pair of end pipes and a plurality of branch pipes connecting the pair of base pipes in the crossing direction. The direct heat utilization heating apparatus according to claim 1, 2, or 3.

本発明はこれらをそれぞれ発明の要旨として上記課題解決の手段としたものである。   The present invention uses each of these as the gist of the invention as means for solving the above problems.

本発明は以上のとおりに構成したから,請求項1に記載の発明は,建造物の屋根や壁面の屋根材,サイディング等の外装材背面のスペースやコンクリート躯体の厚さ方向中間部位等に配管を配置して,これら外装材やコンクリート躯体が有する直射熱乃至その雰囲気温度によって採熱した流体を,熱伝導性の悪い土壌を蓄熱層としてこれに蓄熱することによって,直射熱の太陽エネルギーを得られる時期と暖房を必要とする時期との間の数ヶ月のタイムラグを活用して,暖房の必要時期を通じて,天候に左右されることなく,昼夜を問わずに安定した温度による継続的な暖房をなし得るとともに可及的簡易な構造にして耐久性に富み,設置費用を可及的に安価として,建造物の外観に与える影響を解消又は可及的に減少し得るようにした直射熱利用暖房装置を提供することができる。   Since the present invention is configured as described above, the invention according to claim 1 is piped to the roof of the building, the roof of the wall, the space behind the exterior material such as siding, the intermediate part in the thickness direction of the concrete frame, etc. The solar energy of direct heat is obtained by storing the heat collected by the direct heat or the ambient temperature of these exterior materials and concrete frames as heat storage layer using the soil with poor thermal conductivity as the heat storage layer. By utilizing the time lag of several months between the period when the heating is required and the period when heating is required, continuous heating at a stable temperature regardless of the day and night is possible regardless of the weather throughout the period when heating is required. Direct radiation that can be done and has a simple structure as much as possible, has high durability, reduces installation costs as much as possible, and eliminates or reduces the impact on the exterior of the building as much as possible It is possible to provide the use of heating equipment.

請求項2に記載の発明は,上記に加えて,冬場の直射熱が弱まる時期は,その採熱した太陽エネルギーを上記蓄熱に利用することなく,蓄熱体の土壌による地熱暖房に加えて,これを直接の床暖房に使用することによって,昼間の暖房効果を向上することができる。   In addition to the above, the invention described in claim 2 can be used in addition to the above-described geothermal heating by the soil of the heat storage body without using the collected solar energy for the heat storage when the direct heat in winter is weakened. By using for direct floor heating, the heating effect in the daytime can be improved.

請求項3に記載の発明は,同じく上記に加えて,地中土壌に対する配管の設置を,地表から1乃至5mの深さとすることによって,冬場の暖房を安定した温度で継続的に行う上で好ましい形態とすることができる。   In addition to the above, the invention according to claim 3 is provided for continuously heating at a stable temperature in winter by setting the piping for underground soil to a depth of 1 to 5 m from the ground surface. It can be set as a preferable form.

請求項4に記載の発明は,同じく上記に加えて,配管にパイプを用いるとともにその配置を採熱及び/又は放熱の面積を可及的に拡大して,配管による採熱及び/又は放熱を可及的有効且つ確実に行うとともに配管及びその配置工事を可及的簡易にして低コストのものとすることができる。   In addition to the above, the invention described in claim 4 uses pipes for piping and increases the area of heat collection and / or heat dissipation as much as possible to reduce the heat collection and / or heat dissipation by piping. It can be performed as effectively and reliably as possible, and the piping and the arrangement work thereof can be simplified as much as possible to reduce the cost.

請求項5に記載の発明は,同じく上記に加えて,幾分コストアップするとしても,上記配管を井桁乃至格子状のものとすることによって,採熱及び/又は放熱の面積を同様に可及的に拡大し,配管による採熱及び/又は放熱を可及的有効且つ確実に行うものとすることができる。   In addition to the above, the invention according to claim 5 is also capable of reducing the area of heat collection and / or heat dissipation in the same way by making the pipes in a cross-girder or lattice shape, although the cost is somewhat increased. Therefore, heat collection and / or heat dissipation by piping can be performed as effectively and reliably as possible.

以下図面の例に従って本発明を更に具体的に説明すれば,1は,本例にあって,例えば切妻屋根を有する木造住宅とした建造物であり,該建造物1は,直射熱利用暖房装置2を備えることによって夏場の太陽エネルギーを用いて冬場の暖房を行うものとしてあり,該暖房装置2は,流体採熱用配管21と,流体放熱用配管22と,流体循環用配管23とを一連に備えたものとしてあり,上記流体採熱用配管21は,該建造物,即ち木造住宅の屋根11に配置して該屋根の直射熱を流体に採熱するものとし,上記流体放熱用配管22は,建造物1直下の地中土壌に放熱して該地中土壌を蓄熱体3としてこれに蓄熱するものとし,また上記流体循環用配管23は,これら流体採熱用及び流体放熱用配管21,22を連結して流体をこれらの間で循環するものとしてある。本例にあってこれら配管は,例えば必要な箇所で相互に連結することによって上記各配管合計の長さとした流体移送用にして一連のパイプ配管によって形成したものとしてあり,このとき該パイプ配管は,上記採熱用の配管において直線配置を行う一方,本例にあって放熱用の配管は,これを,蛇行,屈曲,螺旋状巻回等配置,例えば螺旋状巻回配置として,これを直線配置するものに対して放熱の面積を拡大したものとし,熱伝導率の悪い土壌中における流体の滞留時間を延ばしてその放熱による蓄熱を可及的に向上し得るようにしてある。   Hereinafter, the present invention will be described in more detail with reference to the example of the drawings. Reference numeral 1 denotes a building in the present example, for example, a wooden house having a gable roof, and the building 1 is a heating device using direct heat. 2 is used for heating in the winter using solar energy in the summer. The heating device 2 includes a fluid heat collection pipe 21, a fluid heat radiation pipe 22, and a fluid circulation pipe 23 in series. The fluid heat collecting pipe 21 is arranged on the roof 11 of the building, that is, the wooden house, and heats the direct heat of the roof into a fluid. Radiates heat to the underground soil directly under the building 1 to store the underground soil as a heat storage body 3, and the fluid circulation pipe 23 includes the fluid heat collection and fluid heat radiation pipe 21. , 22 are connected to circulate fluid between them. Some as being. In this example, these pipes are formed by a series of pipe pipes for fluid transfer, for example, by connecting them to each other at necessary places to make the total length of the above-mentioned pipes. In the present example, the heat dissipating pipe is arranged in a straight line, and in this example, the heat dissipating pipe is arranged in a meandering, bent, spiral winding, etc., for example, a spiral winding arrangement. The area of heat dissipation is expanded with respect to the arrangement, and the residence time of the fluid in the soil with poor thermal conductivity is extended so that the heat storage by the heat dissipation can be improved as much as possible.

即ち本例の上記暖房装置2は,上記流体採熱用配管21,流体放熱用配管22及び流体循環用配管23によって,建造物1の太陽の直射日光を受ける屋根11と熱伝導率の悪い建造物1直下の地中土壌による蓄熱体3との間に流体の循環系を形成することによって,直射日光の強い時期の太陽エネルギーを数ヶ月のタイムラグを置いて外気温の下がる時期の地熱暖房として使用するものとしてあり,このとき建造物1は,該建造物1直下の蓄熱エネルギーを暖房に使用するために,その基礎,本例にあっては布基礎により建造物1と蓄熱体3間の床下スペースを外気と遮断するように,該基礎には換気口を設置しないか,設置しても開閉可能とし,暖房時期に該換気口を閉鎖することによって,建造物1と蓄熱体3間の床下スペースから蓄熱エネルギーが外部に放出するのを防止するようにしてある。   That is, the heating device 2 of this example includes a roof 11 that receives direct sunlight from the building 1 and a building having poor thermal conductivity by the fluid heat collection pipe 21, the fluid heat radiation pipe 22, and the fluid circulation pipe 23. By forming a fluid circulation system with the heat storage body 3 by the underground soil directly under the object 1, the solar energy at the time of direct sunlight is a geothermal heating at the time when the outside temperature falls with a time lag of several months At this time, the building 1 is used between the building 1 and the heat storage body 3 by the foundation, in this example, a cloth foundation, in order to use the heat storage energy immediately below the building 1 for heating. Ventilation openings are not installed in the foundation so that the underfloor space is blocked from outside air, or can be opened and closed even when installed, and the ventilation openings are closed during the heating period. Heat storage from underfloor space Energy is are to be prevented from releasing to the outside.

本例の建造物1における,その切妻屋根には,本例にあってその全面に上記流体採熱用配管21を配置してあり,該配管は,例えばアルミ,銅等の比較的軟質の金属,塩化ビニール,ポリエチレン等の同じく比較的軟質の合成樹脂又は上記比較的軟質の金属にポリプロピレン,塩化ビニール等適宜の合成樹脂を被覆した複合材によって形成して屈曲等を可能とした上記一連のパイプ配管によるものとしてあり,該配管は,屋根11背面の,例えば上記垂木14間のスペース,即ち小屋組みにおいて断熱材支持用に垂木14の下位に設置した捨て垂木と捨て野地板上に載置固定して垂木14間スペースに,該屋根面に沿って直線に配置するか,従来の小屋組みにあっては野地板の下面に支持固定して同じく垂木14間スペースに同様に直線に配置する等して,上記垂木14間のスペースを用いることによってその載置固定による配置を行うようにしてあり,このとき該一連のパイプ配管における端部は,軒側及び棟側において,例えば垂木14を前後に跨ぐように屈曲してその方向を転換し,隣接する垂木14間のスペースに更に延長配置するようにして,屋根11の全面に一連に配置してある。該パイプ配管は,例えば所定長さのものを継手を用いて連結してあり,また該配管の両端部は,これを後述の流体循環用配管23の端部に対して同じく継手を用いて連結してある。このように屋根に流体採熱用配管21を配置することにより,該建造物1の屋根が直射日光を受けて,例えば夏場に80℃程度に加熱されることによって高温化する屋根11下面の直射熱を,上記流体採熱用配管21を流路としてこれを通過する流体に対して採熱するようにしてある。また該配管の両端部は,これを後述の流体循環系配管23の端部に同じく継手を用いて連結してある。   In the building 1 of this example, the gable roof is provided with the fluid heat collecting pipe 21 on the entire surface in this example, and the pipe is made of a relatively soft metal such as aluminum or copper. The above series of pipes that can be bent by forming a relatively soft synthetic resin such as vinyl chloride or polyethylene, or a composite material obtained by coating the above relatively soft metal with an appropriate synthetic resin such as polypropylene or vinyl chloride. The pipe is placed and fixed on the space between the rafters 14 on the back of the roof 11, for example, on the abandoned rafters and abandoned ground plates installed below the rafters 14 for supporting the heat insulating material in the cabin. In the space between the rafters 14, it is arranged in a straight line along the roof surface, or in the case of a conventional hut assembly, it is supported and fixed to the lower surface of the field board and is also arranged in the same straight line in the space between the rafters 14. For example, the space between the rafters 14 is used for placement by fixing the rafters. At this time, the ends of the series of pipe pipes are, for example, the rafters 14 on the eaves side and the ridge side. Are bent so as to straddle the front and rear, and the direction thereof is changed, and is further arranged in a series on the entire surface of the roof 11 so as to be further extended in the space between the adjacent rafters 14. For example, pipes having a predetermined length are connected using joints, and both ends of the pipes are connected to ends of a fluid circulation pipe 23 described later using joints. It is. By arranging the fluid heat collecting pipe 21 on the roof in this way, the roof of the building 1 receives direct sunlight, and is heated directly to, for example, about 80 ° C. in the summer to directly heat the lower surface of the roof 11. Heat is collected from a fluid passing through the fluid heat collecting pipe 21 as a flow path. Further, both ends of the pipe are connected to ends of a fluid circulation system pipe 23 described later using the same joint.

建造物1直下の地中には,本例にあって該建造物1の建坪と同一乃至これよりやや小さい面積をカバーするように上記流体放熱用配管22を配置して地中土壌を蓄熱体3として,これに上記屋根の直射熱の蓄熱を行うようにしてあり,このとき上記蓄熱体3とする地中土壌は,これを,建造物直下の地表から1〜5mの深さまでの範囲に設定し且つ上記流体放熱用配管22を該範囲の設定深さ位置に埋込配置したものとしてあり,本例にあって該配管は地表から3mの深さに埋込して,その配置を行ったものとしてある。このとき本例にあって上記地中土壌の蓄熱体3は,その外周を断熱材で囲繞することによって,これを断熱壁34囲繞の蓄熱槽として形成してあり,建造物1直下における蓄熱とその保温を該建造物1直下で可及的有効に行うようにしてある。   In the ground immediately below the building 1, the fluid heat radiation pipe 22 is arranged so as to cover an area that is the same as or slightly smaller than the floor area of the building 1 in this example, and the ground soil is stored as a heat storage body. 3, the direct heat of the roof is stored in this, and the underground soil as the heat storage body 3 at this time is in the range from 1m to 5m deep from the ground surface directly under the building. The fluid heat radiation pipe 22 is set and embedded at the set depth position within the range. In this example, the pipe is embedded at a depth of 3 m from the ground surface and arranged. It is as a thing. At this time, in this example, the underground soil heat storage body 3 is formed as a heat storage tank of the heat insulating wall 34 by surrounding its outer periphery with a heat insulating material. The heat insulation is performed as effectively as possible directly under the building 1.

上記流体放熱用配管22は,上記流体採熱用配管21と同様の比較的軟質の金属,比較的軟質の合成樹脂又は上記複合材によって形成して屈曲や螺旋状巻回を可能とした上記一連のパイプ配管によるものとしてあり,その配置を,建造物1の新築時の基礎16,本例にあって布基礎設置前又は設置後に建造物1直下に埋設することによって行ったものとしてあり,本例の該流体放熱用配管22の埋設は,例えばミニショベル等の小型掘削用建機を用いて建造物1直下位置に並列多数にして上記深さ,即ち3m深さにして,例えば数十cm乃至1m幅程度の埋込溝31を掘削し,該埋込溝31の底面に上記流体採熱用配管22と同様な一連のパイプ配管を,本例にあって上記螺旋状巻回によって配置し,その後に掘削土壌を埋め戻ししてその埋設を行ってあり,本例にあって該埋込溝31の底面には,独立気泡の発泡樹脂等適宜の断熱パネル又はこれを充填した金属製乃至合成樹脂性パネルによる断熱材32を敷設して上記パイプの配置を行ったものとしてある。このとき埋込溝31間の上記パイプ配管の配置は,例えば,その両端を地表近傍まで立上げて地表近傍で浅埋めして隣接する埋込溝31に更に螺旋状をなすように配置するか,上記断熱壁34囲繞の蓄熱槽を形成する本例にあっては,その断熱壁33形成用に掘削する後述の囲繞溝の底部において上記埋込溝31間の土壌壁端部をその前後に跨ぐように屈曲することによって方向転換して隣接する埋込溝31間のスペースに更に螺旋状をなすように配置し,建造物1直下に形成した全ての埋込溝31に上記パイプ配管を螺旋状に巻回配置してその一連の配置を行ってある。このとき該パイプ配管は,所定長さのものを同様に継手を用いて連結してあり,また該配管の両端部は,これを後述の流体循環用配管23の端部に対して上記屋根の流体採熱用配管21と同様に継手を用いて連結してある。   The fluid heat radiating pipe 22 is formed of the relatively soft metal, the relatively soft synthetic resin, or the composite material similar to the fluid heat collecting pipe 21 and can be bent or spirally wound. It is assumed that the arrangement was made by embedding the foundation 16 at the time of the new construction of the building 1, in this example, by burying it directly under the building 1 before or after installing the cloth foundation. In the example, the fluid heat radiation pipe 22 is buried by using a small excavating construction machine such as a mini excavator, for example, at a depth of 3 m, for example, several tens of centimeters. A buried groove 31 having a width of about 1 m is excavated, and a series of pipe pipes similar to the fluid heat collecting pipe 22 are arranged on the bottom surface of the buried groove 31 in this example by the spiral winding. , Then backfill the excavated soil In this example, an appropriate heat insulating panel such as a closed cell foam resin or a metal or synthetic resin panel filled with this is laid on the bottom surface of the embedded groove 31. It is assumed that the pipes have been arranged. At this time, the pipes are arranged between the embedded grooves 31 such that, for example, both ends thereof are raised to the vicinity of the ground surface and are buried shallowly in the vicinity of the ground surface so as to form a spiral in the adjacent embedded groove 31. In the present example of forming the heat storage tank of the heat insulating wall 34, the soil wall end between the embedded grooves 31 is placed before and after the bottom of the surrounding groove to be excavated for forming the heat insulating wall 33. By bending so as to straddle, the direction is changed, and the space between adjacent embedded grooves 31 is arranged to form a spiral, and the pipe pipe is spiraled in all the embedded grooves 31 formed immediately under the building 1. A series of arrangements are made by winding them in a shape. At this time, pipes of the predetermined length are similarly connected using joints, and both ends of the pipe are connected to the ends of the fluid circulation pipe 23 described later with respect to the roof. Similar to the fluid heat collection pipe 21, they are connected using a joint.

上記断熱壁33囲繞の蓄熱層をなす断熱材による地中土壌の囲繞は,例えば,上記並列多数の最外側に位置する埋込溝31を囲繞壁33の一部として該埋込溝31内に,上記敷設した断熱材32と同様に,独立気泡の発泡樹脂等適宜の断熱性パネル又はこれを充填した金属製乃至合成樹脂製パネルによる断熱材を外周方向に連続するように装着することによって行ってあるが,更に該断熱材による囲繞は,上記建造物1の面積部分の外周を囲繞するように該埋込溝31と同等程度の適宜深さの囲繞溝を,例えば上記ミニショベルを用いて掘削し,該囲繞溝に上記断熱材を外周方向に連続するように挿入配置して,囲繞溝と該パネルとの空隙に同じく土壌を埋め戻しするか,または該囲繞溝に独立気泡の発泡性樹脂を充填してその現場発泡によって発泡壁面を現場形成するかによって,これを行うようにすることもできる。   For example, the soil in the ground by the heat insulating material forming the heat storage layer of the heat insulating wall 33 is, for example, a plurality of the embedded grooves 31 positioned on the outermost side in the embedded groove 31 as a part of the surrounding wall 33. As in the case of the heat insulating material 32, the heat insulating material such as a closed cell foam resin or a heat insulating material made of a metal or synthetic resin panel filled with the heat insulating material is continuously attached in the outer peripheral direction. In addition, the enclosure with the heat insulating material is formed by using an enclosure groove having an appropriate depth equivalent to the embedded groove 31 so as to surround the outer periphery of the area portion of the building 1 using, for example, the above-described mini excavator. Excavate and place the thermal insulation material in the surrounding groove so as to be continuous in the outer circumferential direction, and backfill the soil in the space between the surrounding groove and the panel, or foam the closed cell in the surrounding groove. Fill the resin and Depending situ formed foam wall Te, it is also possible to perform this.

流体放熱用配管22の設置に際しては,上記建造物の建坪と同一又はこれよりやや小さい面積の建造物1直下の全面を穴状に掘削することによってこれにその配置を行うことが可能であるが,上記埋込溝31を掘削することによって,該掘削に使用する建機を,上記ミニショベル等の小型掘削用の建機とすることができ,穴状全面の掘削に比して工事を簡易化するとともにそのコストを低下することができる。   When installing the fluid heat radiation pipe 22, it is possible to arrange it by excavating the entire surface directly under the building 1 having an area the same as or slightly smaller than the building floor of the above building into a hole shape. By excavating the embedded groove 31, the construction machine used for the excavation can be a construction machine for small excavation such as the mini excavator, and the construction is simpler than the excavation of the entire hole shape. And its cost can be reduced.

上記流体採熱用及び流体放熱用配管21,22,本例にあってその各一連のパイプの各長手方向両端には,これらを連結して流体をこれらの間で循環する上記流体循環用配管23を配置してあり,このとき本例の上記流体採熱用配管21及び流体放熱用配管22の両端は,これを,例えば建造物1の入隅,出隅,その他の壁面内側又は外側の上下対応位置に位置するようにし,該対応位置において流体循環用配管23を建造物1周りの一箇所に配置してある。即ち本例の該流体循環用配管23は,往路及び復路を一対として上記流体採熱用及び流体放熱用配管21,22と同様の金属,合成樹脂乃至これらの複合材料によるパイプ配管とし又は該配管部分に限って,例えば鋼管等他の材料によるパイプ配管をそれぞれ上記採熱用,放熱用配管21,22一方の端部に連結し,例えばこれらを保護用鋼管内に挿入して,該保護用鋼管で被覆したものとしてあり,このとき該流体循環用配管のパイプ配管も,所定長さのものを同様に継手を用いて連結することによってその配置を行ったものとしてある。   The fluid heat collecting and fluid heat radiating pipes 21 and 22 are connected to the longitudinal ends of each series of pipes, and the fluid circulation pipes are connected to circulate fluid between them. 23. At this time, both ends of the fluid heat collection pipe 21 and the fluid heat radiation pipe 22 of this example are connected to, for example, the entrance corner, the exit corner of the building 1, the inner side or the outer side of the wall surface. The fluid circulation pipe 23 is arranged at one location around the building 1 at the corresponding position. That is, the fluid circulation pipe 23 in this example is a pipe pipe made of the same metal, synthetic resin or a composite material thereof as the fluid heat collecting and fluid heat radiating pipes 21 and 22 with the forward path and the return path as a pair, or the pipe. For example, pipes made of other materials such as steel pipes, for example, are connected to one end of the heat collecting and heat radiating pipes 21 and 22, respectively. In this case, the pipes of the fluid circulation pipes are arranged by connecting the pipes of a predetermined length using joints in the same manner.

該往路及び復路を一対とする流体循環用配管23の一方には,例えば建物壁面にブラケット支持し又は地表面に載置する等して配置した,スイッチによる作動と停止を可能としたポンプ25を接続してあり,該ポンプ25により上記一連の流体採熱用配管21,流体放熱用配管22及び流体循環用配管23に流体を強制循環させて,上記屋根11に配置した流体採熱用配管21で採熱した流体を,往路の循環配管を介して流体放熱用配管22に導き,上記蓄熱体3とした地中土壌に放熱して該地中土壌に蓄熱し,その後に復路の循環配管を介して流体採熱用配管21に導き,その採熱を再び行うように,流体がこれら配管を循環するようにしてあり,この繰返しによって太陽エネルギーの直射熱を活用して流体循環による地中土壌への蓄熱を行うようにしてある。このとき上記スイッチは,例えば流体採熱用配管21に設置した温度センサーによって作動と停止を行う自動切換のものとするのが好ましく,これによって蓄熱に適当及び不適当な時期に応じてポンプ25の作動と停止とを自動化したものとすることができる。   On one side of the fluid circulation pipe 23 that forms a pair of the forward path and the return path, a pump 25 that can be operated and stopped by a switch, for example, supported by a bracket on the wall surface of the building or placed on the ground surface. The fluid is forcibly circulated through the series of fluid heat collection pipes 21, the fluid heat radiation pipes 22 and the fluid circulation pipes 23 by the pump 25, and the fluid heat collection pipes 21 arranged on the roof 11. The fluid collected in step 1 is guided to the fluid heat radiation pipe 22 via the forward circulation pipe, radiated to the ground soil as the heat storage body 3, and stored in the ground soil. The fluid is circulated through these pipes so that the heat is collected again through the pipe 21 for fluid heat collection. By repeating this, the direct soil heat of the solar energy is utilized and the underground soil by fluid circulation is used. Heat storage to It is to Migihitsuji. At this time, it is preferable that the switch is an automatic switch that is operated and stopped by a temperature sensor installed in the fluid heat collecting pipe 21, for example, so that the pump 25 can be turned on and off at an appropriate time for heat storage. Activation and deactivation can be automated.

本例の直射熱利用暖房装置2にあって,上記流体採熱用,流体放熱用及び流体循環用配管21,22,23に加えて,建造物1の床又は基礎コンクリート17に配置して,上記流体放熱用配管22との流体の切替によって採熱を直接放熱する流体暖房用配管24を一連に備えてあり,本例にあって該流体暖房用配管24は,上記建造物1の布基礎16間にコンクリートを打設形成した基礎コンクリート17,即ち防湿コンクリートの厚さ方向中間に埋込配置して該基礎コンクリート17に対して上記屋根からの採熱を直接放熱可能としてある。このとき切替は,例えば上記ポンプ25のスイッチとともに流体循環用配管23に流体切替スイッチを設置し,該流体切替スイッチによって行うようにしてあり,該スイッチは,例えば上記と同様に温度センサーによって作動と停止の自動切換のものとするのが好ましく,これによって,例えば冬場の昼間の採熱可能時間帯と夜間の採熱不能時間帯によってポンプ25の作動と停止を自動的に行って,冬場の夜間に作動することによって基礎コンクリート17が冷却するのを防止することができる。   In the direct heat utilization heating device 2 of this example, in addition to the fluid heat collecting, fluid heat radiating and fluid circulation pipes 21, 22, 23, it is arranged on the floor of the building 1 or the foundation concrete 17, A series of fluid heating pipes 24 that directly dissipate heat by switching the fluid with the fluid heat radiation pipes 22 are provided. In this example, the fluid heating pipes 24 are the fabric foundation of the building 1. The foundation concrete 17 in which concrete is cast and formed between 16, that is, embedded in the middle of the moisture-proof concrete in the thickness direction, can be directly radiated to the foundation concrete 17 from the roof. At this time, the switching is performed by, for example, installing a fluid switching switch in the fluid circulation pipe 23 together with the switch of the pump 25, and the fluid switching switch is operated by a temperature sensor, for example, as described above. It is preferable that the automatic switching of the stop is performed, so that, for example, the pump 25 is automatically operated and stopped during the daytime in the winter when heat can be collected and during the nighttime when the heat cannot be collected. It is possible to prevent the foundation concrete 17 from being cooled by operating in this manner.

上記流体循環用配管23を介して流体採熱用配管21及び流体放熱用配管22乃至流体暖房用配管24に,これらを流路として循環する流体は,本例にあって,例えば水,オイル等の採熱効率が可及的に良好にして腐食等のトラブルのない液体を用いるようにしてあり,本例にあっては,例えば冬場の凍結可能性を解消するように不凍液を添加した水を用いてあり,該流体は循環配管系を建造物1及び地中土壌に配置した後に,上記配管系の適宜の配管に設置した注入口から流体を注入し,上記ポンプ25の作動によって該配管を循環するようにしてある。   In this example, the fluid circulating through the fluid circulation pipe 23 to the fluid heat collection pipe 21 and the fluid heat radiation pipe 22 to the fluid heating pipe 24 in the present example is water, oil, or the like. In this example, water with antifreeze added is used so as to eliminate the possibility of freezing in winter, for example. After the circulation piping system is arranged in the building 1 and the underground soil, the fluid is injected from an inlet provided in an appropriate piping of the piping system, and the fluid is circulated by the operation of the pump 25. I have to do it.

図中12は屋根材,13は野地板,15は屋根11における捨て野地板上に配置した断熱材,34は断熱壁33囲繞の蓄熱層とした本例の蓄熱体3の蓄熱エネルギーが基礎16を介して放出すのを防止するように該基礎16の内側と基礎コンクリート17間に配置した基礎断熱材を示す。   In the figure, 12 is a roofing material, 13 is a base plate, 15 is a heat insulating material disposed on the discarded base plate in the roof 11, and 34 is a heat storage energy of the heat storage body 3 of this example which is a heat storage layer of a heat insulating wall 33. The base heat insulating material arrange | positioned between the inner side of this foundation 16 and the foundation concrete 17 is shown so that it may prevent discharge | release through.

このように形成した本例の直射熱利用暖房装置2は,流体採熱用配管21,流体放熱用配管22乃至流体暖房用配管24及び流体循環用配管23によって流体が循環する循環配管系をなすことによって,例えば,直射熱の強い夏場等の時期を蓄熱期間として,直射熱によって建造物1の屋根11から採熱して,流体放熱用配管22によって地中土壌に放熱し,該地中土壌を蓄熱体3,本例にあっては断熱壁33囲繞の蓄熱層として蓄熱し,上記直射熱を得られる時期と暖房を必要とする時期との間の数ヶ月のタイムラグを活かして,例えば暖房必要時期に20〜23℃程度の昼夜を問わずに安定した温度による継続的な地熱暖房をなし得るようにすることができるとともに,直射熱が弱い冬場等の昼間にして暖房の必要な時期を床暖房期間として,同様に屋根から採熱して流体暖房用配管24に放熱して上記継続的な暖房に加えて建造物の直接的な暖房補助を行う一方,蓄熱又は床暖房の不要乃至不適当な時期乃至時間帯には,上記ポンプ25を停止して採熱及び放熱を停止し得るようにしてあり,これによって太陽エネルギーによる直射熱の活用を可及的有効に行って,建造物1の省エネルギー暖房を可能とすることができる。該直射熱利用暖房装置2は,該太陽エネルギーを利用するものであるところ,流体採熱用配管21は,屋根11の野地板背面の垂木14間スペースに配置し,流体放熱用配管22は建造物1直下の地中土壌を蓄熱体3として地中に埋設される一方,流体循環用配管23を建造物1壁面に沿って配置した場合やポンプ25を屋外に設置したときに,これらが建造物1の外部に露出するも,これらが建造物1の外観を損なう可能性は極く小さいから,該暖房装置2の設置によって外観を損なう可能性を解消できる。また暖房に使用する蓄熱は地中土壌を蓄熱体3としてこれに行うから,屋外に蓄熱層を設置することによって該蓄熱層が景観を損ねたり,増改築の障害となったりするようなことも解消できる上,流体採熱用配管21を屋根11背面の,例えば上記垂木14間のスペースに配置することによって台風,強風の影響を受けて破損したりする可能性を解消するとともに雨仕舞への影響を回避してトラブルのないものとすることができる。更に本例にあっては一連のパイプ配管によって上記流体の採熱と放熱を行う流体の循環配管系を形成したから,それ自体構造が可及的簡易にして,耐久性に富むものとすることができるとともに低コストにして暖房装置2の設置費用を可及的に安価とすることができる。   The direct heat utilization heating device 2 of this example formed in this way forms a circulation piping system in which a fluid is circulated by a fluid heat collection pipe 21, a fluid heat radiation pipe 22, a fluid heating pipe 24, and a fluid circulation pipe 23. Thus, for example, in the summer season when direct heat is strong, heat is collected from the roof 11 of the building 1 by direct heat, and heat is radiated to the underground soil by the fluid heat radiating pipe 22. Heat storage body 3, in this example, heat is stored as a heat storage layer of the heat insulation wall 33, and for example, heating is necessary by taking advantage of the time lag of several months between the time when the direct heat is obtained and the time when heating is required. In addition to being able to perform continuous geothermal heating at a stable temperature regardless of day or night at around 20-23 ° C, it is possible to use the floor when heating is necessary during the daytime such as in winter when the direct heat is weak. Heating period and Similarly, heat is collected from the roof and dissipated to the fluid heating pipe 24 to provide direct heating assistance for the building in addition to the above continuous heating, while heat storage or floor heating is unnecessary or inappropriate. During the time period, the pump 25 can be stopped to stop heat collection and heat dissipation, thereby making effective use of direct heat from solar energy as much as possible to save energy in the building 1. Can be possible. The direct heat utilization heating device 2 uses the solar energy. The fluid heat collection pipe 21 is disposed in the space between the rafters 14 on the back of the roof plate of the roof 11, and the fluid heat radiation pipe 22 is constructed. While the underground soil directly under the object 1 is buried in the ground as the heat storage body 3, when the fluid circulation pipe 23 is arranged along the wall surface of the structure 1 or when the pump 25 is installed outdoors, these are built. Although they are exposed to the outside of the object 1, the possibility of damage to the external appearance of the building 1 is extremely small. Therefore, the possibility of damage to the external appearance due to the installation of the heating device 2 can be eliminated. In addition, since the heat storage used for heating is performed by using the underground soil as the heat storage body 3, the heat storage layer may damage the landscape or become an obstacle to renovation by installing a heat storage layer outdoors. In addition to eliminating the possibility of breakage due to the influence of typhoons and strong winds by disposing the fluid heat collection pipe 21 in the space between the rafters 14 on the back of the roof 11, for example, it is possible to eliminate the rain. The effect can be avoided and trouble free. Furthermore, in this example, since a fluid circulation piping system that collects and heats the fluid is formed by a series of pipe piping, the structure itself can be made as simple as possible and rich in durability. In addition, the installation cost of the heating device 2 can be made as low as possible by reducing the cost.

図示した例は以上のとおりとしたが,例えば陸屋根を有する建造物にあってはその屋根面に流体採熱用配管を載置固定しても建造物の外観を損なうことはないが,この場合でも該採熱用配管を屋根内のスペースに配置することができ,特にコンクリート建造物にあっては該コンクリート屋根の厚み方向中間に埋込設置してコンクリートの直射熱から採熱することができる。屋根に流体採熱用配管を配置するに際しては,一般に直線に配置すれば足りるケースが多いが,例えば切妻屋根や寄棟屋根等の南傾斜面のみに該流体採熱用配管のパイプを配置する場合,これを蛇行,屈曲,螺旋状巻回等として流体の屋根滞留時間を延長して採熱効率を向上することができる。上記パイプ配管に代えて,上記採熱用及び/又は放熱用の配管を,面方向端部一対の基管と,該一対の基管を交差方向に連結した多数の分岐管とによって形成した単一又は複数連結の流体移送用の井桁乃至格子状配管によって形成したものとすること,流体採熱用配管を,上記屋根に代えて又は該屋根とともに建造物の壁に配置して該壁面の直射熱を採熱するようにすること,この場合,例えば該壁の外装材を溝付きのガルバニウム鋼板やアルミのサイディングとし,該溝に上記パイプ配管を嵌挿配置して,建造物の表面に流体採熱用配管を配置するも,該配管が建造物の外観を損なうことを可及的に防止するようにすること,流体放熱用配管の配置を,穴状に全面を掘削した建造物直下の凹部に,上記と同様に断熱材を介して又はこれを介することなく敷設状に行うこと,この場合を含めて,流体放熱用配管を,上下方向,即ち深さ方向に複数重合状に配置し又は放熱位置を深さ方向に複数とするように深さの異なる複数積層状に配置することによって,蓄熱効率を向上するようにすること,流体暖房用配管を,上記建造物の床に配置するようにし,また上記基礎コンクリートに代えて,蓄熱体の表層乃至浅層部位に配置するようにすること,建造物を公共施設等住宅用途以外のものとすること,例えば切妻屋根,寄棟屋根等にあってその複数面に流体採熱用配管を配置して,太陽を追尾するように,該複数の配管を切替えて流体の循環系を作動することによって,例えば都市部等の日射条件が充分でない場所に対応して可及的に採熱効率を向上するようにすること,この場合を含めて,東西南北の複数面乃至全面に流体採熱用配管を配置するとき,その向きに応じて配管密度を変化して,同じく採熱効率を向上するようにすること等も可能である。本発明の実施に当っては,これらを含め,建造物,屋根,壁,流体採熱用配管,流体放熱用配管,蓄熱体,流体循環用配管,必要に応じて用いる流体暖房用配管,パイプ配管,井桁乃至格子状配管,更に必要に応じて用いる断熱材,断熱材囲繞の蓄熱槽等の具体的材質,形状,構造,寸法,これらの関係,これらに対する付加,配管配置の具体的方法等は,上記発明の要旨に反しない限り様々な形態のものとすることができる。   The example shown in the figure is as described above. For example, in the case of a building having a flat roof, the appearance of the building is not impaired even if the fluid heat collection pipe is placed and fixed on the roof surface. However, the pipe for heat collection can be arranged in the space in the roof, and in particular in concrete buildings, it can be installed embedded in the middle of the thickness direction of the concrete roof to collect heat from direct heat of the concrete. . When arranging the fluid heat collection pipe on the roof, it is generally sufficient to arrange it in a straight line. However, for example, the pipe for the fluid heat collection pipe is arranged only on the south inclined surface such as a gable roof or a dormitory roof. In this case, it is possible to improve the heat collecting efficiency by extending the roof residence time of the fluid by meandering, bending, spiral winding and the like. Instead of the pipe pipe, the heat collecting and / or heat radiating pipe is formed by a single base pipe having a pair of base ends and a plurality of branch pipes connecting the pair of base pipes in the cross direction. It shall be formed of one or more connected fluid transfer grids or grid-like pipes, and the fluid heat collection pipes may be placed on the wall of the building instead of the roof or together with the roof, In this case, for example, the outer wall of the wall is a galvanium steel plate or aluminum siding with a groove, and the pipe pipe is inserted and arranged in the groove so that the fluid is applied to the surface of the building. Although heat collection piping is arranged, the piping should be prevented as much as possible from deteriorating the appearance of the building, and the fluid heat radiation piping should be arranged directly under the building where the entire surface has been excavated in a hole shape. In the recess, through or through a heat insulating material as above. In this case, the pipes for heat radiation are arranged in a superposed manner in the vertical direction, that is, in the depth direction, or the depth of the heat radiation positions is plural in the depth direction. The heat storage efficiency is improved by arranging in a plurality of different layers, and the fluid heating piping is arranged on the floor of the building, and instead of the foundation concrete, the surface layer of the heat storage body Or to arrange it in a shallow part, make the building other than a residential use such as a public facility, for example, a gable roof, a dormitory roof, etc. Thus, by switching the plurality of pipes so as to track the sun and operating the fluid circulation system, the heat collection efficiency is improved as much as possible in response to places where solar radiation conditions are insufficient, such as in urban areas. In this case Umate, when placing the heat pipe adopted fluid on a plurality of surfaces or the entire surface of the cardinal, changes piping density depending on its orientation, it like can also be similarly so as to improve the Tonetsu efficiency. In carrying out the present invention, including these, buildings, roofs, walls, pipes for fluid heat collection, pipes for heat radiation, heat storage bodies, pipes for fluid circulation, pipes for fluid heating used as necessary, pipes Specific materials, shapes, structures, dimensions, relations, additions to these, specific methods for piping arrangement, etc. As long as it is not contrary to the gist of the invention, various forms can be adopted.

暖房装置のモデルを示す建造物の縦断面図である。It is a longitudinal cross-sectional view of the building which shows the model of a heating apparatus. 流体採熱用配管の屋根配置のモデルを示す平面図である。It is a top view which shows the model of the roof arrangement | positioning of piping for fluid heat collection. 流体採熱用配管配置のモデルを示す屋根の部分破断平面図である。It is a partial fracture top view of the roof which shows the model of piping arrangement for fluid heat collection. 流体放熱用配管配置のモデルを示す蓄熱体乃至断熱材囲繞の蓄熱槽の横断面図である。It is a cross-sectional view of the heat storage tank of the heat storage body thru | or the heat insulating material Go which shows the model of piping arrangement | positioning for fluid heat radiation. 流体放熱用配管配置のモデルを示す蓄熱体乃至断熱材囲繞の蓄熱槽の縦断面図である。It is a longitudinal cross-sectional view of the thermal storage tank of the thermal storage body thru | or the heat insulating material gouge which shows the model of piping arrangement | positioning for fluid thermal radiation.

符号の説明Explanation of symbols

1 建造物
11 屋根
12 屋根材
13 野地板
14 垂木
15 断熱材
16 基礎
17 基礎コンクリート
2 暖房装置
21 流体採熱用配管
22 流体放熱用配管
23 流体循環用配管
24 流体暖房用配管
25 ポンプ
3 蓄熱体
31 埋込溝
32 断熱材
33 断熱壁
34 基礎断熱材

DESCRIPTION OF SYMBOLS 1 Building 11 Roof 12 Roof material 13 Field board 14 Rafter 15 Thermal insulation material 16 Foundation 17 Foundation concrete 2 Heating device 21 Fluid heat collection piping
22 Fluid heat radiation piping
23 Piping for fluid circulation 24 Piping for fluid heating 25 Pump 3 Heat storage body 31 Embedded groove 32 Heat insulating material 33 Heat insulating wall 34 Basic heat insulating material

Claims (5)

建造物の屋根及び/又は壁に配置して該屋根及び/又は壁面の直射熱を採熱する流体採熱用配管と,建造物直下の地中土壌に放熱して該地中土壌を蓄熱体としてこれに蓄熱する流体放熱用配管と,これら流体採熱用及び流体放熱用配管を連結して流体をこれらの間で循環する流体循環用配管とを一連に備えてなることを特徴とする直射熱利用暖房装置。   A fluid heat collection pipe that is arranged on the roof and / or wall of a building to collect direct heat from the roof and / or wall surface, and dissipates heat to the underground soil directly under the building to store the underground soil as a heat storage body. And a fluid heat radiating pipe for storing heat and a fluid circulation pipe for connecting the fluid heat collecting and fluid heat radiating pipes to circulate fluid between them. Heat-use heating device. 上記流体採熱用,流体放熱用及び流体循環用配管に加えて,建造物の床又は基礎コンクリートに配置して,上記流体放熱用配管との流体の切替によって採熱を直接放熱する流体暖房用配管を一連に備えてなることを特徴とする請求項1に記載の直射熱利用暖房装置。   In addition to the above fluid heat collection, fluid heat radiation and fluid circulation pipes, fluid heating is arranged on the floor or foundation concrete of a building and directly dissipates heat by switching the fluid to the fluid heat radiation pipe. The direct heat utilization heating device according to claim 1, comprising a series of pipes. 上記蓄熱体とする地中土壌を,建造物直下の地表から1〜5mの深さまでの範囲に設定し且つ上記流体放熱用配管を該範囲の設定深さ位置に埋込配置してなることを特徴とする請求項1又は2に記載の直射熱利用暖房装置。   The underground soil as the heat storage body is set in a range from the ground surface directly below the building to a depth of 1 to 5 m, and the fluid heat radiation pipe is embedded in a set depth position in the range. The direct heat utilization heating device according to claim 1 or 2, characterized in that 上記流体採熱用配管及び/又は流体放熱用配管を,蛇行,屈曲,螺旋状巻回等配置として,直線配置するものに対して採熱及び/又は放熱の面積を拡大した流体移送用にして一連のパイプ配管によって形成してなることを特徴とする請求項1,2又は3に記載の直射熱利用暖房装置。   The fluid heat collecting pipe and / or the fluid heat radiating pipe are arranged in a meandering, bent, spiral winding, etc., and are used for fluid transfer with a larger area of heat collecting and / or heat radiating than those arranged in a straight line. The direct heat utilization heating device according to claim 1, 2 or 3, wherein the heating device is formed by a series of pipe pipes. 上記流体採熱用及び/又は流体放熱用配管を,面方向端部一対の基管と,該一対の基管を交差方向に連結した多数の分岐管とによって形成した単一又は複数連結の流体移送用の井桁乃至格子状配管によって形成してなることを特徴とする請求項1,2又は3に記載の直射熱利用暖房装置。   Single or multiple fluids formed by pipes for fluid heat collection and / or fluid heat radiation formed by a pair of base pipes at end portions in the plane direction and a plurality of branch pipes connecting the pair of base pipes in the cross direction. 4. The direct heat utilization heating device according to claim 1, 2 or 3, wherein the heating device is formed of a transfer well girder or a lattice pipe.
JP2006305304A 2006-11-10 2006-11-10 Direct heat utilization heating apparatus Pending JP2008121960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305304A JP2008121960A (en) 2006-11-10 2006-11-10 Direct heat utilization heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305304A JP2008121960A (en) 2006-11-10 2006-11-10 Direct heat utilization heating apparatus

Publications (1)

Publication Number Publication Date
JP2008121960A true JP2008121960A (en) 2008-05-29

Family

ID=39506907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305304A Pending JP2008121960A (en) 2006-11-10 2006-11-10 Direct heat utilization heating apparatus

Country Status (1)

Country Link
JP (1) JP2008121960A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025440A (en) * 2008-07-18 2010-02-04 Tokyo Gas Co Ltd Air conditioning system
WO2011059681A2 (en) * 2009-10-29 2011-05-19 GS Research LLC Geosolar temperature control construction and method thereof
WO2012152288A1 (en) * 2011-05-12 2012-11-15 Ørtoft Holding Aps A construction comprising a building and an installation with solar heat storage
JP2012251677A (en) * 2011-05-31 2012-12-20 Shiraiwa Komusho:Kk Heat storage air-conditioning system
US8595998B2 (en) 2009-10-29 2013-12-03 GE Research LLC Geosolar temperature control construction and method thereof
KR200471894Y1 (en) * 2013-11-14 2014-03-19 (주)동명엔터프라이즈 Land farming house

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025440A (en) * 2008-07-18 2010-02-04 Tokyo Gas Co Ltd Air conditioning system
WO2011059681A2 (en) * 2009-10-29 2011-05-19 GS Research LLC Geosolar temperature control construction and method thereof
WO2011059681A3 (en) * 2009-10-29 2011-08-25 GS Research LLC Geosolar temperature control construction and method thereof
US8322092B2 (en) 2009-10-29 2012-12-04 GS Research LLC Geosolar temperature control construction and method thereof
US8595998B2 (en) 2009-10-29 2013-12-03 GE Research LLC Geosolar temperature control construction and method thereof
WO2012152288A1 (en) * 2011-05-12 2012-11-15 Ørtoft Holding Aps A construction comprising a building and an installation with solar heat storage
JP2012251677A (en) * 2011-05-31 2012-12-20 Shiraiwa Komusho:Kk Heat storage air-conditioning system
KR200471894Y1 (en) * 2013-11-14 2014-03-19 (주)동명엔터프라이즈 Land farming house

Similar Documents

Publication Publication Date Title
US7992631B2 (en) System and method for seasonal energy storage
JP5742009B2 (en) Earth / Solar / Zero Energy Housing
US20140014302A1 (en) Heat energy system for heating or maintaining thermal balance in the interiors of buildings or building parts
PL183921B1 (en) Power supply equipment for buildings
JP2009503286A (en) Building walls as an energy barrier with fluid through channels
JP2008121960A (en) Direct heat utilization heating apparatus
JP2011140827A (en) Underground heat-storing house
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2007333296A (en) Heat storage system
JP2007333295A (en) Heat storage system
JP2009235677A (en) Thermal environment improving system
Kalús et al. Contribution to research on ground heat storages as part of building energy systems using RES
JP2006207919A (en) Cooling/heating device and method using underground heat
JP6135905B2 (en) Earth / Solar system
US20110192566A1 (en) Thermal storage system for use in connection with a thermal conductive wall structure
CN110821210A (en) House system of assembled positive energy room
Givoni Earth-integrated buildings—an overview
JP2012251677A (en) Heat storage air-conditioning system
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP3848652B2 (en) Solar system house
JP5968499B1 (en) Solar heat utilization system
Peng et al. Novel integrated design strategies for net-zero-energy solar buildings (NZESBS) in Nanjing, China
JP2007139236A (en) Underfloor air-conditioning device and method
JP6135906B2 (en) Earth / Solar system
JP5833064B2 (en) Thermal storage air conditioning system