ITBO20150241A1 - LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM - Google Patents

LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM Download PDF

Info

Publication number
ITBO20150241A1
ITBO20150241A1 ITBO2015A000241A ITBO20150241A ITBO20150241A1 IT BO20150241 A1 ITBO20150241 A1 IT BO20150241A1 IT BO2015A000241 A ITBO2015A000241 A IT BO2015A000241A IT BO20150241 A ITBO20150241 A IT BO20150241A IT BO20150241 A1 ITBO20150241 A1 IT BO20150241A1
Authority
IT
Italy
Prior art keywords
pipes
heat exchange
heat
ground
plant
Prior art date
Application number
ITBO2015A000241A
Other languages
Italian (it)
Original Assignee
Teleios Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teleios Srl filed Critical Teleios Srl
Priority to ITBO2015A000241A priority Critical patent/ITBO20150241A1/en
Publication of ITBO20150241A1 publication Critical patent/ITBO20150241A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Brevetto per Invenzione Industriale dal titolo ?IMPIANTO SOLARE GEOTERMICO A BASSA ENTALPIA". Patent for Industrial Invention entitled? LOW ENTHALPY GEOTHERMAL SOLAR PLANT ".

DESCRIZIONE DESCRIPTION

Campo della tecnica. Field of technique.

L?invenzione si riferisce ad un impianto con pannelli solari in cui l?eccesso di produzione di energia termica viene stoccato sotto terra con scambio di calore tra i tubi dell?impianto ed il terreno. The invention refers to a plant with solar panels in which the excess of thermal energy production is stored underground with heat exchange between the pipes of the plant and the ground.

Stato delia tecnica. State of the art.

Attualmente gli impianti solari prevedono almeno un pannello o collettore solare, collegato tramite impianto idrico ad un serbatoio tampone, in cui viene posta l?acqua calda per il riscaldamento di ambienti e per fornire acqua calda sanitaria. Al fine di conservare l?acqua calda sanitaria per un uso immediato ? previsto anche un altro tipo di serbatoio, detto in gergo tecnico serbatoio sanitario. Sia il serbatoio tampone che il serbatoio sanitario sono coibentati per limitare le dispersioni termiche, in quanto l'utilizzo di acqua calda varia nel tempo, cos? come varia la produzione di acqua calda in funzione dell'irraggiamento del sole. La quantit? di calore per altro stoccabile in tali serbatoi ? limitata dal volume degli stessi, mentre alla base del presente trovato vi ? il concetto inventivo che come serbatoio per il calore venga utilizzato il terreno, con energia immagazzinabile di ordine di grandezza diverso. La tecnica nota provvede a riscaldare l'acqua sanitaria con altra fonte di calore, quale una caldaia, una pompa di calore o dispositivi similari quando l?energia solare non ? disponibile. Sono note anche realizzazioni che utilizzano come fonte di calore un impianto geotermico, come il dispositivo descritto nel documento JP 2010 255982, dove l?utilizzo combinato di un impianto solare termico con un impianto geotermico integra la produzione di acqua calda prodotta dal primo con quella proveniente dal secondo grazie ad una o pi? pompe di calore: in tal modo si ha sempre una copertura anche in caso di scarsa produzione di acqua calda per mancato irraggiamento ai pannelli solari. Questo comporta, per?, un aumento della complessit? dell'impianto, maggiori costi di realizzazione e di mantenimento dei due impianti con due diversi serbatoi tampone per accumulare l?acqua calda da miscelare. Solar systems currently have at least one solar panel or collector, connected by a water system to a buffer tank, in which hot water is placed for space heating and to supply domestic hot water. In order to store the domestic hot water for immediate use? another type of tank is also provided, called sanitary tank in technical jargon. Both the buffer tank and the sanitary tank are insulated to limit heat losses, as the use of hot water varies over time. how the production of hot water varies according to the sun's irradiation. The quantity of heat which can otherwise be stored in such tanks? limited by the volume of the same, while at the base of the present invention there is? the inventive concept that the ground is used as a reservoir for heat, with storable energy of different order of magnitude. The known technique provides for heating the sanitary water with another heat source, such as a boiler, a heat pump or similar devices when the solar energy is not? available. Realizations are also known that use a geothermal system as a heat source, such as the device described in the document JP 2010 255982, where the combined use of a solar thermal system with a geothermal system integrates the production of hot water produced by the first with that coming from the second thanks to one or more? heat pumps: in this way there is always coverage even in the case of poor production of hot water due to lack of irradiation to the solar panels. This involves, however, an increase in complexity? of the system, higher costs of construction and maintenance of the two systems with two different buffer tanks to accumulate the hot water to be mixed.

Sommario dell'Invenzione. Summary of the Invention.

Oggetto del presente risultamento ? un impianto solare termico in grado di consentire l?utilizzo del calore immagazzinato per lungo tempo senza l?ausilio di pompa di calore. Il calore prodotto dai pannelli solari viene utilizzato in parte per il riscaldamento dell?acqua destinata ad usi sanitari di utilizzo immediato e/o entro le 24-48h, il rimanente viene utilizzato per riscaldare un volume di sottosuolo tale che vi rimanga immagazzinata energia termica da utilizzare a distanza di mesi. Il trovato mantiene la necessit? di scavi verticali richiesti dall?impianto geotermico classico ma entro una profondit? di trenta metri sotto al livello del suolo, con conseguenti minori problemi di richieste di permessi da parte delle autorit? preposte. L'acqua riscaldata dai pannelli solari con impianto solare termico sovradimensionato permette quindi di stoccare calore nel terreno dove rimarr? ad una temperatura non particolarmente elevata ma per periodi di tempo prolungati. La temperatura ? tale da consentire comunque l'utilizzo del calore in impianti d? riscaldamento a bassa entalpia {tipicamente impianti radianti a pavimento od a parete). I pannelli solari termici sono collegati con tubi di trasporto del fluido riscaldato ad un serbatoio di stoccaggio transitorio per acqua sanitaria. Da qui di dipartono altri tubi verso gli impianti di utilizzo (bagni, cucine, ecc...), l?elettropompa ed un gruppo di elettrovalvole. Queste ultime a loro vota sono collegate ai tubi che effettuano lo scambio termico fino a trenta metri sotto il livello del suolo con il terreno. Questo in sostanza funge da volano termico e consente di avere a disposizione una riserva di energia termica da utilizzare in caso di irraggiamento ridotto o nullo. L'impianto solare termico a bassa entalpia comprende una pluralit? di pannelli solari termici, collegati tramite tubi di trasporto del fluido riscaldato ad un serbatoio di stoccaggio transitorio per acqua sanitaria, con i tubi coibentati collegati al serbatoio di stoccaggio transitorio ed al gruppo d? elettrovalvole, a loro volta collegate a tubi di scambio termico disposti nel terreno fino a trenta metri sotto il livello del suolo, dove t?acqua calda, prodotta in eccesso dai pannelli solari termici, scorre spinta da elettropompa per immagazzinare calore nel terreno ed avere un successivo recupero di calore, utilizzabile dall'impianto in altri periodi. Il trovato ? illustrato in via puramente indicativa ed in quanto tale non limitativa ai disegni allegati, con riferimento ad una forma di realizzazione preferita ma non esclusiva, di seguito descritta in forma dettagliata. Subject of this result? a solar thermal system capable of allowing the use of stored heat for a long time without the aid of a heat pump. The heat produced by the solar panels is used in part to heat the water intended for immediate use and / or within 24-48h, the remainder is used to heat a volume of subsoil such that thermal energy remains stored there. use after months. The found maintains the necessity? of vertical excavations required by the classic geothermal system but within a depth of thirty meters below ground level, with consequent fewer problems with requests for permits by the authorities? in charge. The water heated by solar panels with an oversized solar thermal system therefore allows you to store heat in the ground where it will remain? at a temperature that is not particularly high but for prolonged periods of time. The temperature ? such as to still allow the use of heat in systems d? low enthalpy heating (typically radiant floor or wall systems). The solar thermal panels are connected with transport pipes of the heated fluid to a transitory storage tank for sanitary water. From here other pipes branch off to the systems of use (bathrooms, kitchens, etc ...), the electric pump and a group of solenoid valves. The latter at their rate are connected to the pipes that carry out the heat exchange up to thirty meters below the ground level with the ground. This essentially acts as a thermal flywheel and makes it possible to have a reserve of thermal energy available to be used in the event of little or no irradiation. The low enthalpy solar thermal system includes a plurality? of thermal solar panels, connected by means of transport pipes of the heated fluid to a transitory storage tank for sanitary water, with the insulated pipes connected to the transitory storage tank and to the group d? solenoid valves, in turn connected to heat exchange pipes arranged in the ground up to thirty meters below the ground level, where the hot water, produced in excess by the solar thermal panels, flows pushed by an electric pump to store heat in the ground and have a subsequent heat recovery, which can be used by the system in other periods. The found? illustrated purely by way of indication and as such not limiting to the attached drawings, with reference to a preferred but not exclusive embodiment, described below in detailed form.

Breve descrizione dei disegni. Brief description of the drawings.

La figura 1 illustra in sezione laterale e pianta una casa con l?impianto solare termico secondo il risultamento ed i principali componenti. La figura 2 illustra in sezione uno dei tubi di scambio termico in cui scorre l?acqua. La figura 3 ? vista superiore di uno schema di realizzazione con uno scambiatore termico centrale e scambiatori termici laterali. Figure 1 shows a side section and plan of a house with the solar thermal system according to the result and the main components. Figure 2 shows a section of one of the heat exchange pipes through which the water flows. Figure 3? top view of an implementation scheme with a central heat exchanger and side heat exchangers.

Descrizione dettagliata. Detailed description.

In una forma di realizzazione preferita ma non esclusiva rimpianto solare geotermico a bassa entalpia comprende una pluralit? di pannelli solari termici 1 , collegati tramite tubi di trasporto 2 del fluido riscaldato ad un serbatoio di stoccaggio transitorio 3 per acqua calda; i coibentati 4, ovvero dotati di isolante termico, sono collegati al serbatoio di stoccaggio transitorio 3, di seguito posti nel terreno e collegati ad un gruppo di elettrovalvole 6; queste sono collegate a loro volta a tubi di scambio termico 7 disposti nel terreno fino a trenta metri sotto il livello del suolo, dove l?acqua calda prodotta in eccesso dai pannelli solari termici 1 scorre spinta da eiettropompa 5 per immagazzinare calore nel terreno ed avere un successivo recupero di calore, utilizzabile dall?impianto in altri periodi. Il gruppo di elettrovalvole 6 provvede a dare la priorit? di riempimento ad almeno un tubo di scambio termico 7 centrale e successivamente a quelli periferici per costituire una zona calda nel terreno in cui conservare il calore. Il numero e la dimensione dei tubi di scambio termico 7 pu? variare in relazione alla quantit? di calore da conservare e da poter riutilizzare in altri periodi. Gli strati di terreno in cui sono collocati i tubi coibentati 4 ed i tubi di scambio termico 7 possono variare in funzione delle caratteristiche del terreno, della collocazione deirimpianto e della latitudine in cui detto impianto si trova ad operare. Il trovato consente di stoccare grandi quantit? di energia termica, non necessita di manutenzioni complesse e prevede minori costi realizzativi e di richieste di permessi, stante la posa dei tubi a minore profondit? rispetto ad un impianto geotermico o come quello descritto nel documento JP 2010 255982. L?impianto secondo il risultamento prevede poi un metodo di posa dei tubi coibentati 4 e dei tubi di scambio termico 7 dove viene effettuato uno sbancamento 8 di dimensioni limitate alla cui base 9 vengono realizzate perforazioni per introdurre i tubi di scambio termico 7 e, in cima a detti tubi, le elettrovalvole 6. La disposizione dei tubi di scambio termico 7 prevede una collocazione di un numero di tubi da uno a quattro in posizione centrale ed una disposizione di ulteriori quattro o pi? tubi in posizione periferica disposti secondo simmetria radiale, e collocati con angolazione di circa 12-15? rispetto alla verticale per costituire una zona calda per immagazzinare calore nel terreno. In questo modo si ottimizza il rapporto superficie/volume della stessa, nei limiti delle tecniche di perforazione, limitando le dispersioni. Le elettrovalvole saranno poi collegate a centralina elettronica per la gestione ed il controllo dei flussi dell?acqua calda da far scorrere nei tubi di scambio termico 7. Il numero dei tubi di scambio termico 7 pu? variare in funzione delle dimensioni deirimpianto e della volumetria da riscaldare. L?impianto solare a bassa entalpia secondo il risultamento prevede applicazione per tutte le tipologie di componenti idraulici e con tutti i tipi di pannelli solari. Il trovato ? suscettibile di numerose modifiche e varianti, tutte rientranti nell?ambito del concetto inventivo; tutti i dettagli possono, inoltre, essere sostituiti da altri tecnicamente equivalenti senza per questo uscire dal campo di protezione sancito dalle rivendicazioni. In a preferred but not exclusive embodiment, the low enthalpy geothermal solar plant comprises a plurality of elements. of thermal solar panels 1, connected by means of transport pipes 2 of the heated fluid to a transitory storage tank 3 for hot water; the insulated elements 4, ie equipped with thermal insulation, are connected to the transitory storage tank 3, subsequently placed in the ground and connected to a group of solenoid valves 6; these are connected in turn to heat exchange pipes 7 arranged in the ground up to thirty meters below the ground level, where the excess hot water produced by the thermal solar panels 1 flows pushed by an ejector pump 5 to store heat in the ground and have a subsequent heat recovery, which can be used by the system in other periods. The group of solenoid valves 6 provides to give priority? filling to at least one central heat exchange pipe 7 and subsequently to the peripheral ones to form a warm zone in the ground in which to store the heat. The number and size of the heat exchange tubes 7 can? vary in relation to the quantity? of heat to be stored and to be reused in other periods. The layers of soil in which the insulated pipes 4 and the heat exchange pipes 7 are located can vary according to the characteristics of the ground, the location of the plant and the latitude in which said plant operates. Does the invention allow for the storage of large quantities? of thermal energy, does not require complex maintenance and provides for lower construction costs and requests for permits, given the laying of the pipes at a lower depth? compared to a geothermal plant or the one described in the document JP 2010 255982. The plant according to the result then provides for a method of laying the insulated pipes 4 and the heat exchange pipes 7 where an excavation 8 of limited dimensions is carried out at the base 9 perforations are made to introduce the heat exchange pipes 7 and, at the top of said pipes, the solenoid valves 6. The arrangement of the heat exchange pipes 7 provides for the positioning of a number of pipes from one to four in a central position and an arrangement of further four or more? tubes in a peripheral position arranged according to radial symmetry, and placed at an angle of about 12-15? with respect to the vertical to constitute a hot zone to store heat in the ground. In this way the surface / volume ratio of the same is optimized, within the limits of drilling techniques, limiting dispersions. The solenoid valves will then be connected to an electronic control unit for the management and control of the flows of hot water to be run in the heat exchange pipes 7. The number of heat exchange pipes 7 pu? vary according to the size of the system and the volume to be heated. The low enthalpy solar system according to the result foresees application for all types of hydraulic components and with all types of solar panels. The found? susceptible of numerous modifications and variations, all of which are within the scope of the inventive concept; all the details can, moreover, be replaced by other technically equivalent ones without thereby departing from the field of protection sanctioned by the claims.

Claims (3)

RIVENDICAZIONI 1) Impianto solare geotermico a bassa entalpia comprendente una pluralit? di pannelli solari termici (1) collegati, tramite tubi di trasporto (2) del fluido riscaldato, ad un serbatoio di stoccaggio transitorio (3) per acqua calda, con tubi coibentati (4) collegati al serbatoio di stoccaggio transitorio (3) e ad un gruppo di elettrovalvole (6); caratterizzato dal fatto che le elettrovalvole (6) sono collegate a loro volta a tubi di scambio termico (7) disposti nel terreno fino a trenta metri sotto il livello del suolo dove l?acqua calda, prodotta in eccesso dai panelli solari termici (1), scorre spinta da elettropompa (5) per immagazzinare calore nel terreno ed avere un successivo recupero di calore, utilizzabile dall?impianto in altri periodi. CLAIMS 1) Low enthalpy geothermal solar plant comprising a plurality of of thermal solar panels (1) connected, by means of transport pipes (2) of the heated fluid, to a transitory storage tank (3) for hot water, with insulated pipes (4) connected to the transitory storage tank (3) and to a group of solenoid valves (6); characterized by the fact that the solenoid valves (6) are connected in turn to heat exchange pipes (7) arranged in the ground up to thirty meters below the ground level where the hot water, produced in excess by the thermal solar panels (1) , it flows pushed by an electric pump (5) to store heat in the ground and have a subsequent heat recovery, which can be used by the system in other periods. 2) Impianto solare geotermico a bassa entalpia, come dalla rivendicazione precedente, caratterizzato dal fatto che il gruppo di elettrovalvole (6) provvede a dare priorit? di riempimento ad almeno un tubo di scambio termico (7) centrale e successivamente a quelli periferici per costituire una zona calda nel terreno in cui conservare il calore. 2) Low enthalpy geothermal solar plant, as per the previous claim, characterized by the fact that the group of solenoid valves (6) gives priority? filling to at least one central heat exchange pipe (7) and subsequently to the peripheral ones to form a warm zone in the ground in which to store heat. 3) Impianto solare geotermico a bassa entalpia, come dalle rivendicazioni precedenti, caratterizzato dal fatto che il numero e la dimensione dei tubi di scambio termico (7) pu? variare in relazione alla quantit? di calore da conservare e da poter riutilizzare in altri periodi, ) Impianto solare geotermico a bassa entalpia, come dalle rivendicazioni precedenti, caratterizzato dal fatto che gli strati di terreno in cui sono collocati i tubi coibentati (4) ed i tubi di scambio termico possono variare in funzione del terreno, della collocazione dell?impianto e della latitudine in cui l'impianto si trova ad operare. 5) Impianto solare geotermico a bassa entalpia, come dalle rivendicazioni precedenti, caratterizzato dal fatto che l'impianto prevede un metodo di posa dei tubi coibentati (4) e dei tubi di scambio termico (7) dove viene effettuato uno sbancamento (8) alla cui base (9) vengono realizzati perforazioni per introdurre i tubi di scambio termico (7) e, in cima a detti tubi , le elettrovalvole (6); e dal fatto che la disposizione dei tubi di scambio termico (7) prevede una collocazione di un numero di tubi da uno a quattro in posizione centrale ed una disposizione di ulteriori quattro o pi? tubi in posizione periferica disposti secondo simmetria radiale e collocati con angolazione di circa 12-15? rispetto alla verticale per costituire una zona calda per immagazzinare calore nel terreno. 3) Low enthalpy geothermal solar plant, as per the previous claims, characterized by the fact that the number and size of the heat exchange pipes (7) can? vary in relation to the quantity? heat to be stored and reused in other periods, ) Low enthalpy geothermal solar plant, as per the previous claims, characterized by the fact that the layers of soil in which the insulated pipes (4) and the heat exchange pipes are located may vary according to the ground, the location of the plant and of the latitude in which the plant is operating. 5) Low enthalpy geothermal solar plant, as per the preceding claims, characterized by the fact that the plant provides a method of laying insulated pipes (4) and heat exchange pipes (7) where an excavation (8) is carried out at the the base (9) of which perforations are made to introduce the heat exchange pipes (7) and, on top of said pipes, the solenoid valves (6); and by the fact that the arrangement of the heat exchange pipes (7) provides for the location of a number of pipes from one to four in a central position and an arrangement of a further four or more? tubes in a peripheral position arranged according to radial symmetry and placed at an angle of about 12-15? with respect to the vertical to constitute a hot zone to store heat in the ground.
ITBO2015A000241A 2015-05-12 2015-05-12 LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM ITBO20150241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ITBO2015A000241A ITBO20150241A1 (en) 2015-05-12 2015-05-12 LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITBO2015A000241A ITBO20150241A1 (en) 2015-05-12 2015-05-12 LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM

Publications (1)

Publication Number Publication Date
ITBO20150241A1 true ITBO20150241A1 (en) 2016-11-12

Family

ID=53900895

Family Applications (1)

Application Number Title Priority Date Filing Date
ITBO2015A000241A ITBO20150241A1 (en) 2015-05-12 2015-05-12 LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM

Country Status (1)

Country Link
IT (1) ITBO20150241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024054615A1 (en) * 2022-09-09 2024-03-14 Capillary Concrete, Llc Geothermal aerification system and related methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002736A1 (en) * 1979-05-30 1980-12-11 Hagconsult Ab Utilization of ground earth under building structures for storing and/or withdrawal of heat energy
WO1981000754A1 (en) * 1979-09-06 1981-03-19 N Knudsen Heat accumulator
US20040194914A1 (en) * 1995-09-12 2004-10-07 Johnson Howard E. Bottom member and heat loops
DE202007018251U1 (en) * 2007-07-09 2008-04-30 Lohrmann, Norbert, Dipl.-Ing. Device for supplying energy to buildings
EP2012366A2 (en) * 2007-07-05 2009-01-07 Federico Pirovano Photovoltaic system with improved efficiency and increment method of the electrical energy production of at least a thermo-photovoltaic solar module
DE102008017675A1 (en) * 2008-04-08 2009-10-15 Stephan Heckert Solar thermal energy utilization method for e.g. single family house, involves supplying excessive solar thermal energy to geothermal energy sensors for preheating energy sensors and ground or ground water surrounding sensors during winter
US20140283815A1 (en) * 2013-03-25 2014-09-25 Watts Thermoelectric, Llc Solar collector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002736A1 (en) * 1979-05-30 1980-12-11 Hagconsult Ab Utilization of ground earth under building structures for storing and/or withdrawal of heat energy
WO1981000754A1 (en) * 1979-09-06 1981-03-19 N Knudsen Heat accumulator
US20040194914A1 (en) * 1995-09-12 2004-10-07 Johnson Howard E. Bottom member and heat loops
EP2012366A2 (en) * 2007-07-05 2009-01-07 Federico Pirovano Photovoltaic system with improved efficiency and increment method of the electrical energy production of at least a thermo-photovoltaic solar module
DE202007018251U1 (en) * 2007-07-09 2008-04-30 Lohrmann, Norbert, Dipl.-Ing. Device for supplying energy to buildings
DE102008017675A1 (en) * 2008-04-08 2009-10-15 Stephan Heckert Solar thermal energy utilization method for e.g. single family house, involves supplying excessive solar thermal energy to geothermal energy sensors for preheating energy sensors and ground or ground water surrounding sensors during winter
US20140283815A1 (en) * 2013-03-25 2014-09-25 Watts Thermoelectric, Llc Solar collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024054615A1 (en) * 2022-09-09 2024-03-14 Capillary Concrete, Llc Geothermal aerification system and related methods

Similar Documents

Publication Publication Date Title
KR101524820B1 (en) Geothermal energy system and method of operation
PH12017500380B1 (en) Geothermal heat exchanger, liquid transport pipe, liquid raising pipe, geothermal power generation facility, and geothermal power generation method
CL2011000764A1 (en) Solar self-pumping water heating system, comprises a solar collector with upward or vertical inclined panels with lifting tubes, a multiple lower collector connected to the lower ends of the lifting tubes, reservoirs, heat exchanger, storage tank; heating method
JP2013164062A5 (en) Geothermal exchanger, geothermal power generation apparatus, and geothermal power generation method
CN206478882U (en) A kind of U-shaped well deep geothermal heat conduction-convection problem
US20140000838A1 (en) System and method of maximizing performance of a solid-state closed loop well heat exchanger
LV14875A (en) Method for arrangement and sealing of borehole for production of geothermal heat
ITUA20164379A1 (en) GEOTHERMAL WELL TO COMMUNICATING VASES.
BRPI0912955B1 (en) method of building a hydroelectric power generation system in an environment and hydroelectric power generation system in an environment
EP3118558B1 (en) Ground heat accumulator
ITBO20150241A1 (en) LOW ENTHALPY GEOTHERMAL SOLAR SYSTEM
CN205156415U (en) Xeothermic rock heat exchanger of many U type tubular
KR101234014B1 (en) Polyethylene header for ground heat system
EP3014189B1 (en) Wall part, heat buffer and energy exchange system
US20170016201A1 (en) Heat exchange structure of power generation facility
CN202470523U (en) Device for acquiring heat from crust temperature-increasing layer
CN206291514U (en) A kind of heat exchange runtime of across the season soil thermal storage well spacing pipe laying of domestic solar
CN205156703U (en) Xeothermic rock heat exchanger of heat pipe formula
JP5388131B2 (en) Solar thermal underground thermal storage device using solar heat
KR101097910B1 (en) The heat of the earth exchanger of enemy number of layers pyeong style structure
KR101501658B1 (en) Geothermal power generation system
RU2683059C1 (en) Method of extraction and use of geothermal heat for cooling soils around subway tunnels
CN106050305B (en) A method of fused salt is stored based on Anhydrite Ore goaf
CN104729116A (en) Solar receiver
JP2011145050A (en) Energy supply system reusing existing cavern