NO772630L - PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION - Google Patents
PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATIONInfo
- Publication number
- NO772630L NO772630L NO772630A NO772630A NO772630L NO 772630 L NO772630 L NO 772630L NO 772630 A NO772630 A NO 772630A NO 772630 A NO772630 A NO 772630A NO 772630 L NO772630 L NO 772630L
- Authority
- NO
- Norway
- Prior art keywords
- cooling
- cross
- extrusion
- carried out
- linking
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000009413 insulation Methods 0.000 title description 3
- 239000002861 polymer material Substances 0.000 title 1
- 238000001816 cooling Methods 0.000 claims description 34
- 238000004132 cross linking Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- 238000001125 extrusion Methods 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- -1 polyethylene, ethylene-propylene Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/14—Insulating conductors or cables by extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/06—Rod-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/91—Heating, e.g. for cross linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/22—Sheathing; Armouring; Screening; Applying other protective layers
- H01B13/24—Sheathing; Armouring; Screening; Applying other protective layers by extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Organic Insulating Materials (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte for å. frem-stille høyspenningskabel forsynt med ekstruderte polymere materialer, som tverrbindes i et gassformet varmemedium. Det er kjent fra f.eks. amerikanske patenter nr. 3.645.656, 3.846.528 og 3.901.633 og derefter modifiserte japanske patent, at polymere materialer slik som polyolefinene polyeten, eten-propengummi m.fl., som inneholder tverrbindingsmiddel i form av organiske peroksyder, kan tverrbindes ved temperaturer opp til ca. 300°C i eksempelvis nitrogen med et overtrykk på The present invention relates to a method for producing high-voltage cable provided with extruded polymeric materials, which are cross-linked in a gaseous heating medium. It is known from e.g. American patents Nos. 3,645,656, 3,846,528 and 3,901,633 and subsequently modified Japanese patent, that polymeric materials such as the polyolefins polyethylene, ethylene-propylene rubber etc., which contain cross-linking agents in the form of organic peroxides, can be cross-linked at temperatures up to approx. 300°C in, for example, nitrogen with an overpressure
5-15 kp/cm 2. Problemet med denne tverrbindingsmetode er at det for grovere kabelisoleringer kreves vertikale tverrbindings-linjer, eftersom disse isolersjikt på grunn av gravitasjons-kraften ikke kan sentreres og kabelen holdes rund i normale horisontale linjer eller kjedelinjer. Dette er spesielt til-fellet med tynne flater og grove vegger. 5-15 kp/cm 2. The problem with this cross-linking method is that for coarser cable insulations, vertical cross-linking lines are required, since these insulation layers cannot be centered due to the force of gravity and the cable is held round in normal horizontal lines or chain lines. This is especially the case with thin surfaces and rough walls.
Foreliggende oppfinnelse har til hensikt å muliggjøre ekstrudering og tverrbinding i ikke-vertikale linjer i gassformede media uten at deformering og desentrering oppstår. The present invention aims to enable extrusion and crosslinking in non-vertical lines in gaseous media without deformation and decentering occurring.
Ved ekstrudering av polymere materialer må temperaturen over-stige smeltepunktet, eller mere korrekt, smelteområdet. When extruding polymeric materials, the temperature must exceed the melting point, or more correctly, the melting range.
Spesielt for krystallinske eller delvis krystallinske materialer, så som polyeten, er det aktuelle temperaturområdet meget inn-skrenket, hvilket medfører at materialet raskt blir lett-flytende og dermed lett deformerbart ved ytterligere oppvarming under tverrbindingsprosessen. Especially for crystalline or partially crystalline materials, such as polyethylene, the relevant temperature range is very restricted, which means that the material quickly becomes easily fluid and thus easily deformable by further heating during the cross-linking process.
Disse deformasjonstendenser kan prinsipielt forhindres ved utnyttelse av forskjellige fysikalske lover, eksempelvis Archimedes' eller Bernoullis prinsipper. These deformation tendencies can in principle be prevented by utilizing various physical laws, for example Archimedes' or Bernoulli's principles.
! i ! in
jved utnyttelse av Archimedes<1>prinsipp må det gassformede varmemediet komprimeres til en tetthet sammenlignbar med isoler-materialet, hvilket krever i størrelsesordenen 700 atmosfærers trykk. Ved Bernoullis prinsipp utnyttes forholdet at en strømmende gass med høy strømningshastighet skaper et under-trykk, som kan utnyttes for å motvirke deformasjon. Dette krever imidlertid så høye strømningshastigheter at metoden er praktisk vanskelig å anvende. By using Archimedes<1>'s principle, the gaseous heating medium must be compressed to a density comparable to the insulating material, which requires a pressure of around 700 atmospheres. Bernoulli's principle exploits the fact that a flowing gas with a high flow rate creates a negative pressure, which can be used to counteract deformation. However, this requires such high flow rates that the method is practically difficult to apply.
I den foreliggende metoden utnyttes den ovennevnte store viskositetsendringen ved passering av smeltepunktet, slik at det viskøse ekstrudatet avkjøles til en slik temperatur at materialet ved fornyet, men rask oppvarming under tverrbindingsprosessen blir formstabilttil tverrbindingen mekanisk har stabilisert materialet. Når materialet efter ekstrudering og avkjøling kommer inn i den varme tverrbindingssonen, holder det en temperatur under sitt smeltepunkt og er derfor mekanisk stabilisert. Ved tverrbinding med gass som varmeoverførings-medium er temperaturen meget høy, vanligvis ca. 300°C. Derved smeltes det ekstruderte materialet i en fra overflaten inn mot lederen gående prosess. Imidlertid er tverrbindings-mekanismen ved den aktuelle temperatur meget rask - ofte deler av et sekund. Dette gjør at den oppvarmede delen av materialet raskt blir mekaniskt stabilisert og deformasjonsproblemer unn-gås . In the present method, the above-mentioned large change in viscosity upon passing the melting point is utilized, so that the viscous extrudate is cooled to such a temperature that the material, by renewed but rapid heating during the cross-linking process, becomes dimensionally stable until the cross-linking has mechanically stabilized the material. When the material enters the hot cross-linking zone after extrusion and cooling, it maintains a temperature below its melting point and is therefore mechanically stabilized. When cross-linking with gas as the heat transfer medium, the temperature is very high, usually approx. 300°C. Thereby, the extruded material is melted in a process moving from the surface towards the conductor. However, the cross-linking mechanism at the relevant temperature is very fast - often fractions of a second. This means that the heated part of the material is quickly mechanically stabilized and deformation problems are avoided.
Oppfinnelsen beskrives nærmere nedenfor under henvisning til vedlagte figurer, av hvilke The invention is described in more detail below with reference to the attached figures, of which
Fig. 1 viser prinsippet for en konvensjonell kjedelinje med tilkoblede sprøyter. Fig. 2 viser et tverrsnitt av en høyspenningskabel som ovenfor nevnt, samt temperaturkurver for kabelen i tverrbindingsrøret ved konvensjonell tverrbindingsmetode, og Fig. 3-5 viser tilsvarende temperaturkurver for forskjellige alternativ ifølge oppfinnelsen. Fig. 1 shows the principle of a conventional chain line with connected sprayers. Fig. 2 shows a cross-section of a high-voltage cable as mentioned above, as well as temperature curves for the cable in the cross-linking tube by conventional cross-linking method, and Figs. 3-5 show corresponding temperature curves for different alternatives according to the invention.
Prinsippet for fremstilling av høyspenningskabel ifølge det fore- jgående illustreres i figur 1 for en konvensjonell kjedelinje med tilkoblede sprøyter 1, 2 og 3, kjølesonene a og b, tverr-bindingsrør 4 med tverrbindingssone d og kjølesonene c og e. Lederen belegges med et indre halvledende sjikt i sprøyten 1, forsynes med et isolerende sjikt i sprøyten 2 og med et ytre halvledende sjikt i sprøyten 3, og den således fremstilte kabelen innføres i tverrbindingsrøret 4. Ifølge oppfinnelsen skal kjøling skje før tverrbindingen. Den kan skje ifølge følgende alternativ: The principle for manufacturing high-voltage cable according to the foregoing is illustrated in Figure 1 for a conventional chain line with connected syringes 1, 2 and 3, cooling zones a and b, cross-linking tube 4 with cross-linking zone d and cooling zones c and e. The conductor is coated with an inner semi-conductive layer in the syringe 1, is provided with an insulating layer in the syringe 2 and with an outer semi-conductive layer in the syringe 3, and the thus produced cable is introduced into the cross-linking tube 4. According to the invention, cooling must take place before the cross-linking. It can take place according to the following option:
1) Kjøling gjennomføres av lederen i kjølesonen a.1) Cooling is carried out by the manager in the cooling zone a.
2) Kjøling gjennomføres i kjølesonen b av ledere med pålagt indre halvledende sjikt. 2) Cooling is carried out in the cooling zone b by conductors with an applied inner semi-conductive layer.
3) Kjøling gjennomføres i kjølesonen c efter ekstrudering3) Cooling is carried out in the cooling zone c after extrusion
av samtlige materialer.of all materials.
4) Kjøling gjennomføres både i kjølesonene a og b.4) Cooling is carried out in both cooling zones a and b.
5) Kjøling gjennomføres både i kjølesonene a og c.5) Cooling is carried out in both cooling zones a and c.
6) Kjøling gjennomføres både i kjølesonene b og c.6) Cooling is carried out in both cooling zones b and c.
7) . Kjøling gjennomføres i alle tre kjølesonene.7). Cooling is carried out in all three cooling zones.
Når de forskjellige alternativ skal anvendes beror på kabelens konstruksjon og størrelse. I tverrbindingsrøret 4 skal det være et visst overtrykk. I tverrbindingssonen d. oppvarmes de polymere materialene, slik at peroksydet spaltes og tverrbinding skjer, hvorefter avkjøling til håndterbar temperatur skjer i kjølesonen e på konvensjonell måte før kabelens utgang av tverrbindingsrøret. When the different options are to be used depends on the cable's construction and size. There must be a certain excess pressure in the cross-linking pipe 4. In the cross-linking zone d. the polymeric materials are heated, so that the peroxide is split and cross-linking takes place, after which cooling to a manageable temperature takes place in the cooling zone e in a conventional manner before the cable exits the cross-linking tube.
Figur 2 viser et tverrsnitt av en høyspenningskabel ifølge det ovenfor nevnte med sitt indre halvledende sjikt i. og ytre halvledende sjikt y_ og derimellom det isolerende sjiktet, samt temperaturkurver for i og y_ langs med tverrbindingsrøret ved konvensjonell tverrbindingsmetode. Figurene 3-5 viser tilsvarende temperaturkurver ved tverrbindingsmetoden ifølge oppfinnelsen: figur 3 når kjøling skjer ved i. (dvs. i kjølesonen a, resp. i kjølesonene b eller både a og b), figur 4 når kjøling skjer ved y_ (dvs. i kjølesonen c) og figur 5 når kjøling skjer både ved i. og ved y_. Figure 2 shows a cross-section of a high-voltage cable according to the aforementioned with its inner semi-conductive layer i. and outer semi-conductive layer y_ and between them the insulating layer, as well as temperature curves for i and y_ along the cross-linking tube by conventional cross-linking method. Figures 3-5 show corresponding temperature curves for the cross-linking method according to the invention: figure 3 when cooling takes place at i. (i.e. in the cooling zone a, resp. in the cooling zones b or both a and b), figure 4 when cooling takes place at y_ (i.e. i the cooling zone c) and figure 5 when cooling takes place both at i. and at y_.
I j In j
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7608411A SE413822B (en) | 1976-07-23 | 1976-07-23 | METHOD, INCLUDING SPRAY PROFILING COOLING AND CROSS-BONDING, EXTRACTING POLYMER MATERIALS INTENDED TO BE USED IN PREPARATION OF HIGH VOLTAGE CABLE |
Publications (1)
Publication Number | Publication Date |
---|---|
NO772630L true NO772630L (en) | 1978-01-24 |
Family
ID=20328540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO772630A NO772630L (en) | 1976-07-23 | 1977-07-22 | PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION |
Country Status (8)
Country | Link |
---|---|
AU (1) | AU2721077A (en) |
BR (1) | BR7704764A (en) |
DE (1) | DE2732629A1 (en) |
DK (1) | DK332377A (en) |
FI (1) | FI772229A (en) |
FR (1) | FR2359491A1 (en) |
NO (1) | NO772630L (en) |
SE (1) | SE413822B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2805631A1 (en) * | 1978-02-10 | 1979-08-16 | Kabel & Lackdrahtfab Gmbh | DEVICE AND METHOD FOR COVERING A LADDER |
DE2939608C2 (en) * | 1979-09-29 | 1986-04-24 | Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen e.V., 5100 Aachen | Method and device for the continuous production of electrical cables and lines |
FI89987C (en) * | 1991-10-30 | 1993-12-10 | Maillefer Nokia Oy | FOERFARANDE FOER VAERMEBEHANDLING AV EN KABEL |
-
1976
- 1976-07-23 SE SE7608411A patent/SE413822B/en unknown
-
1977
- 1977-07-19 DE DE19772732629 patent/DE2732629A1/en not_active Withdrawn
- 1977-07-19 FI FI772229A patent/FI772229A/fi not_active Application Discontinuation
- 1977-07-20 BR BR7704764A patent/BR7704764A/en unknown
- 1977-07-21 AU AU27210/77A patent/AU2721077A/en active Pending
- 1977-07-22 NO NO772630A patent/NO772630L/en unknown
- 1977-07-22 DK DK332377A patent/DK332377A/en not_active Application Discontinuation
- 1977-07-22 FR FR7722616A patent/FR2359491A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE2732629A1 (en) | 1978-01-26 |
SE7608411L (en) | 1978-01-24 |
AU2721077A (en) | 1979-01-25 |
DK332377A (en) | 1978-01-24 |
FI772229A (en) | 1978-01-24 |
BR7704764A (en) | 1978-04-25 |
FR2359491A1 (en) | 1978-02-17 |
SE413822B (en) | 1980-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3196194A (en) | Fep-fluorocarbon tubing process | |
US2972780A (en) | Process for extrusion and continuous cure of polymeric compositions | |
US4234624A (en) | Method of applying an insulation of cross-linked polymer on a cable conductor | |
Rosenzweig et al. | Sintering rheology of amorphous polymers | |
GB1151788A (en) | Heat-Shrinkable Cap. | |
US4451306A (en) | Manufacture of coextruded oriented products | |
KR850005619A (en) | Coated optical fiber, manufacturing method and apparatus therefor | |
Basu | A theoretical analysis of non‐isothermal flow in wire‐coating co‐extrusion dies | |
US5573720A (en) | Extrusion of thermally cross-linkable materials | |
NO772630L (en) | PROCEDURES FOR EXTRACTING POLYMER MATERIALS FOR HIGH VOLTAGE CABLES WITH CROSS-BOND INSULATION | |
US3382220A (en) | Transparent linear polymers | |
KR960013070B1 (en) | Method of joining articles | |
US3300554A (en) | Method of making cellular articles | |
US4797173A (en) | Apparatus for face welding bundles of thermoplastic moldings under pressure | |
US2834054A (en) | Process for extruding polychlorotrifluoroethylene | |
US4091064A (en) | Process for producing electric cable insulated with cured polyolefin | |
US3500870A (en) | Fep 160 fluorocarbon tubing and process | |
US3649409A (en) | Process for lining a plastic cylinder with another plastic | |
USRE27028E (en) | Fep-fluorocarbon tubing | |
US4150082A (en) | Process for extruding polymer materials for high voltage cables | |
EP2755211B1 (en) | Method and arrangement of crosslinking or vulcanizing an elongate element | |
US5340299A (en) | Apparatus for manufacturing ribbed pipes | |
NO158747B (en) | PROCEDURE FOR THE MANUFACTURE OF CRYMIC IMPACT. | |
GB1280172A (en) | Heat shrinkable fluorocarbon tubing | |
NO763069L (en) | PROCEDURE AND CABLE MANUFACTURER |