NO772630L - PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION - Google Patents

PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION

Info

Publication number
NO772630L
NO772630L NO772630A NO772630A NO772630L NO 772630 L NO772630 L NO 772630L NO 772630 A NO772630 A NO 772630A NO 772630 A NO772630 A NO 772630A NO 772630 L NO772630 L NO 772630L
Authority
NO
Norway
Prior art keywords
cooling
cross
extrusion
carried out
linking
Prior art date
Application number
NO772630A
Other languages
Norwegian (no)
Inventor
Nils Per Olov Brick
Karl Arthur Oeberg
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Publication of NO772630L publication Critical patent/NO772630L/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Organic Insulating Materials (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for å. frem-stille høyspenningskabel forsynt med ekstruderte polymere materialer, som tverrbindes i et gassformet varmemedium. Det er kjent fra f.eks. amerikanske patenter nr. 3.645.656, 3.846.528 og 3.901.633 og derefter modifiserte japanske patent, at polymere materialer slik som polyolefinene polyeten, eten-propengummi m.fl., som inneholder tverrbindingsmiddel i form av organiske peroksyder, kan tverrbindes ved temperaturer opp til ca. 300°C i eksempelvis nitrogen med et overtrykk på The present invention relates to a method for producing high-voltage cable provided with extruded polymeric materials, which are cross-linked in a gaseous heating medium. It is known from e.g. American patents Nos. 3,645,656, 3,846,528 and 3,901,633 and subsequently modified Japanese patent, that polymeric materials such as the polyolefins polyethylene, ethylene-propylene rubber etc., which contain cross-linking agents in the form of organic peroxides, can be cross-linked at temperatures up to approx. 300°C in, for example, nitrogen with an overpressure

5-15 kp/cm 2. Problemet med denne tverrbindingsmetode er at det for grovere kabelisoleringer kreves vertikale tverrbindings-linjer, eftersom disse isolersjikt på grunn av gravitasjons-kraften ikke kan sentreres og kabelen holdes rund i normale horisontale linjer eller kjedelinjer. Dette er spesielt til-fellet med tynne flater og grove vegger. 5-15 kp/cm 2. The problem with this cross-linking method is that for coarser cable insulations, vertical cross-linking lines are required, since these insulation layers cannot be centered due to the force of gravity and the cable is held round in normal horizontal lines or chain lines. This is especially the case with thin surfaces and rough walls.

Foreliggende oppfinnelse har til hensikt å muliggjøre ekstrudering og tverrbinding i ikke-vertikale linjer i gassformede media uten at deformering og desentrering oppstår. The present invention aims to enable extrusion and crosslinking in non-vertical lines in gaseous media without deformation and decentering occurring.

Ved ekstrudering av polymere materialer må temperaturen over-stige smeltepunktet, eller mere korrekt, smelteområdet. When extruding polymeric materials, the temperature must exceed the melting point, or more correctly, the melting range.

Spesielt for krystallinske eller delvis krystallinske materialer, så som polyeten, er det aktuelle temperaturområdet meget inn-skrenket, hvilket medfører at materialet raskt blir lett-flytende og dermed lett deformerbart ved ytterligere oppvarming under tverrbindingsprosessen. Especially for crystalline or partially crystalline materials, such as polyethylene, the relevant temperature range is very restricted, which means that the material quickly becomes easily fluid and thus easily deformable by further heating during the cross-linking process.

Disse deformasjonstendenser kan prinsipielt forhindres ved utnyttelse av forskjellige fysikalske lover, eksempelvis Archimedes' eller Bernoullis prinsipper. These deformation tendencies can in principle be prevented by utilizing various physical laws, for example Archimedes' or Bernoulli's principles.

! i ! in

jved utnyttelse av Archimedes<1>prinsipp må det gassformede varmemediet komprimeres til en tetthet sammenlignbar med isoler-materialet, hvilket krever i størrelsesordenen 700 atmosfærers trykk. Ved Bernoullis prinsipp utnyttes forholdet at en strømmende gass med høy strømningshastighet skaper et under-trykk, som kan utnyttes for å motvirke deformasjon. Dette krever imidlertid så høye strømningshastigheter at metoden er praktisk vanskelig å anvende. By using Archimedes<1>'s principle, the gaseous heating medium must be compressed to a density comparable to the insulating material, which requires a pressure of around 700 atmospheres. Bernoulli's principle exploits the fact that a flowing gas with a high flow rate creates a negative pressure, which can be used to counteract deformation. However, this requires such high flow rates that the method is practically difficult to apply.

I den foreliggende metoden utnyttes den ovennevnte store viskositetsendringen ved passering av smeltepunktet, slik at det viskøse ekstrudatet avkjøles til en slik temperatur at materialet ved fornyet, men rask oppvarming under tverrbindingsprosessen blir formstabilttil tverrbindingen mekanisk har stabilisert materialet. Når materialet efter ekstrudering og avkjøling kommer inn i den varme tverrbindingssonen, holder det en temperatur under sitt smeltepunkt og er derfor mekanisk stabilisert. Ved tverrbinding med gass som varmeoverførings-medium er temperaturen meget høy, vanligvis ca. 300°C. Derved smeltes det ekstruderte materialet i en fra overflaten inn mot lederen gående prosess. Imidlertid er tverrbindings-mekanismen ved den aktuelle temperatur meget rask - ofte deler av et sekund. Dette gjør at den oppvarmede delen av materialet raskt blir mekaniskt stabilisert og deformasjonsproblemer unn-gås . In the present method, the above-mentioned large change in viscosity upon passing the melting point is utilized, so that the viscous extrudate is cooled to such a temperature that the material, by renewed but rapid heating during the cross-linking process, becomes dimensionally stable until the cross-linking has mechanically stabilized the material. When the material enters the hot cross-linking zone after extrusion and cooling, it maintains a temperature below its melting point and is therefore mechanically stabilized. When cross-linking with gas as the heat transfer medium, the temperature is very high, usually approx. 300°C. Thereby, the extruded material is melted in a process moving from the surface towards the conductor. However, the cross-linking mechanism at the relevant temperature is very fast - often fractions of a second. This means that the heated part of the material is quickly mechanically stabilized and deformation problems are avoided.

Oppfinnelsen beskrives nærmere nedenfor under henvisning til vedlagte figurer, av hvilke The invention is described in more detail below with reference to the attached figures, of which

Fig. 1 viser prinsippet for en konvensjonell kjedelinje med tilkoblede sprøyter. Fig. 2 viser et tverrsnitt av en høyspenningskabel som ovenfor nevnt, samt temperaturkurver for kabelen i tverrbindingsrøret ved konvensjonell tverrbindingsmetode, og Fig. 3-5 viser tilsvarende temperaturkurver for forskjellige alternativ ifølge oppfinnelsen. Fig. 1 shows the principle of a conventional chain line with connected sprayers. Fig. 2 shows a cross-section of a high-voltage cable as mentioned above, as well as temperature curves for the cable in the cross-linking tube by conventional cross-linking method, and Figs. 3-5 show corresponding temperature curves for different alternatives according to the invention.

Prinsippet for fremstilling av høyspenningskabel ifølge det fore- jgående illustreres i figur 1 for en konvensjonell kjedelinje med tilkoblede sprøyter 1, 2 og 3, kjølesonene a og b, tverr-bindingsrør 4 med tverrbindingssone d og kjølesonene c og e. Lederen belegges med et indre halvledende sjikt i sprøyten 1, forsynes med et isolerende sjikt i sprøyten 2 og med et ytre halvledende sjikt i sprøyten 3, og den således fremstilte kabelen innføres i tverrbindingsrøret 4. Ifølge oppfinnelsen skal kjøling skje før tverrbindingen. Den kan skje ifølge følgende alternativ: The principle for manufacturing high-voltage cable according to the foregoing is illustrated in Figure 1 for a conventional chain line with connected syringes 1, 2 and 3, cooling zones a and b, cross-linking tube 4 with cross-linking zone d and cooling zones c and e. The conductor is coated with an inner semi-conductive layer in the syringe 1, is provided with an insulating layer in the syringe 2 and with an outer semi-conductive layer in the syringe 3, and the thus produced cable is introduced into the cross-linking tube 4. According to the invention, cooling must take place before the cross-linking. It can take place according to the following option:

1) Kjøling gjennomføres av lederen i kjølesonen a.1) Cooling is carried out by the manager in the cooling zone a.

2) Kjøling gjennomføres i kjølesonen b av ledere med pålagt indre halvledende sjikt. 2) Cooling is carried out in the cooling zone b by conductors with an applied inner semi-conductive layer.

3) Kjøling gjennomføres i kjølesonen c efter ekstrudering3) Cooling is carried out in the cooling zone c after extrusion

av samtlige materialer.of all materials.

4) Kjøling gjennomføres både i kjølesonene a og b.4) Cooling is carried out in both cooling zones a and b.

5) Kjøling gjennomføres både i kjølesonene a og c.5) Cooling is carried out in both cooling zones a and c.

6) Kjøling gjennomføres både i kjølesonene b og c.6) Cooling is carried out in both cooling zones b and c.

7) . Kjøling gjennomføres i alle tre kjølesonene.7). Cooling is carried out in all three cooling zones.

Når de forskjellige alternativ skal anvendes beror på kabelens konstruksjon og størrelse. I tverrbindingsrøret 4 skal det være et visst overtrykk. I tverrbindingssonen d. oppvarmes de polymere materialene, slik at peroksydet spaltes og tverrbinding skjer, hvorefter avkjøling til håndterbar temperatur skjer i kjølesonen e på konvensjonell måte før kabelens utgang av tverrbindingsrøret. When the different options are to be used depends on the cable's construction and size. There must be a certain excess pressure in the cross-linking pipe 4. In the cross-linking zone d. the polymeric materials are heated, so that the peroxide is split and cross-linking takes place, after which cooling to a manageable temperature takes place in the cooling zone e in a conventional manner before the cable exits the cross-linking tube.

Figur 2 viser et tverrsnitt av en høyspenningskabel ifølge det ovenfor nevnte med sitt indre halvledende sjikt i. og ytre halvledende sjikt y_ og derimellom det isolerende sjiktet, samt temperaturkurver for i og y_ langs med tverrbindingsrøret ved konvensjonell tverrbindingsmetode. Figurene 3-5 viser tilsvarende temperaturkurver ved tverrbindingsmetoden ifølge oppfinnelsen: figur 3 når kjøling skjer ved i. (dvs. i kjølesonen a, resp. i kjølesonene b eller både a og b), figur 4 når kjøling skjer ved y_ (dvs. i kjølesonen c) og figur 5 når kjøling skjer både ved i. og ved y_. Figure 2 shows a cross-section of a high-voltage cable according to the aforementioned with its inner semi-conductive layer i. and outer semi-conductive layer y_ and between them the insulating layer, as well as temperature curves for i and y_ along the cross-linking tube by conventional cross-linking method. Figures 3-5 show corresponding temperature curves for the cross-linking method according to the invention: figure 3 when cooling takes place at i. (i.e. in the cooling zone a, resp. in the cooling zones b or both a and b), figure 4 when cooling takes place at y_ (i.e. i the cooling zone c) and figure 5 when cooling takes place both at i. and at y_.

I j In j

Claims (8)

1. Metode, omfattende sprøyteprofilering, nedkjøling og tverrbinding, ved ekstrudering av polymere materialer, tilveiebragt for å anvendes ved fremstilling av hø yspenningskabel, i hvilken lederen omgis av et indre halvledende sjikt, et isolerende sjikt og et ytre halvledende sjikt, karakterisert ved at nedkjølingen av materialet gjennomføres før tverrbindingen.1. Method, comprising spray profiling, cooling and cross-linking, by extrusion of polymeric materials, provided for use in the production of high voltage cable, in which the conductor is surrounded by an inner semi-conductive layer, an insulating layer and an outer semi-conductive layer, characterized in that the cooling of the material is carried out before the cross-linking. 2. Metode som angitt i krav 1, karakterisert ved at lederen nedkjøles før ekstruderingen av de polymere materialene.2. Method as stated in claim 1, characterized in that the conductor is cooled before the extrusion of the polymeric materials. 3. Metode som angitt i krav 1, karakterisert ved at nedkjøling gjennomføres av ledere med. pålagt indre halvledende sjikt før ekstruderingen av resterende polymere materialer.3. Method as specified in claim 1, characterized in that cooling is carried out by managers with. imposed inner semi-conductive layer before the extrusion of remaining polymeric materials. 4. Metode som angitt i krav 1, karakterisert ved at nedkjølingen av samtlige materialer av polymer karakter gjennomføres efter ekstruderingen.4. Method as stated in claim 1, characterized in that the cooling of all polymeric materials is carried out after extrusion. 5. Metode som angitt i kravene 1-3, karakterisert ved at nedkjølingen gjennomføres både før og efter ekstruderingen av det indre halvledende sjiktet.5. Method as stated in claims 1-3, characterized in that the cooling is carried out both before and after the extrusion of the inner semi-conductive layer. 6. Metode som angitt i kravene 1, 2 og 4, karakterisert ved at nedkjølingen gjennomføres både før ekstruderingen av de polymere materialene og efter ekstruderingen av samtlige materialer av polymer karakter.6. Method as specified in claims 1, 2 and 4, characterized in that the cooling is carried out both before the extrusion of the polymeric materials and after the extrusion of all materials of a polymeric nature. 7. Metode som angitt i kravene 1, 3' og 4, karakterisert ved at nedkjølingen gjennomføres både efter ekstruderingen av det indre halvledende sjiktet og efter ekstruderingen av samtlige materialer av polymer karakter.7. Method as stated in claims 1, 3' and 4, characterized in that the cooling is carried out both after the extrusion of the inner semi-conductive layer and after the extrusion of all materials of a polymeric nature. 8. Metode som angitt i kravene 1-7, karakterisert ved at nedkjøling gjennomføres såvel før ekstru deringen av de polymere materialene som efter ekstruderingen av det indre halvledende sjiktet og efter ekstruderingen av samtlige materialer av polymer karakter.8. Method as stated in claims 1-7, characterized in that cooling is carried out both before the extrusion of the polymeric materials and after the extrusion of the inner semi-conductive layer and after the extrusion of all materials of a polymeric nature.
NO772630A 1976-07-23 1977-07-22 PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION NO772630L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7608411A SE413822B (en) 1976-07-23 1976-07-23 METHOD, INCLUDING SPRAY PROFILING COOLING AND CROSS-BONDING, EXTRACTING POLYMER MATERIALS INTENDED TO BE USED IN PREPARATION OF HIGH VOLTAGE CABLE

Publications (1)

Publication Number Publication Date
NO772630L true NO772630L (en) 1978-01-24

Family

ID=20328540

Family Applications (1)

Application Number Title Priority Date Filing Date
NO772630A NO772630L (en) 1976-07-23 1977-07-22 PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION

Country Status (8)

Country Link
AU (1) AU2721077A (en)
BR (1) BR7704764A (en)
DE (1) DE2732629A1 (en)
DK (1) DK332377A (en)
FI (1) FI772229A (en)
FR (1) FR2359491A1 (en)
NO (1) NO772630L (en)
SE (1) SE413822B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2805631A1 (en) * 1978-02-10 1979-08-16 Kabel & Lackdrahtfab Gmbh DEVICE AND METHOD FOR COVERING A LADDER
DE2939608C2 (en) * 1979-09-29 1986-04-24 Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen e.V., 5100 Aachen Method and device for the continuous production of electrical cables and lines
FI89987C (en) * 1991-10-30 1993-12-10 Maillefer Nokia Oy FOERFARANDE FOER VAERMEBEHANDLING AV EN KABEL

Also Published As

Publication number Publication date
DE2732629A1 (en) 1978-01-26
SE7608411L (en) 1978-01-24
AU2721077A (en) 1979-01-25
DK332377A (en) 1978-01-24
FI772229A (en) 1978-01-24
BR7704764A (en) 1978-04-25
FR2359491A1 (en) 1978-02-17
SE413822B (en) 1980-06-23

Similar Documents

Publication Publication Date Title
US3196194A (en) Fep-fluorocarbon tubing process
US2972780A (en) Process for extrusion and continuous cure of polymeric compositions
US4234624A (en) Method of applying an insulation of cross-linked polymer on a cable conductor
Rosenzweig et al. Sintering rheology of amorphous polymers
GB1151788A (en) Heat-Shrinkable Cap.
US4451306A (en) Manufacture of coextruded oriented products
KR850005619A (en) Coated optical fiber, manufacturing method and apparatus therefor
Basu A theoretical analysis of non‐isothermal flow in wire‐coating co‐extrusion dies
US5573720A (en) Extrusion of thermally cross-linkable materials
NO772630L (en) PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION
US3382220A (en) Transparent linear polymers
KR960013070B1 (en) Method of joining articles
US3300554A (en) Method of making cellular articles
US4797173A (en) Apparatus for face welding bundles of thermoplastic moldings under pressure
US2834054A (en) Process for extruding polychlorotrifluoroethylene
US4091064A (en) Process for producing electric cable insulated with cured polyolefin
US3500870A (en) Fep 160 fluorocarbon tubing and process
US3649409A (en) Process for lining a plastic cylinder with another plastic
USRE27028E (en) Fep-fluorocarbon tubing
US4150082A (en) Process for extruding polymer materials for high voltage cables
EP2755211B1 (en) Method and arrangement of crosslinking or vulcanizing an elongate element
US5340299A (en) Apparatus for manufacturing ribbed pipes
NO158747B (en) PROCEDURE FOR THE MANUFACTURE OF CRYMIC IMPACT.
GB1280172A (en) Heat shrinkable fluorocarbon tubing
NO763069L (en) PROCEDURE AND CABLE MANUFACTURER