NO793472L - PROCEDURE FOR THE PREPARATION OF POLYMERS OF VINYL AND VINYLIDEEN HALOGENIDES AND COPOLYMERS THEREOF - Google Patents

PROCEDURE FOR THE PREPARATION OF POLYMERS OF VINYL AND VINYLIDEEN HALOGENIDES AND COPOLYMERS THEREOF

Info

Publication number
NO793472L
NO793472L NO793472A NO793472A NO793472L NO 793472 L NO793472 L NO 793472L NO 793472 A NO793472 A NO 793472A NO 793472 A NO793472 A NO 793472A NO 793472 L NO793472 L NO 793472L
Authority
NO
Norway
Prior art keywords
approx
polymer
vinyl
electrolyte
premix
Prior art date
Application number
NO793472A
Other languages
Norwegian (no)
Inventor
Bela Kalman Mikofalvy
James Wilson Turner
Original Assignee
Goodrich Co B F
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodrich Co B F filed Critical Goodrich Co B F
Publication of NO793472L publication Critical patent/NO793472L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

Foreliggende oppfinnelse vedrorer en fremgangsmåte til. fremstilling av polymerer av vinyl- og vinylidenhalogenider og kopolymerer derav. The present invention relates to another method. production of polymers of vinyl and vinylidene halides and copolymers thereof.

Det er velkjent at vinylhalogenider kan mykgjores eller endres fra hard, hornaktig og stiv tilstand til en myk, plastisk, bearbeidbar tilstand ved tilsetning dertil ved forhoyede temperaturer av visse myknere slik som dioktylftalat o.l. Disse vinylpolymerer eller -harpikser betegnes dispersjon-harpikser eller pasta-harpikser og fremstilles vanligvis under anvendelse av en vandig emulsjonspolymeri-sasjonsteknikk. I noen tilfeller har det vært benyttet en suspensjonspolymerisasjonsprosess, men emulsjonspolymerisa-sjon foretrekkes. It is well known that vinyl halides can be softened or changed from a hard, horn-like and rigid state to a soft, plastic, workable state by the addition thereto at elevated temperatures of certain plasticizers such as dioctyl phthalate and the like. These vinyl polymers or resins are termed dispersion resins or paste resins and are usually prepared using an aqueous emulsion polymerization technique. In some cases, a suspension polymerization process has been used, but emulsion polymerization is preferred.

Når vinyl-dispersjons-harpiksen blandes med en mykner,blir den kalt en "plastisol". På grunn av plasti-solens flyteevne kan den bearbeides til forskjellige nyttige produkter. Plastisolene kan f.eks. anvendes til fremstilling av stbpte produkter, filmer, belegg o.l. ' Vinyl-dispersjons-harpiksen må folgelig lett og på ensartet måte kunne blandes med mykningsmidlene. for dannelse av plastisoler av lav viskositet som er stabile, inneholdende partikler av jevn og riktig storrelse, og som kan gi filmer og lignende produk- When the vinyl dispersion resin is mixed with a plasticizer, it is called a "plastisol". Due to the flowability of plastisol, it can be processed into various useful products. The plastisols can e.g. used for the production of rigid products, films, coatings etc. The vinyl dispersion resin must therefore be easily and uniformly mixed with the plasticizers. for the formation of plastisols of low viscosity which are stable, containing particles of uniform and correct size, and which can give films and similar products

ter med god klarhet.ter with good clarity.

Med de vanlige emulsjonspolymerisasjonsprosesseneWith the usual emulsion polymerization processes

har det vært vanskelig å oppnå egnede latekser siden lateksene vanligvis inneholder partikler av varierende storrelse og er enten for fine eller for store. Det har hittil vært fremsatt forskjellige forslag for å overvinne disse vanskeligheter, it has been difficult to obtain suitable latexes since the latexes usually contain particles of varying sizes and are either too fine or too large. Various proposals have so far been put forward to overcome these difficulties,

men disse har ikke hatt de onskede, heldige resultater. Bruken av forskjellige emulgeringsmidler og katalysatorer har f.eks. vært foreslått. Videre har man foreslått å variere polymerisasjonsbetingelsene. I de fleste av disse tilfeller har det imidlertid forekommet for meget koagulering med det resultat at den oppnådde lateks inneholder for meget koagu-lert materiale eller delvis agglomererte partikler som ut-felles og dermed forårsaker en reduksjon i utbyttet. Lagrings tiden for slike latekser er dessuten ikke tilfredsstillende. Det er onskelig å tilveiebringe latekser som forandrer seg meget lite under lagring med hensyn til viskositet og som har og bibeholder god varmestabilitet. but these have not had the desired, fortunate results. The use of different emulsifiers and catalysts has e.g. been proposed. It has also been proposed to vary the polymerization conditions. In most of these cases, however, too much coagulation has occurred with the result that the latex obtained contains too much coagulated material or partially agglomerated particles which precipitate and thus cause a reduction in the yield. The storage time for such latexes is also not satisfactory. It is desirable to provide latexes which change very little during storage with respect to viscosity and which have and maintain good thermal stability.

I U.S. patent nr. 4.076.920 beskrives en fremgangsmåte til fremstilling av vinyl-dispersjons-harpikser og denne fremgangsmåte gir polymerer som har enestående egenskaper for bestemte sluttanvendelser. Her som i andre tid-ligere kjente prosesser er det imidlertid nodvendig å for-stbvningstbrke lateksen eller polymeremulsjonen, hvilket resulterer i aggregater av polymerpartiklene hvilke krever maling for å bryte dem opp til en storrelse som kan anvendes i plastisoler. Som et resultat av den knusing og maling som er nodvendig for å redusere polymeren til en storrelse som kan anvendes i plastisoler og også på grunn av de varierende stbrrelser og uregelmessige former på de malte fragmenter, har de således oppnådde plastisoler hbye viskositeter i forhold til deres faststoffinnhold. Den utstrakte maling som er nodvendig utvikler dessuten vesentlig varme, hvilket har tendens til å smelte polymeren. In the U.S. patent no. 4,076,920 describes a process for the production of vinyl dispersion resins and this process provides polymers that have unique properties for specific end uses. Here as in other previously known processes, however, it is necessary to stiffen the latex or polymer emulsion, which results in aggregates of the polymer particles which require grinding to break them up to a size that can be used in plastisols. As a result of the crushing and grinding necessary to reduce the polymer to a size that can be used in plastisols and also because of the varying rod sizes and irregular shapes of the milled fragments, the plastisols thus obtained have high viscosities compared to their solids content. Furthermore, the extended paint required generates significant heat, which tends to melt the polymer.

I motsetning til "perle" eller suspensjonspolymer-isasjon hvor polymerpartiklene er store nok til å kunne fil-treres, kan vinyl-dispersjons-harpikser ikke innvinnes fra vannemulsjonene ved filtrering og fattbrking fordi de går gjennom filtrene og også fordi de små partiklene pakkes tett sammen under fattbrkingen og danner en "kake" som selv etter maling forblir hard å formulere til jevne plastisoler og dermed gjor \ dem praktisk talt ubrukbare for de fleste kommersielle operasjoner. Partiklene av polymer som skal anvendes i en plastisol bor fortrinnsvis ha sfærisk form hvorved man får en så liten partikkeloverflate som mulig for en minimum solvatisering. En dispersjon av sfærer gir også den laveste flytviskositet for fylling av former, belegging og lignende operasjoner (kfr. U.S. patent nr. 3.179.646). Unlike "bead" or suspension polymerization where the polymer particles are large enough to be filtered, vinyl dispersion resins cannot be recovered from the water emulsions by filtration and vat breaking because they pass through the filters and also because the small particles are tightly packed together during barrel breaking and forms a "cake" which, even after painting, remains hard to formulate into smooth plastisols, thus rendering them practically unusable for most commercial operations. The particles of polymer to be used in a plastisol should preferably have a spherical shape, thereby obtaining as small a particle surface as possible for a minimum of solvation. A dispersion of spheres also provides the lowest flow viscosity for filling molds, coating and similar operations (cf. U.S. Patent No. 3,179,646).

Et annet problem ved fremstilling av vinyl-dispersjons-harpikser er dannelsen av ubnsket polymeroppbygging på reaktorens indre overflater. Denne avsetning eller oppbygning av polymer på reaktoroverflater forstyrrer ikke bare varmeovergangen, men senker også produktiviteten og har en skadelig innvirkning på polymerkvaliteten idet det dannes finere partikler enn bnsket hvilket har en uheldig innvirkning på viskositeten. Denne polymeroppbygning må åpenbart fjernes med de medfblgende vanskeligheter dette har. Det ville være bnskelig å hindre eller i alt vesentlig eliminere polymeroppbygging. Another problem in the production of vinyl dispersion resins is the formation of unwanted polymer build-up on the inner surfaces of the reactor. This deposition or build-up of polymer on reactor surfaces not only interferes with heat transfer, but also lowers productivity and has a detrimental effect on polymer quality as finer particles than desired are formed which has an adverse effect on viscosity. This polymer build-up must obviously be removed with the attendant difficulties this has. It would be desirable to prevent or essentially eliminate polymer build-up.

Man har nå funnet at når emulsjonspolymerisasjonen av vinyl-dispersjons-harpikser utfores i nærvær av en elektrolytt, slik som f .eks.. xLet ."flyktige" ammoniumkarbonat ((NH^^CO-^), som fordamper under tbrking, kan den resulterende vandige polymeremulsjon trautbrkes til lettsmuldrende aggregater av enkeltsfærer av polymerpartikler som kan skil-les i enkelte sfæriske polymerpartikler ved enkel lett gnidning eller knusing. I foreliggende oppfinnelse hvor man an-vender trautbrking, i tillegg til elektrolytten, blir polymerisasjonsreaksjonen av vinylmonomeren eller -monomerene utfort i et vandig, alkalisk medium under anvendelse av en fri radikal-givende polymerisasjonsinitiator, ved en temperatur under ca. 48°C, i nærvær av ammoniumsaltet av en hby fettsyre inneholdende 8-20 karbonatomer, og minst én lang, rettkjedet alkohol med 14 - 24 karbonatomer, hvor forholdet mellom alkohol og emulgeringsmidler er lik eller stbrre enn 1,0, og hvor reaksjonsbestanddelene blir grundig blandet og fortrinnsvis homogenisert for polymerisasjonen. Under anvendelse av foreliggende fremgangsmåte redusereb polymeroppbygningen i reaktoren og flere polymerisasjoner kan utfores i reaktoren uten at denne åpnes og man får derved vesentlig redusert mengden av uomsatt monomer i den omgivende atmosfære. Med betegnelsen "vinyl-dispersjons-harpiks" menes her polymerer og kopolymerer av vinyl- og vinylidenhalogenider, slik som vinylklorid, vinylidenklorid o.l. Vinylhalogenid-ene og vinylidenhalogenidene kan kopolymeriseres med én eller flere vinylidenmonomerer med minst én CH2=C-endegruppe. Som eksempler på slike vinylidenmonomerer kan nevnes de a, |3-olefinisk umettede karboksylsyrene, slik som akrylsyre, met-akrylsyre, a-cyanoakrylsyre o.l.; estere av akrylsyrer slik som metylakrylat, etylakrylat, butylakrylat, oktylakrylat, cyanetylakrylat o.l.; estere av metakrylsyrer slik som-metylmetakrylat, butylmetakrylat o.l.; nitriler slik som akrylonitril og metakrylonitril; akrylamider slik som metyl-akrylamid, N-metylolakrylamid, N-butoksylmetakrylamid o.l.; vinyletere slik som etylvinyleter, kloretylvinyleter o.l.; vinylketoner; styren og styrenderivater inkludert a-metyl-styren, vinyltoluen, klorstyren o.l.; vinylnaftalen, allyl-og vinylkloracetat, vinylacetat, vinylpyridin, metylvinyl-keton, og andre vinylidenmonomerer som er kjent for fagmannen. Foreliggende oppfinnelse er spesielt anvendbar i forbindelse med produksjon av vinyl-dispersjons-harpikser eller -pastaer fremstilt ved polymerisasjon av vinylklorid eller vinylidenklorid alene eller i blanding med én eller flere vinylidenmonomerer polymeriserbare dermed, i mengder på opptil ca. 80 vekt-%, basert på vekten av monomerblandingen. Den mest foretrukne vinyl-dispersjons-harpiks er polyvinylklorid (PVC) og foreliggende oppfinnelse vil hensiktsmessig og for enkel-hets skyld bli beskrevet i forbindelse med dette materiale, idet det skal forstås at dette er kun ment som en illustra-sjon på oppfinnelsen og skal ikke ha en begrensende virkning på denne. It has now been found that when the emulsion polymerization of vinyl dispersion resins is carried out in the presence of an electrolyte, such as, for example. the resulting aqueous polymer emulsion is pulverized into easily crumbling aggregates of single spheres of polymer particles which can be separated into individual spherical polymer particles by simple light rubbing or crushing. In the present invention where pulverization is used, in addition to the electrolyte, the polymerization reaction of the vinyl monomer or monomers is carried out in an aqueous, alkaline medium using a free radical polymerization initiator, at a temperature below about 48°C, in the presence of the ammonium salt of a hby fatty acid containing 8-20 carbon atoms, and at least one long, straight-chain alcohol of 14 - 24 carbon atoms, where the ratio between alcohol and emulsifiers is equal to or greater than 1.0, and where the reaction components are thoroughly mixed and quickly gradually homogenized for the polymerization. Using the present method, the polymer build-up in the reactor is reduced and several polymerizations can be carried out in the reactor without it being opened, thereby significantly reducing the amount of unreacted monomer in the surrounding atmosphere. By the term "vinyl dispersion resin" is meant here polymers and copolymers of vinyl and vinylidene halides, such as vinyl chloride, vinylidene chloride and the like. The vinyl halides and vinylidene halides may be copolymerized with one or more vinylidene monomers having at least one CH 2=C end group. Examples of such vinylidene monomers include the α,β-olefinically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, α-cyanoacrylic acid and the like; esters of acrylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, cyanoethyl acrylate and the like; esters of methacrylic acids such as methyl methacrylate, butyl methacrylate and the like; nitriles such as acrylonitrile and methacrylonitrile; acrylamides such as methylacrylamide, N-methylolacrylamide, N-butoxylmethacrylamide and the like; vinyl ethers such as ethyl vinyl ether, chloroethyl vinyl ether and the like; vinyl ketones; styrene and styrene derivatives including α-methyl-styrene, vinyltoluene, chlorostyrene and the like; vinyl naphthalene, allyl and vinyl chloroacetate, vinyl acetate, vinyl pyridine, methyl vinyl ketone, and other vinylidene monomers known to those skilled in the art. The present invention is particularly applicable in connection with the production of vinyl dispersion resins or pastes produced by polymerization of vinyl chloride or vinylidene chloride alone or in a mixture with one or more vinylidene monomers that can be polymerized thereby, in quantities of up to approx. 80% by weight, based on the weight of the monomer mixture. The most preferred vinyl dispersion resin is polyvinyl chloride (PVC) and the present invention will appropriately and for the sake of simplicity be described in connection with this material, it being understood that this is only intended as an illustration of the invention and shall not have a limiting effect on this.

Det viktige trekk ved foreliggende oppfinnelse er tilveiebringelsen av en fremgangsmåte til fremstilling av vinyl-dispersjons-harpikser hvorved man etter dannelsen av polymerlateksen eller vandig polymeremulsjon kan tbrke denne til lettsmuldrende aggregater av enkeltsfærer av polymerpartikler ved enkel trautorking. Dette eliminerer den vanske-ligeforstovningstorking og maling som meget ofte resulterer i uonsket polymerkvalitet. Det som muliggjbr trautorking av polymeremulsjonen og som er selve kjernen ved oppfinnelsen, er bruken av en elektrolytt ved polymerisasjonen. Elektrolyt-ter som er egnet for bruk i foreliggende oppfinnelse er ammoniumkarbonat ((NH^^CO^), kalsiumklorid (CaCl2), kalsium-karbonat (CaCO^), ammoniumfosfat, bikarbonatene, natrium-saltene slik som karbonater, bikarbonater og fosfater, o.l. Mengden av elektrolytt egnet for bruk i foreliggende oppfinnelse vil variere fra ca. 0,05 - ca. 6,0 vekt-%, basert på vekten av monomer eller monomerer som polymeriseres. Det anvendes fortrinnsvis en mengde i området 0,1 - 2,0. vekt-%. The important feature of the present invention is the provision of a method for the production of vinyl dispersion resins whereby, after the formation of the polymer latex or aqueous polymer emulsion, this can be used to easily crumble aggregates of single spheres of polymer particles by simple drying. This eliminates the difficult straight spray drying and painting which very often results in undesirable polymer quality. What enables trough drying of the polymer emulsion and which is the very core of the invention, is the use of an electrolyte during the polymerisation. Electrolytes which are suitable for use in the present invention are ammonium carbonate ((NH^^CO^), calcium chloride (CaCl2), calcium carbonate (CaCO^), ammonium phosphate, the bicarbonates, the sodium salts such as carbonates, bicarbonates and phosphates, etc. The amount of electrolyte suitable for use in the present invention will vary from about 0.05 - about 6.0% by weight, based on the weight of monomer or monomers being polymerized. An amount in the range of 0.1 - 2 is preferably used .0% by weight.

De lettsmuldrende aggregater som oppnås ved foreliggende fremgangsmåte representerer en betydelig fordel eller forbedring overfor kjente: metoder for -innvinning .av vinyl-dispersjons- eller pasta-harpikser fra vann for bruk i plastisoler, f.eks. forstovningstorking og etterfølgende oppmaling. De lettsmuldrende aggregater som oppnås kan lett håndteres i post-polymerisasjonstrinnene for polymer- eller harpiksinnvinning. De lett smuldrende aggregater dannes lett og de enkelte sfæriske partikler av vinyl-dispersjons-harpikser, av en storrelse som er nodvendig for pasta-harpikser, dannes lett ved knusing, maling eller gnidning av aggregatene. De enkelte, sfæriske polymerpartikler har normalt en storrelse eller diameter i området fra 0,1 mikron til ca. 10,0 The easily crumbling aggregates obtained by the present method represent a significant advantage or improvement over known: methods for -recovery of vinyl dispersion or paste resins from water for use in plastisols, e.g. spray drying and subsequent grinding. The easily crumbled aggregates obtained can be easily handled in the post-polymerization steps for polymer or resin recovery. The easily crumbling aggregates are easily formed and the individual spherical particles of vinyl dispersion resins, of a size necessary for paste resins, are easily formed by crushing, grinding or rubbing the aggregates. The individual, spherical polymer particles normally have a size or diameter in the range from 0.1 micron to approx. 10.0

mikron. For de fleste kommersielle anvendelser av plastisoler idag, er det foretrukket at polymerpartiklene har en storrelse i området 0,2 - 2,0 mikron. micron. For most commercial applications of plastisols today, it is preferred that the polymer particles have a size in the range of 0.2 - 2.0 microns.

Det er overraskende andre positive sider "ved brukThere are surprisingly other positive aspects "of use

av elektrolyttene i emulsjonspolymerisasjonsprosessen ved siden av muligheten for anvendelse av trautorking og oppnåelse av et produkt av forbedret kvalitet/ F.eks. når det anvendes elektrolytt ved polymerisasjonen,blir omdannelses-hastigheten for monomer(er) til polymer bket og dette resulterer i en total minsking av tid for fullst.ehdigf polymerisasjon hvilket igjen resulterer i foroket produksjon pr. tidsenhet og derved reduksjon i kostnadene for fremstilling av vinyl-dispersjons-harpikser under anvendelse av foreliggende fremgangsmåte. of the electrolytes in the emulsion polymerization process in addition to the possibility of using trough drying and obtaining a product of improved quality/ E.g. when electrolyte is used in the polymerisation, the rate of conversion of monomer(s) to polymer is slowed down and this results in a total reduction of time for complete polymerisation which in turn results in increased production per unit of time and thereby a reduction in the costs for the production of vinyl dispersion resins using the present method.

Et annet overraskende trekk ved foreliggende oppfinnelse er at polymeroppbygging på de indre overflater i. reaktoren reduseres. Selv om det ikke er helt kjent hvorfor en slik reduksjon i oppbygning forekommer, antas det delvis ikke bare å skyldes tilstedeværelsen av elektrolytten i sam-mensetningen, men også reaksjonshastigheten og de lave reak-sjonstemperaturer, fordi det er kjent at hbyere reaksjons-temperaturer i lengre tidsrom oker sannsynligheten for over-dreven polymeroppbygging. I alle tilfeller tilveiebringes det store forbedringer med hensyn til polymeroppbygnings-problemet under anvendelse av foreliggende oppfinnelse. Egen-skapene hos vinyl-dispersjons-harpiksen og plastisolen, slik som varmestabilitet, vannbestandighet, flytegenskaper o.l., blir dessuten ikke uheldig påvirket ved foreliggende fremgangsmåte, og blir de påvirket er det i tilfelle en forbedring. Another surprising feature of the present invention is that polymer build-up on the inner surfaces of the reactor is reduced. Although it is not entirely known why such a reduction in build-up occurs, it is believed to be partly due not only to the presence of the electrolyte in the composition, but also to the reaction rate and the low reaction temperatures, because it is known that higher reaction temperatures in longer periods of time increase the likelihood of excessive polymer build-up. In all cases, great improvements are provided with regard to the polymer build-up problem using the present invention. The properties of the vinyl dispersion resin and the plastisol, such as heat stability, water resistance, flow properties etc., are also not adversely affected by the present method, and if they are affected, it is in any case an improvement.

Ved fremstilling av vinyl-dispersjons-harpikser ved emulsjonspolymerisasjonsmetoden er det nodvendig å anvende et riktig emulgeringsmiddel eller emulgeringsmiddelsystem. Forskjellige fettsyrederivater og salter derav kan f.eks. anvendes, samt sulfat- og sulfonatsåper med fra C-^-til C2Q-alkyl- eller arylhydrokarboner, eller forskjellige kombinasjoner derav. For å"- oppnå riktig vannbestandighet og varmestabilitet hos filmer fremstilt fra plastisoler av vinyl-dispersjons-harpiksene, er det i foreliggende oppfinnelse imidlertid foretrukket å anvende ammoniumsaltet av en langkjedet, mettet fettsyre som emulgeringsmiddel. De met-tede fettsyrene som er egnet kan enten være naturlig fore-kommende eller syntetiske og bor inneholde 8-20 karbonatomer. Som eksempler på slike syrer kan nevnes laurinsyre, myri-. stinsyre, palmitinsyre, margansyre, stearinsyre o.L, kjott-talg, kokosnottolje o.l. Ammoniumsalt-emulgeringsmidlet anvendes i en mengde i området fra ca. 0,5 - ca. 4,0 vekt-% basert på vekten av monomer eller monomerer som polymeriseres. Man kan også benytte blandinger av ammoniumsaltene av fettsyrene i emulgeringsmiddelsystemet. When producing vinyl dispersion resins by the emulsion polymerization method, it is necessary to use a suitable emulsifier or emulsifier system. Various fatty acid derivatives and salts thereof can e.g. are used, as well as sulfate and sulfonate soaps with from C-^ to C2Q-alkyl or aryl hydrocarbons, or various combinations thereof. In order to achieve the correct water resistance and heat stability of films produced from plastisols of the vinyl dispersion resins, however, in the present invention it is preferred to use the ammonium salt of a long-chain, saturated fatty acid as an emulsifier. The saturated fatty acids that are suitable can either be naturally occurring or synthetic and should contain 8-20 carbon atoms. Examples of such acids include lauric acid, myristic acid, palmitic acid, manganic acid, stearic acid etc., meat tallow, coconut oil etc. The ammonium salt emulsifier is used in an amount of the range from about 0.5 - about 4.0% by weight based on the weight of monomer or monomers that are polymerized.You can also use mixtures of the ammonium salts of the fatty acids in the emulsifier system.

Ammoniumsaltene av fettsyrene kan oppnås ved blanding av fettsyren og ammoniumhydroksyd, separering av saltet og deretter tilsetning av dette til polymerisasjonsmediet eller polymerisasjons-forblandingen på vanlig måte. Det er. Det er imidlertid foretrukket å danne ammoniumsaltet in situ, dvs. ved tilsetning av fettsyren og ammoniumhydroksyd sepa-rat til polymerisasjonsblandingen eller -mediet hvori de rea-gerer for dannelse av saltet. Et overskudd av ammoniumhydroksyd over det som er nodvendig for å reagere med fettsyren, bor benyttes for å holde reaksjonsmediet på den alkaliske side. The ammonium salts of the fatty acids can be obtained by mixing the fatty acid and ammonium hydroxide, separating the salt and then adding this to the polymerization medium or the polymerization premix in the usual way. It is. However, it is preferred to form the ammonium salt in situ, i.e. by adding the fatty acid and ammonium hydroxide separately to the polymerization mixture or medium in which they react to form the salt. An excess of ammonium hydroxide over what is required to react with the fatty acid should be used to keep the reaction medium on the alkaline side.

I tillegg til ammoniumsaltet av et langkjedet fettsyre-emulgeringsmiddel, er det ofte bnskelig å benytte en lang, rettkjedet, mettet alkohol i kombinasjon med et slikt emuleringsmiddel, hvor alkoholen inneholder 14 - 24 karbonatomer. Eksempler på slike alkoholer er tetradekanol, penta-dekanol, heksadekanol, heptadekanol, oksadecanol, nonadeka-nol, eikosanol, heneikosanol, trikosanol og tetrakosanol. Blandinger av alkoholene kan også benyttes og i mange tilfeller foretrekkes en alkoholblanding slik som f.eks. en blanding av en alkohol med 14 karbonatomer og en med 18 karbonatomer. Alkoholer med lavere karboninnhold kan også anvendes i blanding med alkoholene med lengre kjede, f.eks. In addition to the ammonium salt of a long-chain fatty acid emulsifier, it is often desirable to use a long, straight-chain, saturated alcohol in combination with such an emulsifier, where the alcohol contains 14 - 24 carbon atoms. Examples of such alcohols are tetradecanol, pentadecanol, hexadecanol, heptadecanol, oxadecanol, nonadecanol, eicosanol, heneicosanol, tricosanol and tetracosanol. Mixtures of the alcohols can also be used and in many cases an alcohol mixture such as e.g. a mixture of an alcohol with 14 carbon atoms and one with 18 carbon atoms. Alcohols with a lower carbon content can also be used in admixture with the alcohols with a longer chain, e.g.

en blanding av dodekanol og oktadekanol. Når en alkohol anvendes, benyttes et forhold mellom alkohol og ammoniumsalt av fettsyre på 1,0. De beste resultater oppnås imidlertid når dette forhold er stbrre enn 1,0. a mixture of dodecanol and octadecanol. When an alcohol is used, a ratio between alcohol and ammonium salt of fatty acid of 1.0 is used. However, the best results are obtained when this ratio is greater than 1.0.

Som nevnt ovenfor bor reaksjonsmediet holdes på den alkaliske siden, og fortrinnsvis ved en hbyere pH-verdi. Foreliggende fremgangsmåte kan utfores ved en pH-verdi i området fra ca. 7,0 - ca. 12,0. Det er imidlertid foretrukket å operere i et pH-område på fra ca. 8,0 - ca. 10,5. Dersom pH-verdien er for hby, kreves for meget NH^OH, og dersom pH-verdien er for lav, f.eks. under 7,0, oker polymeropp-byggingen i reaktoren og koagulum oker. Mengden av NH^OH som skal til for på riktig måte å regulere pH-verdien vil avhenge delvis av det spesielle emulgeringsmiddelsystem som anvendes i reaksjonsblandingen. Andre alkaliske midler kan naturligvis benyttes for å regulere pH-verdien til reaksjonsblandingen, f.eks. NaOH, KOH osv. Valget av et spesielt alkalisk middel avhenger av bestanddelene i reaksjonsmediet. Foreliggende fremgangsmåte hvori det anvendes en elektrolytt i reaksjonsblandingen og hvorved produktet trautbrkes, utfores i nærvær av en forbindelse eller forbindelser som kan initiere polymerisasjonsreaksjonen. Fri radikal-givende initiatorer, som normalt anvendes for polymerisasjon av olefinisk umettede monomerer, er tilfredsstillende. Nyttige initiatorer eller katalysatorer omfatter f.eks. de forskjellige peroksygenforbindelsene slik som laurylperok-syd, isopropylperoksydikarbonat, benzoylperoksyd,få-buty1-hydroperoksyd, t-butylperoksypivalat, kumenhydroperoksyd, t-butyldiperftalat, pelargonylperoksyd, 1-hydroksycykloheksyl-hydroperoksyd Oil.; azoforbindelser slik som azodiisobutyro-nitril, dimetylazodiisobutyrat o.l. Nyttige lnitTatorer er også de vannopplbselige peroksygenforbindelsene slik som hydrogenperoksyd, persulfater slik som kaliumpersulfat, ammoniumpersulfat o.l. Mengden av initiator som benyttes vil generelt være i området fra ca. 0,01 - ca. 0,5 vekt-%, basert på vekten av monomeren eller monomerene som polymeriseres, og fortrinnsvis i området fra ca. 0,02 - ca. 0,1 vekt-%. As mentioned above, the reaction medium should be kept on the alkaline side, and preferably at a higher pH value. The present method can be carried out at a pH value in the range from approx. 7.0 - approx. 12.0. However, it is preferred to operate in a pH range of from approx. 8.0 - approx. 10.5. If the pH value is too high, too much NH^OH is required, and if the pH value is too low, e.g. below 7.0, polymer build-up increases in the reactor and coagulum increases. The amount of NH^OH required to properly regulate the pH value will depend in part on the particular emulsifier system used in the reaction mixture. Other alkaline agents can of course be used to regulate the pH value of the reaction mixture, e.g. NaOH, KOH, etc. The choice of a particular alkaline agent depends on the constituents of the reaction medium. The present method, in which an electrolyte is used in the reaction mixture and whereby the product is leached, is carried out in the presence of a compound or compounds which can initiate the polymerization reaction. Free radical-giving initiators, which are normally used for the polymerization of olefinically unsaturated monomers, are satisfactory. Useful initiators or catalysts include e.g. the various peroxygen compounds such as lauryl peroxide, isopropyl peroxydicarbonate, benzoyl peroxide, polybutylene hydroperoxide, t-butyl peroxy pivalate, cumene hydroperoxide, t-butyl diperphthalate, pelargonyl peroxide, 1-hydroxycyclohexyl hydroperoxide Oil.; azo compounds such as azodiisobutyronitrile, dimethylazodiisobutyrate, etc. Useful initiators are also the water-soluble peroxygen compounds such as hydrogen peroxide, persulphates such as potassium persulphate, ammonium persulphate and the like. The amount of initiator used will generally be in the range from approx. 0.01 - approx. 0.5% by weight, based on the weight of the monomer or monomers being polymerised, and preferably in the range from approx. 0.02 - approx. 0.1% by weight.

I foreliggende fremgangsmåte kan initiatoren tilsettes fullstendig ved starten av polymerisasjonen eller den kan tilsettes i trinnvis voksende mengder til reaktoren under forlbpet av polymerisasjonsreaksjonen. Det er imidlertid foretrukket å tilsette initiatoren ved begynnelsen ved å tilsette den til monomer-forblandingen med de aridre bestanddelene i reaksjonsblandingen. Dette er fordelaktig når forblandingen homogeniseres for den innfores i reaktoren. Når initiatoren tilsettes til monomer-forblandingen og deretter grundig blandes med hurtig agitasjon eller omroring, eller når forblandingen homogeniseres, slik som når en alkoholer) anvendes i reaksjonsblandingen, er det nodvendig å In the present process, the initiator can be added completely at the start of the polymerization or it can be added in stepwise increasing amounts to the reactor during the course of the polymerization reaction. However, it is preferred to add the initiator at the beginning by adding it to the monomer premix with the dry components of the reaction mixture. This is advantageous when the premix is homogenized before it is introduced into the reactor. When the initiator is added to the monomer premix and then thoroughly mixed with rapid agitation or stirring, or when the premix is homogenized, such as when an alcohol) is used in the reaction mixture, it is necessary to

holde temperaturen under minstetemperaturen for reaktivitet for den spesielle initiator eller initiatorer som anvendes. keeping the temperature below the minimum temperature of reactivity for the particular initiator or initiators used.

Denne minstetemperatur for reaktivitet for enhver initiator kan lett bestemmes av fagmannen og gis ofte av initiator-eller katalysatorprodusenten. Etter innforing av monomer-forblandingen i reaktoren innstilles temperaturen til den hvorved reaksjonen skal finne sted. This minimum temperature of reactivity for any initiator can be easily determined by the person skilled in the art and is often provided by the initiator or catalyst manufacturer. After introducing the monomer premix into the reactor, the temperature is set to that at which the reaction is to take place.

Reaksjonstemperaturen for foreliggende, emulsjons- polymerisasjonsprosess er viktig fordi egenviskositeten (IV) for den resulterende vinyl-dispersjons-harpiks er en direkte funksjon av reaksjonstemperaturen. Det vil si at jo hbyere temperaturen er, jo lavere er IV. Sluttanvendelsen av vinyl-dispers jons-harpiksEri som skal fremstilles vil fblgelig normalt bestemme reaksjonstemperaturen. Når man f.eks. frem-stiller vinyl-dispersjons-harpikser som skal anvendes i belegg eller i boyelige, stopte filmer, vil f.eks. en lavere temperatur bli benyttet for å oppnå en hbyere IV som er bnskelig for mange belegganvendelser og i filmdannelses-operasjoner. Man har funnet at for de sluttanvendelser som foreliggende vinyl-dispersjons-harpikser er spesielt til-passet, er polymerisasjonstemperaturer i området fra ca. 30 - ca. 70°C tilfredsstillende. Det er imidlertid foretrukket å benytte en temperatur i området fra ca. 30 - ca. 55°C. The reaction temperature for the present emulsion polymerization process is important because the intrinsic viscosity (IV) of the resulting vinyl dispersion resin is a direct function of the reaction temperature. That is, the higher the temperature, the lower the IV. The end use of the vinyl dispersion ion resin to be produced will normally determine the reaction temperature. When you e.g. manufactures vinyl dispersion resins to be used in coatings or in bendable, stopped films, will e.g. a lower temperature can be used to achieve a higher IV which is desirable for many coating applications and in film forming operations. It has been found that for the end applications for which the present vinyl dispersion resins are particularly suited, polymerization temperatures are in the range from approx. 30 - approx. 70°C satisfactory. However, it is preferred to use a temperature in the range from approx. 30 - approx. 55°C.

En annen faktor som må komme i betraktning med hensyn til reaksjonstemperaturen er polymeroppbygningen i reaktoren. Generelt, ettersom reaksjonstemperaturen bkes, oker polymeroppbygningen i reaktoren. Polymeroppbygningen utgjbres imidlertid ikke av en hard skorpe og kan fjernes ved skylling eller spyling med vann og uten åpning av reaktoren når hensiktsmessige sproytedyser installeres i reaktoren. Another factor that must be taken into account with regard to the reaction temperature is the polymer build-up in the reactor. In general, as the reaction temperature increases, the polymer build-up in the reactor increases. However, the polymer build-up is not produced by a hard crust and can be removed by rinsing or flushing with water and without opening the reactor when suitable spray nozzles are installed in the reactor.

På den annen side blir endog denne oppbygning regulert og redusert ved tilstedeværelsen av elektrolytten i reaksjonsmediet. I kombinasjon med elektrolytten holdes reaktor-veggene avkjblt under polymerisasjonsreaksjonen, spesielt under de tidlige trinn av reaksjonen når mesteparten av en eventuell oppbygning dannes. Regulering av reaksjonstemperaturen kan oppnås ved hjelp av normale midler, slik som anvendelse av en kappeforsynt reaktor med sirkulering av kjblevann eller annen væske i kappen. Det antas at en synergistisk effekt oppnås fra bruken av elektrolytten med et avkjblt reaksjonsmedium i de tidlige trinn av reaksjons-syklusen siden polymeroppbygningen reduseres. Gjentatte sykler kan foretas uten rensing av reaktorens indre flater mellom charger eller sykler og dermed oke prosessens effek-. tivitet og redusere kostnadene for produksjon av vinyl-dispersjons-harpikser med mer omfattende sluttanvendelser. On the other hand, even this build-up is regulated and reduced by the presence of the electrolyte in the reaction medium. In combination with the electrolyte, the reactor walls are kept cooled during the polymerization reaction, especially during the early stages of the reaction when most of any build-up is formed. Regulation of the reaction temperature can be achieved using normal means, such as the use of a jacketed reactor with circulation of boiling water or other liquid in the jacket. It is believed that a synergistic effect is obtained from the use of the electrolyte with a cooled reaction medium in the early stages of the reaction cycle since polymer build-up is reduced. Repeated cycles can be carried out without cleaning the inner surfaces of the reactor between charges or cycles and thus increase the process's efficiency. tivity and reduce the cost of production of vinyl dispersion resins with more extensive end uses.

Ved fullendelse ay polymerisasjonsreaksjonen isoler-es vinyl-dispersjons-harpiks:en i pulverform, dvs. i form av atskilte, sfæriske polymerpartikler. Dette oppnås ved filtrering av lateksen fra polymerisasjonsreaktoren for å inn-vinne de lettsmuldrende polymeraggregater, trautorking av den filtrerte lateks ved en temperatur i området fra ca. 23 - ca. 100°C under atmosfæretrykk hvorved elektrolytten forsvinner. Torketemperaturen kan være lavere eller hbyere enn den angitte temperaturgrense avhengig av om tbrketrinnet finner sted under et vakuum eller under et positivt trykk. Tiden for trautbrkingstrinnet vil avhenge av den spesielle polymer som tbrkes. Trautbrkingen bor imidlertid fortsette inntil vanninnholdet i polymeren er ca. 0,1 vekt-% eller lavere. Tiden vil naturligvis variere med den temperatur som benyttes. Det viktige er at man ikke bor underkaste polymeren for forlenget oppvarming ved forhbyede temperaturer fordi en slik oppvarming kan ha skadelig innvirkning på polymerens kvalitet, slik som misfarging osv. Etter trautbrkingen blir de lettsmuldrende aggregater av enkeltsfærer av polymerpartikler som er tilstede knust lett eller gnidd for å separere enkeltsfærene og den tbrkede polymer eller harpiks innvinnes i pulverform. Den pulverformige harpiks er dermed klar til å bli omdannet til plastisoler. Det skal påpekes at andre former eller metoder for tbrking kan benyttes, slik som rotasjonstbrkere, luftstråletbrkere, fluid-sjikttbrkere osv., så lenge forstbvningstbrking ikke anvendes. Trautorking er imidlertid foretrukket. Upon completion of the polymerization reaction, the vinyl dispersion resin is isolated in powder form, i.e. in the form of separate, spherical polymer particles. This is achieved by filtering the latex from the polymerization reactor to recover the easily crumbling polymer aggregates, drying the filtered latex at a temperature in the range of approx. 23 - approx. 100°C under atmospheric pressure whereby the electrolyte disappears. The drying temperature can be lower or higher than the specified temperature limit depending on whether the drying step takes place under a vacuum or under a positive pressure. The time for the troughing step will depend on the particular polymer used. The trough breaking should, however, continue until the water content in the polymer is approx. 0.1% by weight or lower. The time will naturally vary with the temperature used. The important thing is that one should not subject the polymer to prolonged heating at elevated temperatures because such heating can have a detrimental effect on the polymer's quality, such as discoloration, etc. After the trough breaking, the easily crumbling aggregates of single spheres of polymer particles that are present are easily crushed or rubbed for to separate the individual spheres and the broken polymer or resin is recovered in powder form. The powdery resin is thus ready to be converted into plastisols. It should be pointed out that other forms or methods of drying can be used, such as rotary dryers, air jet dryers, fluid bed dryers, etc., as long as solidification drying is not used. Traut drying is preferred, however.

Plastisoler tilberedes med foreliggende /vinyl-dispers jons-harpikser ved ensartet blanding eller intim blanding på konvensjonell måte under anvendelse av varme og omrbring, med 100 vektdeler av vinyl-dispersjons-harpiksen i form av atskilte, sfæriske polymerpartikler og fra ca. 30 - ca. 100 vektdeler av én eller flere myknere. Hensiktsmessige myknere kan beskrives som alkyl- eller alkoksyalkylestere av dikarboksylsyrer eller estrene av en flerverdig alkohol og en monobasisk syre. Eksempler på slike myknere er dibutyl-ftalat, dioktylftalat, dibutylsebacat, dinonylftalat, di(2r-etylheksyl\)jft~ålå~t7* di(2-etylheksyl)adipat, dilaurylftalat, dimetyltetraklorftalat, butylftalylbutylglykollat, glyceryl-sterat o.l. De foretrukne myknere er væskeformige diestere av alifatiske alkoholer med 4-20 karbonatomer og dibasiske karboksylsyrer med 6-14 karbonatomer. Plastisols are prepared with present vinyl dispersion resins by uniform mixing or intimate mixing in a conventional manner using heat and stirring, with 100 parts by weight of the vinyl dispersion resin in the form of separate, spherical polymer particles and from approx. 30 - approx. 100 parts by weight of one or more plasticizers. Suitable plasticizers may be described as alkyl or alkoxyalkyl esters of dicarboxylic acids or the esters of a polyhydric alcohol and a monobasic acid. Examples of such plasticizers are dibutyl phthalate, dioctyl phthalate, dibutyl sebacate, dinonyl phthalate, di(2-ethylhexyl) di(2-ethylhexyl) adipate, dilauryl phthalate, dimethyl tetrachlorophthalate, butyl phthalyl butyl glycollate, glyceryl stearate, etc. The preferred plasticizers are liquid diesters of aliphatic alcohols of 4-20 carbon atoms and dibasic carboxylic acids of 6-14 carbon atoms.

Plastisolene som fremstilles under anvendelse av vinyl-dispersjons-harpiksene ifblge oppfinnelsen bor ha de onskede flytegenskaper ("yield") og fortrinnsvis med liten eller ingen variasjon. Flytegenskaper defineres som mot-stand mot flyt og bestemmes normalt numerXsk^gjennom viskositetsmålinger under anvendelse av velkjente standardtek-nikker. Vanligvis oppnås slike verdier ved beregning ut fra viskositetsmålinger under anvendelse av et "Brookfield Model RVF Viscometer" ifblge ASTM~-metode D1824-61T. Flyt bestemmes ut fra viskositetsmålinger av plastisolene ved varierende omdreininger pr. minutt etter prepareringen og ved intervaller for aldring. Viskositeten måles i centipois (eps) ved en temperatur på 23°C. I def nedenstående spesifikke eksempler ble viskositetsmålinger foretatt ved 2 omdr./min. og 20 omdr./min. og er uttrykt som Vp og V£Q, respektivt. The plastisols produced using the vinyl dispersion resins according to the invention should have the desired flow properties ("yield") and preferably with little or no variation. Flow properties are defined as resistance to flow and are normally determined numerically through viscosity measurements using well-known standard techniques. Usually, such values are obtained by calculation from viscosity measurements using a "Brookfield Model RVF Viscometer" according to ASTM ~ method D1824-61T. Flow is determined from viscosity measurements of the plastisols at varying revolutions per minute after preparation and at intervals for aging. The viscosity is measured in centipoises (eps) at a temperature of 23°C. In the following specific examples, viscosity measurements were made at 2 rpm. and 20 rpm. and are expressed as Vp and V£Q, respectively.

Fblgende eksempler illustrerer foreliggende oppfinnelse ytterligere, og alle del- og prosentangivelser er med hensyn til vekt med mindre annet er angitt. The following examples further illustrate the present invention, and all parts and percentages are by weight unless otherwise stated.

Eksempel IExample I

I dette eksempel ble det foretatt en rekke forsbk for å vise de forskjellige aspekter ved oppfinnelsen. De benyttede sammensetninger og reaksjonsbetingelser er angitt i nedenstående tabell. I tabellen er alle tallangivelser gitt som vektdeler basert på vekten av den totale sammensetning. In this example, a number of experiments were carried out to show the different aspects of the invention. The compositions and reaction conditions used are indicated in the table below. In the table, all figures are given as parts by weight based on the weight of the total composition.

Når alkoholer ble benyttet i forsbkene 2 og 3 ovenfor, ble en monomer-forblandingstank eller -beholder evakuert. Forblandingstanken ble forst tilfort vann og deretter under omrbring ble elektrolytten tilsatt fulgt av emulgéringsmidlet og deretter alkoholblandingen. Katalysatoren ble så tilsatt og til slutt vinylkloridet. Temperaturen i forblandingstanken ble regulert ved ca. 25°C ved hjelp av en kjblekappe. Blandingen ble omrbrt i omkring 15 minutter. Deretter ble blandingen eller monomer-forblandingen fort gjennom en "Mantin Ganlin"-2-trinns homo-genisator ved en temperatur på 25°C og inn i polymerisasjonsreaktoren som på forhånd var evakuert. Trykket i det fbrste trinnet i homogenisatoren var 42 kg/cm 2 og i det andre trinnet 49 kg/cm . Innholdet i reaktoren ble deretter oppvarmet til reaksjonstemperaturen på 45°C og holdt ved denne temperaturen gjennom hele reaksjonen inntil den bnskede omdannelse var oppnådd. Reaktoren ble deretter avkjblt, utluftet og polyvinylklorid-PVC-lateksen eller -oppslemmingen ble fjernet og tbrket. Relevante data er gitt i nedenstående tabell II. When alcohols were used in experiments 2 and 3 above, a monomer premix tank or container was evacuated. The premix tank was first filled with water and then, while stirring, the electrolyte was added followed by the emulsifier and then the alcohol mixture. The catalyst was then added and finally the vinyl chloride. The temperature in the premix tank was regulated at approx. 25°C using a cable jacket. The mixture was stirred for about 15 minutes. Then the mixture or monomer premix was passed through a "Mantin Ganlin" 2-stage homogenizer at a temperature of 25°C and into the polymerization reactor which had been previously evacuated. The pressure in the first stage in the homogenizer was 42 kg/cm 2 and in the second stage 49 kg/cm 2 . The contents of the reactor were then heated to the reaction temperature of 45°C and held at this temperature throughout the reaction until the desired conversion was achieved. The reactor was then cooled, vented and the polyvinyl chloride-PVC latex or slurry was removed and used. Relevant data is given in table II below.

I forsbk 1, 4 og 5 ble bestanddelene tilsatt tilIn trials 1, 4 and 5, the ingredients were added to

og blandet i polymerisasjonsreaktoren. Videre ble emulger-. ingsmidlet proporsjonert inn i reaktoren i lbpet av reaksjonen. For forsbkene 1 og 4 ble et PVC-ktLm tilsatt til reaktoren og vinylkloridet ble polymerisert på dette for oppnåelse av en stbrre partikkelstbrrelse. I forsbk 5 ble imidlertid en liten mengde emulgeringsmiddel (natriumlauryl-sulfat) tilsatt til å begynne med istedenfor nevnte kim (PVC). For forsbkene 4 og 5 ble temperaturen i reaksjonsblandingen holdt ved 40°C inntil en omdannelse på ca. 58 - 60% var nådd og deretter ble temperaturen redusert til 35°C-og holdt her inntil reaksjonen var fullstendig. Deretter ble i hvert tilfelle reaktoren avkjblt, utluftet og PVC-lateksen eller and mixed in the polymerization reactor. Furthermore, emulsifiers were the ing agent is proportioned into the reactor in the lbpet of the reaction. For experiments 1 and 4, a PVC ketLm was added to the reactor and the vinyl chloride was polymerized on this to achieve a better particle size. In trial 5, however, a small amount of emulsifier (sodium lauryl sulfate) was initially added instead of the aforementioned seed (PVC). For experiments 4 and 5, the temperature in the reaction mixture was kept at 40°C until a conversion of approx. 58 - 60% had been reached and then the temperature was reduced to 35°C and held here until the reaction was complete. Then in each case the reactor was cooled down, vented and the PVC latex or

-oppslemmingen ble fjernet og tbrket.- the slurry was removed and used.

For å bestemme "Brookfield"-viskositeten ble det fremstilt plastisoler med harpiksen eller PVC fra hvert forsbk under anvendelse av fblgende sammensetning: To determine the "Brookfield" viscosity, plastisols were prepared with the resin or PVC from each trial using the following composition:

De oppnådde viskositetsdata er angitt i nedenstående tabell II. The viscosity data obtained are set out in Table II below.

Som det fremgår fra de ovenfor angitte resultater vil bruk av en elektrolytt resultere i trautorking som gir god torr kake-oppbr^tningsevne og overlegne plastisolegen-skaper. As can be seen from the above-mentioned results, the use of an electrolyte will result in trough drying which gives good dry cake break-up ability and superior plastisol properties.

Eksempel IIExample II

I dette eksempel ble det foretatt en rekke forsok for å vise virkningen av å variere konsentrasjonen av elektrolytten. Den samme polymerisasjonsmetode som i eksempel I ble benyttet, med unntagelse av at homogeniseringen ble In this example, a number of experiments were carried out to show the effect of varying the concentration of the electrolyte. The same polymerization method as in example I was used, with the exception that the homogenization was

sloyfet. Plastisolene ble også laget som i eksempel I. Resultatene fremgår fra nedenstående tabell: sloppy The plastisols were also made as in example I. The results appear from the table below:

I de ovenfor angitte tabeller, under oppslemmings-viskositet, er betegnelsen "Utseende av pisket krem" det ideelle forhold for oppslemmingen eller lateksen. I tabell III er det angitt at den viktige egenskap "torrkake-brytning" var utmerket eller meget god. Resultatene viser klart for-delen med anvendelse av en elektrolytt fulgt av (trautorking. In the above tables, under slurry viscosity, the designation "Whipped Cream Appearance" is the ideal ratio for the slurry or latex. In Table III, it is indicated that the important property "dry cake breaking" was excellent or very good. The results clearly show the advantage of using an electrolyte followed by (trough drying.

Det fremgår således fra det ovenstående og de an-, gitte eksempler at ved anvendelse av en elektrolytt i poly-merisas jonsmediet er det mulig å filtrere og trautbrke emulsjonspolymerisasjonslatekser med en resulterende forbedring i egenskaper hos de således fremstilte vinyl-dispersjons-harpikser. Av enda stbrre betydning er at forstbvningstbrking og det tilhbrende harde maletrinn, som har skadelig innvirkning på polymerkvaliteten, elimineres ved foreliggende fremgangsmåte. Dessuten gir fremgangsmåten mer dispersjons-harpiks pr. tidsenhet med forbedrede egen- . skaper og med vesentlig reduksjon av polymeroppbygning på polymerisasjonsreaktorens indre overflater. Disse faktorer bidrar alle til en billig vinyl-dispersjons-harpiksprosess. Flere andre fordeler ved oppfinnelsen vil forstås av en fagmann. It thus appears from the above and the given examples that by using an electrolyte in the polymerization medium it is possible to filter and filter emulsion polymerization latexes with a resulting improvement in the properties of the vinyl dispersion resins thus produced. Of even greater importance is that the use of solidification and the associated hard grinding step, which has a detrimental effect on the polymer quality, is eliminated by the present method. In addition, the method provides more dispersion resin per time unit with improved own- . creates and with a significant reduction of polymer build-up on the internal surfaces of the polymerization reactor. These factors all contribute to an inexpensive vinyl dispersion resin process. Several other advantages of the invention will be understood by one skilled in the art.

Claims (19)

1. Fremgangsmåte til fremstilling av polymerer av vinyl- og vinylidenhalogenider og kopolymerer derav med hverandre eller enten med én eller flere vinylidenmonomerer som har én CH2=C <-endegruppe, karakterisert ved at man danner en monomer-forblanding inneholdende monomeren eller monomerene som skal polymeriseres, det vandige reaksjonsmedium, fra ca. 0,01 - ca. 0,5 vekt-% av en fri radikal-givende katalysator basert på vekten av 100 deler monomer eller monomerer som polymeriseres, fra ca.1. Process for producing polymers of vinyl and vinylidene halides and copolymers thereof with each other or either with one or more vinylidene monomers that have one CH2=C < end group, characterized by forming a monomer premix containing the monomer or monomers to be polymerized , the aqueous reaction medium, from approx. 0.01 - approx. 0.5% by weight of a free radical-yielding catalyst based on the weight of 100 parts of monomer or monomers being polymerized, from approx. 0,05 - ca. 6,0 vekt-% av en elektrolytt basert på vekten av monomeren eller monomerene, et emulgeringsmiddel for poly-merisas jonssystemet, minst én lang og rettkjedet mettet alkohol med 14 - 24 karbonatomer hvorved forholdet mellom alkohol og emulgeringsmiddel er stbrre enn[1T 0" homogeniser-er forblandingen ved en temperatur under reaktiviteten for den benyttede katalysator eller katalysatorer, forer den homogeniserte forblanding til en reaksjonssone, emulsjons-polymeriserer den homogeniserte forblanding i nevnte sone ved en temperatur i området fra ca. 30 - ca. 70°C for dannelse av lettsmuldrende aggregater av enkeltsfærer av polymerpartikler, opprettholder pH-verdien i reaksjonssonen i området fra 7,0 - ca. 12,0 inntil reaksjonen er fullstendig, fjerner polymeremulsjonen fra reaksjonssonen og filtrerer emulsjonen for innvinning av nevnte lettsmuldrende polymeraggregater, trautbrker polymeren og lettsmuldrende polymer.aggregater mens elektrolytten fjernes derfra, og under-kaster de lettsmuldrende aggregater en lett knusing for dannelse av enkeltsfærer av polymerpartikler, hvorved poly-meroppbyggingen i reaksjonssonen reduseres.0.05 - approx. 6.0% by weight of an electrolyte based on the weight of the monomer or monomers, an emulsifier for the polymerization system, at least one long and straight chain saturated alcohol with 14 - 24 carbon atoms whereby the ratio between alcohol and emulsifier is greater than [1T 0" homogenize the premix at a temperature below the reactivity of the catalyst or catalysts used, feed the homogenized premix into a reaction zone, emulsion polymerize the homogenized premix in said zone at a temperature in the range from about 30 - about 70°C to form of easily crumbling aggregates of single spheres of polymer particles, maintains the pH value in the reaction zone in the range from 7.0 - about 12.0 until the reaction is complete, removes the polymer emulsion from the reaction zone and filters the emulsion for recovery of said easily crumbling polymer aggregates, funnels the polymer and easily crumbling polymer .aggregates while the electrolyte is removed therefrom, and sub-throws the easily crumbled ones nde aggregates a light crushing to form single spheres of polymer particles, whereby the polymer build-up in the reaction zone is reduced. 2. Fremgangsmåte ifblge krav 1, karakterisert ved at emulgeringsmidlet utgjbres av ammoniumsaltet av en hby fettsyre med 8-20 karbonatomer.2. Method according to claim 1, characterized in that the emulsifier is produced from the ammonium salt of a high fatty acid with 8-20 carbon atoms. 3. Fremgangsmåte ifblge krav 1, karakterisert ved at monomeren i forblandingen er vinylklorid.3. Method according to claim 1, characterized in that the monomer in the premix is vinyl chloride. 4. Fremgangsmåte ifblge krav 1, karakterisert ved at alkoholen er en blanding av C-^ - og C^S" alkoholer.4. Method according to claim 1, characterized in that the alcohol is a mixture of C-^ - and C^S" alcohols. 5. Fremgangsmåte ifblge krav 2, karakterisert ved at fettsyren er laurinsyre.5. Method according to claim 2, characterized in that the fatty acid is lauric acid. 6. Fremgangsmåte ifblge krav 1, karakterisert ved at katalysatoren er tert,-butylperoksypivalat.6. Method according to claim 1, characterized in that the catalyst is tert,-butyl peroxy pivalate. 7. Fremgangsmåte ifblge krav 1, karakterisert ved at elektrolytten er (NH^ ^CO-^ .7. Method according to claim 1, characterized in that the electrolyte is (NH^ ^CO-^ . 8. Fremgangsmåte ifblge krav 1, karakterisert ved at trautbrkingen av polymeren utfores ved en temperatur i området fra ca. 23 - ca. 100°C ved atmosfære trykk.8. Method according to claim 1, characterized in that the trough breaking of the polymer is carried out at a temperature in the range from approx. 23 - approx. 100°C at atmospheric pressure. 9. Fremgangsmåte ifblge krav 1, karakterisert ved at stbrrelsen på de tbrkede enkeltsfærer av polymerpartikler er i området fra ca. 0,1 - ca. 10,0 mikron.9. Method according to claim 1, characterized in that the strength of the broken single spheres of polymer particles is in the range from approx. 0.1 - approx. 10.0 microns. 10. Fremgangsmåte ifblge krav 1, karakterisert ved at elektrolytten er CaCO^ .10. Method according to claim 1, characterized in that the electrolyte is CaCO3. 11. Fremgangsmåte ifblge krav 9, karakterisert ved at monomeren i forblandingen er vinylklorid.11. Method according to claim 9, characterized in that the monomer in the premix is vinyl chloride. 12. Fremgangsmåte ifblge krav 11, karakterisert ved at elektrolytten er (NH^ )2 C0^ .12. Method according to claim 11, characterized in that the electrolyte is (NH^ ) 2 CO^ . 13. Fremgangsmåte ifblge krav 12, karakterisert ved at emulgeringsmidlet er ammoniumlaurat.13. Method according to claim 12, characterized in that the emulsifier is ammonium laurate. 14. Fremgangsmåte ifblge krav 13, karakterisert ved at katalysatoren er tert,-butylperoksypivalat.14. Method according to claim 13, characterized in that the catalyst is tert,-butyl peroxypivalate. 15. Fremgangsmåte ifblge krav 14, karakterisert ved at pH-verdien i reaksjonssonen holdes i området fra ca. 8,0 - ca. 10,5.15. Method according to claim 14, characterized in that the pH value in the reaction zone is kept in the range from approx. 8.0 - approx. 10.5. 16. Fremgangsmåte ifblge krav 15, karakterisert ved at stbrrelsen på de tbrkede enkeltsfærer av polymerpartikler er i området fra ca. 0,2- ca. 2,0 mikron.16. Method according to claim 15, characterized in that the strength of the broken individual spheres of polymer particles is in the range from approx. 0.2- approx. 2.0 microns. 17. Fremgangsmåte ifblge krav 16, karakterisert ved at alkoholen er en blanding av C-^ - og C] _g-alkoholer.17. Method according to claim 16, characterized in that the alcohol is a mixture of C-1 - and C1 -g-alcohols. 18. Fremgangsmåte ifblge krav 1, karakterisert ved at monomerene i forblandingen er vinylklorid og vinylacetat.18. Method according to claim 1, characterized in that the monomers in the premix are vinyl chloride and vinyl acetate. 19. Fremgangsmåte ifblge krav 18, karakterisert ved at elektrolytten er (NH^^CO^.19. Method according to claim 18, characterized in that the electrolyte is (NH^^CO^.
NO793472A 1978-10-30 1979-10-29 PROCEDURE FOR THE PREPARATION OF POLYMERS OF VINYL AND VINYLIDEEN HALOGENIDES AND COPOLYMERS THEREOF NO793472L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US95581778A 1978-10-30 1978-10-30

Publications (1)

Publication Number Publication Date
NO793472L true NO793472L (en) 1980-05-02

Family

ID=25497388

Family Applications (1)

Application Number Title Priority Date Filing Date
NO793472A NO793472L (en) 1978-10-30 1979-10-29 PROCEDURE FOR THE PREPARATION OF POLYMERS OF VINYL AND VINYLIDEEN HALOGENIDES AND COPOLYMERS THEREOF

Country Status (9)

Country Link
EP (1) EP0020521A4 (en)
JP (1) JPS55500869A (en)
KR (1) KR830000854B1 (en)
AU (1) AU528510B2 (en)
BE (1) BE879728A (en)
CA (1) CA1138150A (en)
IN (1) IN150093B (en)
NO (1) NO793472L (en)
WO (1) WO1980000967A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179646A (en) * 1959-09-28 1965-04-20 Dow Chemical Co Polymerization to produce friable aggregates of individual spheres of polyvinyl chloride
US3226350A (en) * 1962-07-23 1965-12-28 Goodyear Tire & Rubber Preparation of high solids vinyl chloride polymer latex
US4098978A (en) * 1975-11-12 1978-07-04 The B. F. Goodrich Company Process for emulsion polymerization of vinylidene halides and product thereof
US4076920A (en) * 1976-11-02 1978-02-28 The B. F. Goodrich Company Process for producing homo- or copolymerization of vinyl or vinylidene halides having reduced polymer build-up in the reactor
US4071675A (en) * 1977-03-03 1978-01-31 Stauffer Chemical Company Emulsion polymerization of vinyl chloride using mixed emulsifier system in a single step in the absence of seed formation
US4150210A (en) * 1978-06-19 1979-04-17 Stauffer Chemical Company Emulsion polymerization of vinyl chloride polymers using mixed emulsifier system

Also Published As

Publication number Publication date
KR830000854B1 (en) 1983-04-21
JPS55500869A (en) 1980-10-30
AU5170879A (en) 1980-05-08
AU528510B2 (en) 1983-05-05
IN150093B (en) 1982-07-17
BE879728A (en) 1980-02-15
WO1980000967A1 (en) 1980-05-15
CA1138150A (en) 1982-12-21
EP0020521A1 (en) 1981-01-07
EP0020521A4 (en) 1981-02-24

Similar Documents

Publication Publication Date Title
US5478900A (en) Process for preparing vinyl chloride polymer of quality
US4292420A (en) Emulsion polymerization process for producing vinyl dispersion resins
US4076920A (en) Process for producing homo- or copolymerization of vinyl or vinylidene halides having reduced polymer build-up in the reactor
US5087678A (en) Method for reducing foaming in a vinyl chloride polymerization reactor
US4286081A (en) Electrolyte in the emulsion polymerization process for producing vinyl dispersion resins
US4186259A (en) Process for producing homopolymers or copolymers of vinyl or vinylidene halides by emulsion polymerization
US4377672A (en) Process for the polymerization of vinyl chloride according to the microsuspension process
US4029619A (en) Method of preparing vinyl chloride resins
JP3437022B2 (en) Method for producing vinyl chloride polymer
NO177501B (en) Process for the preparation of graft copolymerisates of polyacrylic acid esters and vinyl chloride
NO811017L (en) SUSPENSION POLYMERIZATION PROCESS FOR THE PREPARATION OF VINYL RESINES FOR USE IN PLASTISOL
NO793472L (en) PROCEDURE FOR THE PREPARATION OF POLYMERS OF VINYL AND VINYLIDEEN HALOGENIDES AND COPOLYMERS THEREOF
NO169719B (en) PROCEDURE FOR POLYMERIZATION OF SPHERICALLY POROUS POLYMER PARTICLES
US3558566A (en) Mixed polymerizates from vinyl chloride and fumaric acid esters and process for their preparation
JP2002256008A (en) Method for producing vinyl chloride polymer
NO158626B (en) PROCEDURE TE FOR PREPARING LOW MELTING BIMNYL DISPERSION RESINES.
US4289667A (en) Emulsion polymerization process with low emulsifier concentration
US5096988A (en) Process for preparing vinyl chloride polymer with two-stage addition of dispersion stabilizers
NO164907B (en) PROCEDURE FOR THE PREPARATION OF VINYL CHLORIDE POLYMERS.
JP3340492B2 (en) Dispersion aid for suspension polymerization of vinyl compounds
NO762244L (en)
JP3239613B2 (en) Method for producing vinyl chloride polymer
JPH06211909A (en) Production of vinyl chloride polymer, and composition comprising the same
NO864121L (en) PROCEDURE FOR THE PREPARATION OF POLYVINYL CHLORIDE.
WO2013092729A1 (en) Process for preparing a vinyl chloride polymer