NO792635L - PROCEDURE FOR THE PREPARATION OF ANNUAL ALKALIC CHLOROFER RATES (II, III) - Google Patents

PROCEDURE FOR THE PREPARATION OF ANNUAL ALKALIC CHLOROFER RATES (II, III)

Info

Publication number
NO792635L
NO792635L NO792635A NO792635A NO792635L NO 792635 L NO792635 L NO 792635L NO 792635 A NO792635 A NO 792635A NO 792635 A NO792635 A NO 792635A NO 792635 L NO792635 L NO 792635L
Authority
NO
Norway
Prior art keywords
chloride
alkali
iii
iron
kmol
Prior art date
Application number
NO792635A
Other languages
Norwegian (no)
Inventor
Rudolf Hirschberg
Bernd Schoefeld
Original Assignee
Riedel De Haen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riedel De Haen Ag filed Critical Riedel De Haen Ag
Publication of NO792635L publication Critical patent/NO792635L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

Fremgangsmåte til fremstilling av vannfrie alkalikloroferrater(II,III) og deres anvendelse. Process for the production of anhydrous alkali chloroferrates (II, III) and their use.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av vannfrie alkalikloroferrater(II,III) og deres anvendelse. The invention relates to a method for the production of anhydrous alkali chloroferrates (II, III) and their use.

Alkalikloroferrater(II,III) er forbindelser fraAlkali chloroferrates(II,III) are compounds from

systemet alkaliklorid/jern (II)klorid/jern(III)klorid. Alkaliklorof errater (II ) , f.eks. K2FeCl4og KFeCl3er kjent. De lar seg fremstille ved sammensmeltning av .-.tilsvarende mengder alkaliklorid med vannfritt jern(II)klorid (sml. f.eks. J.Amer.Chem.Soc. 79 (1957), side 6149). Vannfritt jern(II)klorid er imidlertid bare vanskelig tilgjengelig og er således et kostbart utgangsstoff. For teknisk anvendelsesformål, f.eks. i tegl- og leirvareindustrien kreves imidlertid større mengder billig dannede produkter. Disse kan ikke fåes på den angitte måte. the system alkali chloride/iron (II) chloride/iron (III) chloride. Alkali chloroforms (II), e.g. K2FeCl4 and KFeCl3 are known. They can be prepared by fusing corresponding amounts of alkali chloride with anhydrous iron(II) chloride (cf. e.g. J.Amer.Chem.Soc. 79 (1957), page 6149). However, anhydrous iron(II) chloride is only difficult to obtain and is thus an expensive starting material. For technical application purposes, e.g. in the brick and clay industry, however, larger quantities of cheaply formed products are required. These cannot be obtained in the manner indicated.

Det lettere tilgjengelige tetrahydrat av jern(II)The more readily available iron(II) tetrahydrate

klorid kan ikke benyttes til fremstilling av alkalikloroferrater(II) da det ved sammensmeltningen med alkaliklorider oppstår oksyklorider. Det er av samme grunn heller ikke mulig å fremstille vannfrie alkalikloroferrater(II) på våtkjemisk måte, f.eks. over tørking av det i og for seg kjente kaliumtetrakloroferrat(II)-dihydrat. chloride cannot be used for the production of alkali chloroferrates (II) as oxychlorides are formed upon fusion with alkali chlorides. For the same reason, it is also not possible to produce anhydrous alkali chloroferrates(II) in a wet chemical way, e.g. over drying the per se known potassium tetrachloroferrate(II) dihydrate.

Den oppgave som lå til grunn for oppfinnelsen besto derfor i å fremstille vannfritt alkalikloroferrat(II,III), The task that formed the basis of the invention therefore consisted of producing anhydrous alkali chloroferrate (II, III),

spesielt alkalikloroferrat(II) på enkel og økonomisk måte.especially alkali chloroferrate(II) in a simple and economical way.

Denne oppgave løses ved at alkaliklorider eller ammo-niumklorid oppsmeltes med vannfritt jern(III)klorid og jernpulver i det ønskede støkiometriske forhold. Det resulterende alkaliklorof errat (II, III) tilsvarer formel This task is solved by melting alkali chlorides or ammonium chloride with anhydrous iron(III) chloride and iron powder in the desired stoichiometric ratio. The resulting alkali chloroform (II, III) corresponds to formula

idet A betyr et alkalimetallion eller et ammoniumion, x betyr et tall fra 1 til 10, y betyr et tall fra null til 1 og z et tall fra where A means an alkali metal ion or an ammonium ion, x means a number from 1 to 10, y means a number from zero to 1 and z a number from

null til 1 og y og z er ikke samtidig null.zero to 1 and y and z are not simultaneously zero.

Som alkaliklorider kommer det fortrinnsvis i betrakt-ning natrium- og/eller kaliumklorid. Prinsipielt kan fremgangsmåten ifølge oppfinnelsen også gjennomføres med litium-, caesium-eller rubidiumklorid. Sodium and/or potassium chloride are preferably considered as alkali chlorides. In principle, the method according to the invention can also be carried out with lithium, cesium or rubidium chloride.

Jern(III)klorid er lett tilgjengelig i vannfri formIron(III) chloride is readily available in anhydrous form

ved klorering av jern.by chlorination of iron.

Ved gjennomføring av fremgangsmåten ifølge oppfinnel-When carrying out the method according to the invention

ser er det fordelaktig å blande alkaliklorider med jern(III)-klorid, og oppvarme blandingen til smeltning og deretter å tilsette jernpulveret. Det kan imidlertid også fra begynnelsen anvendes en blanding av de tre komponenter. Eksempelvis får man kalium-tetrakloroferrat(II), idet man sammensmelter en blanding av kaliumklorid, jern(III)klorid og jernpulver i praktisk talt støkio-metriske mengder. It is therefore advantageous to mix alkali chlorides with ferric chloride, heat the mixture until it melts and then add the iron powder. However, a mixture of the three components can also be used from the start. For example, potassium tetrachloroferrate(II) is obtained by fusing a mixture of potassium chloride, iron(III) chloride and iron powder in practically stoichiometric quantities.

De ved fremstillingen av alkalikloroferrater(II)Those in the production of alkali chloroferrates(II)

ved fremgangsmåten ifølge oppfinnelsen aktuelle temperaturer skal velges så høyt at etter avslutning av smelteprosessen foreligger en homogen smelte. Fortrinnsvis anvendes temperaturer fra 400 til 700°C. in the method according to the invention, the relevant temperatures must be chosen so high that after the end of the melting process a homogeneous melt is present. Temperatures from 400 to 700°C are preferably used.

Ved fremgangsmåten ifølge oppfinnelsen kan det fremstilles de fra litteraturen kjente alkalijernklorider, f.eks. K2FeCl4, KFeCl3, NaFeCl3, Na2FeCl4og Nal^FeClg. With the method according to the invention, the alkali iron chlorides known from the literature can be produced, e.g. K2FeCl4, KFeCl3, NaFeCl3, Na2FeCl4 and Nal^FeClg.

Det kan imidlertid også anvendes blandinger av disse forbindelser idet man endrer mengdeforholdet av utgangsstoffene alkaliklorid, jern(III)klorid og jernpulver. Eksempelvis kan en blanding med den formale., sammensetning KFeCl3. K2FeCl4fremstilles ved at man for komponentene kaliumklorid, jern(III)-klorid og jernpulver velger et molart mengdeforhold på 9 : 4 : 2. However, mixtures of these compounds can also be used by changing the quantity ratio of the starting materials alkali chloride, iron (III) chloride and iron powder. For example, a mixture with the formal., composition KFeCl3. K2FeCl4 is produced by choosing a molar quantity ratio of 9 : 4 : 2 for the components potassium chloride, iron(III) chloride and iron powder.

Ved fremgangsmåten ifølge oppfinnelsen er det videre mulig å fremstille alkalijernklorider som inneholder overskytende alkaliklorid, f.eks. av den formale sammensetning K2FeCl4 . 2KC1. Hertil går man frem ved fremgangsmåten ifølge oppfinnelsen således With the method according to the invention, it is also possible to produce alkali iron chlorides which contain excess alkali chloride, e.g. of the formal composition K2FeCl4. 2KC1. This is done by the method according to the invention as follows

at man for utgangsblandingen av KC1, FeCl3og jernpulver velger et molart mengdeforhold på 12 : 2 : 1. Man kan imidlertid også i første rekke fremstille en smelte av sammensetningen K2FeCl4og i denne å innføre den nødvendige mengde kaliumklorid. that for the initial mixture of KC1, FeCl3 and iron powder, a molar quantity ratio of 12 : 2 : 1 is chosen. However, one can also primarily prepare a melt of the composition K2FeCl4 and introduce the required amount of potassium chloride into this.

Det er videre mulig å fremstille blandet alkalijern-klorid, f.eks. slik med formel NaKFeCl4-. For dette formål anvender man som utgangsblanding f.eks. en blanding av 3 mol KC1, 3 mol NaCl, It is also possible to produce mixed alkali iron chloride, e.g. such with formula NaKFeCl4-. For this purpose, e.g. a mixture of 3 mol KC1, 3 mol NaCl,

2 mol FeCl-j og 1 mol jernpulver. På analog måte lar det seg også fremstille NaK^FeClg. Ved fremgangsmåten ifølge oppfinnelsen kan det også fremstilles alkalijernklorider, hvori jern samtidig er tilstede i to- og treverdig form. Hertil må mengden av det for reduksjon anvendte jern nedsettes tilsvarende. Man kan f.eks. fremstille produkter som har sammensetningen KFeCl^ . KFeCl^. Hertil be-nytter man en utgangsblanding som f.eks. består av 6 mol KCl, 5 mol FeCl3og 1 mol jernpulver. 2 mol FeCl-j and 1 mol iron powder. NaK^FeClg can also be prepared in an analogous way. By the method according to the invention, alkali iron chlorides can also be produced, in which iron is simultaneously present in divalent and trivalent form. In addition, the amount of iron used for reduction must be reduced accordingly. One can e.g. produce products that have the composition KFeCl^ . KFeCl^. For this, a starting mixture is used, e.g. consists of 6 mol KCl, 5 mol FeCl3 and 1 mol iron powder.

De hittil nevnte forbindelser er for det meste en-hetlig krystalliserende forbindelser. Det er imidlertid ved fremgangsmåten ifølge oppfinnelsen også mulig å fremstille hetero-gen krystalliserte blandinger av forskjellige alkalikloroferrater (II,III), idet man sammensmelter de tilsvarende mengder alkaliklorid, jern(III)klorid og jernpulver. Den dannede sammensetning lar seg beregne av den generelle formel II, hvori AC1 betyr alkaliklorid: The compounds mentioned so far are mostly single-crystallizing compounds. However, with the method according to the invention, it is also possible to prepare heterogeneous crystallized mixtures of different alkali chloroferrates (II, III), by fusing together the corresponding amounts of alkali chloride, iron (III) chloride and iron powder. The resulting composition can be calculated by the general formula II, in which AC1 means alkali chloride:

Ved omformning får man herav den generelle formel III hvorav det lett lar seg beregne hvilke deler av utgangsstoffene må anvendes for å få et sluttprodukt av ovennevnte sammensetning: By reformulation, the general formula III is obtained from this, from which it is easy to calculate which parts of the starting materials must be used to obtain a final product of the above-mentioned composition:

Fremstillingen av alkaliklorof errater (II}" III) ved fremgangsmåten ifølge oppfinnelsen kan foregå teknisk på fordelaktig måte i jernkar. Overraskende har detlvist seg at smeltens angrep på karets vegger ved nærvær av jernpulver er forholdsvis liten. The production of alkali chloroforms (II}" III) by the method according to the invention can take place technically in an advantageous manner in iron vessels. Surprisingly, it has been found that the attack of the melt on the walls of the vessel in the presence of iron powder is relatively small.

Etter gjennomføring av smeltereaksjonen kan man la smeiten f.eks. stivne i reaksjonskaret. Da den trekker seg sammen ved avkjøling, kan den etter stivning lett fjernes fra karet og etter behov knuses, f.eks. ved maling. Smeiten kan imidlertid også fjernes fra reaksjonskaret og f.eks. ved hjelp av en kjølevalse eller kjølesnekke på i og for seg kjent måte overføres i den faste form. After completion of the melting reaction, you can leave the smelting e.g. solidify in the reaction vessel. As it contracts on cooling, after solidification it can be easily removed from the vessel and crushed as needed, e.g. by painting. However, the smelt can also be removed from the reaction vessel and e.g. by means of a cooling roller or cooling screw in a manner known per se is transferred in the solid form.

Fremgangsmåten ifølge oppfinnelsen er en fordelaktig måte for å fremstille de hittil vanskelig tilgjengelige alkali kloroferrater(II) teknisk i stor målestokk og under anvendelse av billige råstoffer. De på denne måte frembragte produkter anvendes spesielt ved farving av kéramiske legemer ved påføring før brenning eller ved tilsetning under brenningen. The process according to the invention is an advantageous way to produce the hitherto difficult-to-access alkali chloroferrates (II) technically on a large scale and using cheap raw materials. The products produced in this way are used in particular for coloring ceramic bodies by application before firing or by addition during firing.

Fremgangsmåten ifølge oppfinnelsen skal forklaresThe method according to the invention shall be explained

ved hjelp av noen eksempler.with the help of some examples.

Eksempel 1Example 1

I et jernkar av 200 1 innhold innføres en blanding av 37,5 kg (0,5kmol) kaliumklorid, 54 kg (0,333 kmol) jern(III)klorid vannfritt og 9,3 kg (0,167 k mol) jernpulver. Man oppvarmer beholderinnholdet ved ytre oppvarming iløpet av 1 time til ca. A mixture of 37.5 kg (0.5 kmol) potassium chloride, 54 kg (0.333 kmol) iron(III) chloride anhydrous and 9.3 kg (0.167 kmol) iron powder is introduced into an iron vessel of 200 1 content. The contents of the container are heated by external heating within 1 hour to approx.

400°C, idet det danner seg en homogen smelte. Deretter omrøres beholderinnholdet noen ganger for å fullstendiggjøre reaksjonen. 400°C, as a homogeneous melt forms. The contents of the container are then stirred a few times to complete the reaction.

Nu stoppes oppvarmingen og beholderinnholdet avkjøles. Den av-kjølte smelte danner en grå krystallinsk masse som lett lar seg fjerne fra beholderen. Den har praktisk talt den støkiometriske sammensetning KFeCl^. Utbyttet utgjør 100 kg (0,497 kmol). Now the heating is stopped and the contents of the container are cooled. The cooled melt forms a gray crystalline mass which can be easily removed from the container. It practically has the stoichiometric composition KFeCl^. The yield amounts to 100 kg (0.497 kmol).

Eksempel 2Example 2

Det gåes frem som i Eks. 1, imidlertid endres sammensetningen av blandingen som skal oppsmeltes således at det anvendes en blanding av 75 kg (1 kmol) kaliumklorid, 54 kg (0,333 kmol) jern(III)klorid vannfri og 9,3 kg (0,167 kmol) jernpulver. Etter gjennomføring av reaksjonen får man en stivnet smeltekake på 136 kg (0,493 k mol), som praktisk talt har den støkiometriske sammensetning I^FeCl^. Proceed as in Ex. 1, however, the composition of the mixture to be melted is changed so that a mixture of 75 kg (1 kmol) potassium chloride, 54 kg (0.333 kmol) anhydrous iron (III) chloride and 9.3 kg (0.167 kmol) iron powder is used. After completion of the reaction, a solidified molten cake of 136 kg (0.493 k mol) is obtained, which practically has the stoichiometric composition I^FeCl^.

Eksempel 3Example 3

Det gåes frem som i Eks. 1,imidlertid endres sammensetningen av blandingen som skal oppsmeltes således at det anvendes en blanding av 56,3 kg (0,75 kmol) kaliumklorid, 54 kg (0,333 kmol) jern(III)klorid og 9,3 kg (0,167 kmol) jernpulver. Etter gjennom-føring av reaksjonen får man en stivnet smeltekake av 118 kg av et produkt som har den formale sammensetning ^FeCl^ 5 resp. I^FeCl^ . KFeCl3(0,247 kmol). Proceed as in Ex. 1, however, the composition of the mixture to be melted is changed so that a mixture of 56.3 kg (0.75 kmol) potassium chloride, 54 kg (0.333 kmol) iron (III) chloride and 9.3 kg (0.167 kmol) iron powder is used . After carrying out the reaction, a solidified melt cake of 118 kg of a product is obtained which has the formal composition ^FeCl^ 5 resp. I^FeCl^ . KFeCl3 (0.247 kmol).

Eksempel 4Example 4

Det gåes frem som i Eks. 1, imidlertid endres sammensetningen av blandingen som skal oppsmeltes således at det anvendes en blanding av 150 kg (2 kmol) kaliumklorid, 54 kg (0,333kmol) jern(III)klorid vannfri og 9,3 kg (0,167 kmol) jernpulver. For å Proceed as in Ex. 1, however, the composition of the mixture to be melted is changed so that a mixture of 150 kg (2 kmol) potassium chloride, 54 kg (0.333 kmol) anhydrous iron (III) chloride and 9.3 kg (0.167 kmol) iron powder is used. In order to

få en homogen smelte økes temperaturen i dette tilfelle inntil 7 00°C. Etter reaksjonens gjennomføring får man en stivnet smeltekake på 212 kg som har den formale sammensetning K^FeClg resp. K2FeCl4. 2 KC1 (0,49 kmol). obtain a homogeneous melt, the temperature is increased in this case up to 7 00°C. After completion of the reaction, a solidified molten cake of 212 kg is obtained which has the formal composition K^FeClg or K2FeCl4. 2 KCl (0.49 kmol).

Eksempel 5Example 5

For fremstilling av et produkt som samtidig inneholder to- og treverdig jern oppsmeltes 35,1 kg (0,6 kmol) natriumklorid, 81,1 kg (0,5 kmol) jern(III)klorid vannfri og 5,58 kg (0,1 kmol) jernpulver ved en temperatur på 50 0°C. Etter gjennomføring av reaksjonen og avkjøling av reaksjonsproduktet får man ca. 120 kg (0,296 kmol) av et produkt av sammensetning NaFeCl^ • NaFeCl^. For the production of a product which simultaneously contains divalent and trivalent iron, 35.1 kg (0.6 kmol) of sodium chloride, 81.1 kg (0.5 kmol) iron(III) chloride anhydrous and 5.58 kg (0. 1 kmol) of iron powder at a temperature of 50 0°C. After completion of the reaction and cooling of the reaction product, approx. 120 kg (0.296 kmol) of a product of composition NaFeCl^ • NaFeCl^.

Claims (3)

1. Fremgangsmåten til fremstilling av alkalikloroferrater (II,III) med formel I1. The process for producing alkali chloroferrates (II,III) with formula I hvori A betyr et alkalimetallion eller et ammoniumion, x betyr et tall fra 1 til 10, y et tall fra null til 1 og z et tall fra null til 1, og y og z er ikke samtidig null, karakterisert ved at et alkaliklorid eller ammoniumklorid,vannfritt jern(III)klorid og jernpulver sammensmeltes i det ønskede støkio-metriske forhold. wherein A means an alkali metal ion or an ammonium ion, x means a number from 1 to 10, y a number from zero to 1 and z a number from zero to 1, and y and z are not simultaneously zero, characterized in that an alkali chloride or ammonium chloride , anhydrous iron(III) chloride and iron powder are fused in the desired stoichiometric ratio. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det i stedet for et alkaliklorid anvendes en blanding av flere alkaliklorider. 2. Method according to claim 1, characterized in that a mixture of several alkali chlorides is used instead of an alkali chloride. 3. Anvendelse av salter ifølge krav 1 eller 2 til farving av keramiske produkter.3. Use of salts according to claim 1 or 2 for coloring ceramic products.
NO792635A 1978-08-14 1979-08-13 PROCEDURE FOR THE PREPARATION OF ANNUAL ALKALIC CHLOROFER RATES (II, III) NO792635L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19782835542 DE2835542A1 (en) 1978-08-14 1978-08-14 METHOD FOR PRODUCING WATER-FREE ALKALICHLOROFERRATES (II, III)

Publications (1)

Publication Number Publication Date
NO792635L true NO792635L (en) 1980-02-15

Family

ID=6046986

Family Applications (1)

Application Number Title Priority Date Filing Date
NO792635A NO792635L (en) 1978-08-14 1979-08-13 PROCEDURE FOR THE PREPARATION OF ANNUAL ALKALIC CHLOROFER RATES (II, III)

Country Status (6)

Country Link
EP (1) EP0008413A1 (en)
JP (1) JPS5527898A (en)
DE (1) DE2835542A1 (en)
DK (1) DK337679A (en)
FI (1) FI792500A (en)
NO (1) NO792635L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026294A1 (en) 1980-07-11 1982-02-18 Riedel-De Haen Ag, 3016 Seelze CHLOROFLUOROFERRATE (II, III), METHOD FOR THE PRODUCTION THEREOF, ITS USE AND GRINDING WHEEL CONTAINING CHLOROFLUOROFERRATE (II, III)
EP0160152B1 (en) * 1984-03-06 1992-07-29 Ltd. I.B.E. Co. Stabilized fe2 cl5 and a preparation method thereof
JP3708212B2 (en) * 1996-04-17 2005-10-19 三井化学株式会社 Concentration method of acrylamide aqueous solution
DE19924495A1 (en) 1999-05-28 2000-11-30 Merck Patent Gmbh Process and apparatus for the continuous production of NaDCI¶4¶

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762700A (en) * 1949-08-23 1956-09-11 Richard J Brooks Production of ferrous chloride and metallic iron powder
DE1195285B (en) * 1963-05-07 1965-06-24 Basf Ag Process for the production of anhydrous solutions of iron (II) chloride
DE2110611A1 (en) * 1971-03-05 1972-09-14 Wendell E Dun Inc Alkali metal tetrachloroferrates - for deacon chlorine process,from hydrated ferric chloride and alkali metal chloride

Also Published As

Publication number Publication date
FI792500A (en) 1980-02-15
JPS5527898A (en) 1980-02-28
DE2835542A1 (en) 1980-02-28
EP0008413A1 (en) 1980-03-05
DK337679A (en) 1980-02-15

Similar Documents

Publication Publication Date Title
CA1231826A (en) Process for producing sodium polysulphides from the elements sodium and sulphur
DK155879B (en) PROCEDURE FOR THE PREPARATION OF GRANULATED METAL SOAPS
NO792635L (en) PROCEDURE FOR THE PREPARATION OF ANNUAL ALKALIC CHLOROFER RATES (II, III)
NO155915B (en) APPARATUS FOR SEPARATION OF A MEDIUM IN INGREDIENTS WITH DIFFERENT PARTICLES.
US4235862A (en) Production of low sulphur chromium (III) oxide
Copson et al. Development of processes for metaphosphate productions
US5211742A (en) Method of converting uranium dioxide into metallic uranium lump
HU176544B (en) Process for preparing ignited phosphate fertilizers containing alkali
US3347627A (en) Process for manufacturing sodium trimetaphosphate
US3414375A (en) Two-stage process for the preparation of potassium metaphosphate
GB2053881A (en) Process for producing potassium sulphate
US4222998A (en) Production of bismuth trichloride
US4073875A (en) Oxidation of magnesium chloride
GB832011A (en) Granular potassium metaphosphate
US1693217A (en) Method of making hydrogen chloride and sodium sulphate
US3450497A (en) Process for producing boric oxide
US1126408A (en) Process for rendering available the phosphoric acid in phosphate-rocks.
USRE22951E (en) Process of making alkali
SU1119999A1 (en) Concentrated galss-like potassium phosphate fertilizer
EP0752998A1 (en) Thionation process using elemental phosphorus and sulfur
US73689A (en) Haydn m
US2942945A (en) Process of making alkali subsilicates
US1337239A (en) Process of making manganates
JPH0579241B2 (en)
US392742A (en) Composition for developing ozonized oxygen