NO770371L - HEAT INSULATION MASSES. - Google Patents
HEAT INSULATION MASSES.Info
- Publication number
- NO770371L NO770371L NO770371A NO770371A NO770371L NO 770371 L NO770371 L NO 770371L NO 770371 A NO770371 A NO 770371A NO 770371 A NO770371 A NO 770371A NO 770371 L NO770371 L NO 770371L
- Authority
- NO
- Norway
- Prior art keywords
- mass according
- mass
- holes
- heat
- thermal conductivity
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 11
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000011505 plaster Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000004567 concrete Substances 0.000 description 10
- 238000012856 packing Methods 0.000 description 4
- 238000011835 investigation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/08—Rigid pipes of concrete, cement, or asbestos cement, with or without reinforcement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/90—Passive houses; Double facade technology
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Building Environments (AREA)
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
Abstract
VarmeisoleringsmasseThermal insulation compound
Description
For å forbedre varmeisolasjonen i bygninger er det vanligTo improve the thermal insulation in buildings, it is common
å anbringe såkalte varmesperreplater for derved sterkt å ned-. sette varmegjennomgangen. I nybygg kan slike varmes<p>erre- to place so-called heat barrier plates to thereby greatly reduce set the heat bypass. In new buildings, such heat<p>erre-
plater eller varmeisoleringsplater monteres inne i murene, men det er da som regel nødvendig'med en aluminiumfolie for å be-skytte mot fuktighet. I den senere tid er varmeisoleringsplater' blitt utviklet som kan anbringes på utsiden av bestående bygninger. På grunn av at fasadene kan være sterkt forskjellig utformet byr imidlertid en tilpasning og befestigelse på store vanskeligheter. plates or thermal insulation plates are installed inside the walls, but it is then usually necessary to use an aluminum foil to protect against moisture. In recent times, thermal insulation boards have been developed which can be placed on the outside of existing buildings. However, due to the fact that the facades can be designed in very different ways, adaptation and attachment present major difficulties.
Dersom det bestående pusslag erstattes med like tykke varmeisoleringsplater, kan de foreliggende vinduslemmer, og spesielt festeanordningene for disse, beholdes. Beregninger har i dette tilfelle vist at halvparten og inntil to tredjedeler av gjennom-gangsvarmen kan innspares, og avdragstiden ved de for tiden gjeldende fyringsoljepriser er ca. 8-10 år. If the existing layer of plaster is replaced with thermal insulation boards of the same thickness, the existing window members, and especially the fastening devices for these, can be retained. In this case, calculations have shown that half and up to two-thirds of the through-heat can be saved, and the repayment period at the currently applicable heating oil prices is approx. 8-10 years.
Oppfinnelsen angår en ny varme sperrende masse av et. herdbart bindemiddel som til å begynne med er flytende, og jevnt fordelte isoleringslegemer som er tett sammenpakket i bindemidlet, og varme-•sperremassen er særpreget ved at isoleringslegemene er hullegemer med en gasstett omhylling og er fylt med en gass med en mindre varmeledningsevne enn luft, idet forholdet mellom hullegemenes omhyllingstykkelse og hullegemenes diameter er høyst 0,1:1. The invention relates to a new heat-blocking mass of a hardenable binder which is initially liquid, and evenly distributed insulating bodies that are tightly packed in the binder, and the heat-blocking mass is characterized by the fact that the insulating bodies are hollow bodies with a gas-tight casing and are filled with a gas with a lower thermal conductivity than air, in that the ratio between the casing thickness of the hole covers and the diameter of the hole covers is at most 0.1:1.
Den foreliggende masse kan anvendes som pussmasse. Volumandelen av hullegemene skal være så stor som mulig i forhold til volumandelen av bindemidlet, dvs., at hullegemene må være tett sammenrystet og jevnt blandet med bindemidlet. Hullegemer av glass er spesielt egnede, men også plaster, f.eks. støpeharpikser og termoplaster, kan anvendes. The present mass can be used as plaster. The volume proportion of the hollow cores must be as large as possible in relation to the volume proportion of the binder, i.e. the hollow cores must be thoroughly shaken and evenly mixed with the binder. Hollow bodies made of glass are particularly suitable, but also plaster, e.g. molding resins and thermoplastics can be used.
Teoretiske og eksperimentelle undersøkelser har vist at det ved anvendelse av kuler kan oppnås en sammenpaknihgstetthet av opp til 0,65 og med små sylindre en sammenpakningstetthet av opp til 0,75, mens sammenpakningstettheten for Raschig-ringer er 0,38. Theoretical and experimental investigations have shown that by using spheres a packing density of up to 0.65 can be achieved and with small cylinders a packing density of up to 0.75, while the packing density for Raschig rings is 0.38.
Oppfinnelsen vil bli.nærmere beskrevet under henvisning til tegningen, hvor The invention will be described in more detail with reference to the drawing, where
fig. 1 er et'snitt gjennom en beregningsmodell for varme-isoler ingsmassen ifølge oppfinnelsen, og fig. 1 is a section through a calculation model for the thermal insulation mass according to the invention, and
fig. 2 er et snitt gjennom den foreliggende varmeisoleringsmasse ifølge et anvendelseseksempel av denne. fig. 2 is a section through the present thermal insulation mass according to an application example thereof.
Det nedenstående beregnede overslag gir et første holdepunkt for de termiske egenskaper til den foreliggende varmeisoleringsmasse. The below calculated estimate provides a first starting point for the thermal properties of the thermal insulation material in question.
Som anvendt nedenfor betyr:As used below means:
0,85 W/mK varmeledningsevnen til betong0.85 W/mK the thermal conductivity of concrete
^s = 0,024 " " " luft ^g = 0,7 " " " glass ^so massens effektive varmeledningseyne ^s = 0.024 " " " air ^g = 0.7 " " " glass ^so the effective thermal conductivity of the mass
d kulenes innvendige diameter =v 2r.d the internal diameter of the spheres =v 2r.
For en tynnvegget, med luft fylt glasskule 1 omgitt av en betong-erstatningssylinder 2 med veggtykkelsen r (fig. 1) fås ved en første tilnærmelse et k-tall av For a thin-walled, air-filled glass sphere 1 surrounded by a concrete replacement cylinder 2 with wall thickness r (Fig. 1), a first approximation yields a k-number of
og dermed en effektiv varmeledningsevne for massen av For en plate med tykkelsen & = nr blir and thus an effective thermal conductivity for the mass of For a plate with the thickness & = nr becomes
Veggtykkelsen s for tynnveggede hulkuler blir da The wall thickness s for thin-walled hollow spheres then becomes
Of d Fo^ r = mu4 r0 s00 té- n 8 e0 r 00 p kpa /c= m 220. 0 M- ed 30m0 idkdp/eclm ve2r, dmieenne s ffoar sblyglass er Dersom Ar velges = s, blir Of d Fo^ r = mu4 r0 s00 té- n 8 e0 r 00 p kpa /c= m 220. 0 M- ed 30m0 idkdp/eclm ve2r, dmieenne s ffoar sblyglas is If Ar is chosen = s, becomes
Derved fås Thereby obtained
XsQ= \ + 0,08 X= 0,024 + 0,08 0,85 = 0,09 W/mk. XsQ= \ + 0.08 X= 0.024 + 0.08 0.85 = 0.09 W/mk.
Sammenlignet hermed har betong en varmeledingsevne avCompared to this, concrete has a thermal conductivity of
0,85 W/mK, dvs. en tilnærmet ti ganger større verdi.0.85 W/mK, i.e. an approximately ten times greater value.
En bekreftelse på dette første overslag finnes i den teoretisk-eksperimentelle undersøkelse av P. Zehner hvorfra det dimensjons--løse varmeledningsevneforhold ASQ/A ^an utledes som funksjon av X s</\>A confirmation of this first estimate can be found in the theoretical-experimental investigation by P. Zehner from which the dimensionless thermal conductivity ratio ASQ/A ^an is derived as a function of X s</\>
For luftfylte, kuleformig.e hulrom i betong fås medFor air-filled, spherical cavities in concrete are available
et effektivt forhold uten hensyntagen til konveksjon og stråling av an effective ratio without consideration of convection and radiation of
dvs. en verdi som er større med en faktor 1,1 enn den tilnærmet beregnede av 0,09. i.e. a value that is greater by a factor of 1.1 than the approximately calculated value of 0.09.
Det ér allerede blitt forsøkt å nedsette betongs varmeledningsevne ved i betongen å blande partikler med dårlig varme—\ledningsevne eller ved å danne kunstig porøsitet i betongen. Attempts have already been made to reduce the thermal conductivity of concrete by mixing particles with poor thermal conductivity into the concrete or by creating artificial porosity in the concrete.
Det viste seg da at ved iblanding av store mengder eller ved dannelse av en stor porøsitet ble riktignok varmeledningsevnen lavere, men den mekaniske fasthet ble.derimot sterkt forringet. Det kan heller ikke med slike kunstig dannede porer oppnås en sammenpakningstetthet av 0,6-0,7. I motsetning hertil har små hulkuler eller på alle sider lukkede hulsylindre, som vist, en høy trykkfasthet, slik at f.eks. en pussmasse av en blanding av betong og hullegemer har tilnærmet den samme fasthet som betong. For å forbedre vedheftningen mellom hullegemene og bindemidlet kan det være gunstig å opprue hullegemenes ytre overflate. Fra denne blanding kan derfor også mur- og taksten, belegg, rørom-hyllinger og lignende gjenstander fremstilles. SlikeStener og plater vil være spesielt egnede for nybygg. Dersom rør, f.eks. for varmeoverføring fra varmekraftverk, fremstilles direkte fra den varmeisolerende masse ifølge oppfinnelsen, trenges ingen ytterligere varmeisolasjon, og dette fører både til rombesparelse og omkostningsbesparelse. It then turned out that when large quantities were mixed in or when a large porosity was formed, the thermal conductivity was indeed lower, but the mechanical strength was, on the other hand, greatly impaired. Nor can a packing density of 0.6-0.7 be achieved with such artificially formed pores. In contrast, small hollow spheres or hollow cylinders closed on all sides, as shown, have a high compressive strength, so that e.g. a plaster of a mixture of concrete and hollow cores has approximately the same strength as concrete. In order to improve the adhesion between the hollow cores and the binder, it can be beneficial to roughen the outer surface of the hollow cores. This mixture can therefore also be used to make masonry and ceiling tiles, coverings, pipework shelves and similar items. Such stones and slabs will be particularly suitable for new buildings. If pipes, e.g. for heat transfer from thermal power plants, is produced directly from the heat-insulating mass according to the invention, no further heat insulation is needed, and this leads to both space savings and cost savings.
På fig. 2 er vist et varmeisolerende rør 3 som består av materialet ifølge oppfinnelsen. Glasskulene 1 er tett sammenpakket og jevnt fordelt i det allerede herdede bindemiddel 4 In fig. 2 shows a heat-insulating pipe 3 which consists of the material according to the invention. The glass balls 1 are tightly packed and evenly distributed in the already hardened binder 4
og danner derved et enkelt varmeisolerende rørlegeme hvori varme-strømmen beveger seg i pilens 5 retning uten større tap. and thereby forms a simple heat-insulating pipe body in which the heat flow moves in the direction of the arrow 5 without major losses.
Dersom imidlertid bestående bygninger skal forsynes med en bedre varmeisolasjon, vil først og fremst pussingen utføres med dette sammensatte materiale, og dette vil være like enkelt som å påføre en vanlig puss. However, if existing buildings are to be provided with better thermal insulation, the plastering will primarily be carried out with this composite material, and this will be as simple as applying a normal plaster.
Da de små kulers eller sylindrenes omhylling er gasstett, er det dessuten mulig å fylle disse med en gass som har en mindre varmeledningsev-ne enn luft, f. eks. krypton eller xenon som har en tre eller fire ganger så dårlig varmeledningsevne som luft. Heller ikke kan fuktighet trenge inn, og dette innebærer en betydelig forbedring sammenlignet med vanlig betong. Det er dessuten en fordel at ingen konveksjon finner sted inne i pussen mellom kulene og at strålingen er sterkt undertrykket. Dersom hullegemene fylles med gass under overtrykk, vil trykkfastheten øke på grunn av den derved dannede forspenning. As the casing of the small spheres or cylinders is gas-tight, it is also possible to fill them with a gas that has a lower thermal conductivity than air, e.g. krypton or xenon which has a thermal conductivity three or four times as poor as air. Moisture cannot penetrate either, and this implies a significant improvement compared to ordinary concrete. It is also an advantage that no convection takes place inside the plaster between the balls and that the radiation is strongly suppressed. If the holes are filled with gas under overpressure, the compressive strength will increase due to the resulting bias.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH157376A CH587979A5 (en) | 1976-02-06 | 1976-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO770371L true NO770371L (en) | 1977-08-09 |
Family
ID=4213579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO770371A NO770371L (en) | 1976-02-06 | 1977-02-04 | HEAT INSULATION MASSES. |
Country Status (7)
Country | Link |
---|---|
BE (1) | BE851086A (en) |
CH (1) | CH587979A5 (en) |
DE (1) | DE2702657C3 (en) |
DK (1) | DK40277A (en) |
FR (1) | FR2340289A1 (en) |
NO (1) | NO770371L (en) |
SE (1) | SE7701065L (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5328779A (en) * | 1978-12-04 | 1980-06-12 | Air Products And Chemicals Inc. | Super insulation |
FR2557671B1 (en) * | 1983-12-28 | 1986-08-01 | Hutchinson Sa | IMPROVEMENTS IN THE MEANS OF THERMAL INSULATION OF PIPES SUBJECT TO THERMAL, HYDROSTATIC AND MECHANICAL CONSTRAINTS AND THEIR IMPLEMENTATION, AND METHODS OF MAKING SUCH MEANS OF INSULATION |
DE202014102643U1 (en) * | 2014-06-06 | 2015-09-10 | Rehau Ag + Co | Multilayer pipe molding |
FR3123706A1 (en) * | 2021-06-04 | 2022-12-09 | Airbus Operations (S.A.S.) | Reservoir having reinforced insulation combining thermal insulation blankets as well as microspheres and method of manufacturing such a reservoir |
CN114523748A (en) * | 2022-01-22 | 2022-05-24 | 巩义市泛锐熠辉复合材料有限公司 | Surface-enhanced heat insulation material and preparation method thereof |
-
1976
- 1976-02-06 CH CH157376A patent/CH587979A5/xx not_active IP Right Cessation
-
1977
- 1977-01-24 DE DE2702657A patent/DE2702657C3/en not_active Expired
- 1977-02-01 DK DK40277A patent/DK40277A/en unknown
- 1977-02-01 SE SE7701065A patent/SE7701065L/en unknown
- 1977-02-04 NO NO770371A patent/NO770371L/en unknown
- 1977-02-04 BE BE174657A patent/BE851086A/en unknown
- 1977-02-04 FR FR7703288A patent/FR2340289A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
FR2340289A1 (en) | 1977-09-02 |
DE2702657A1 (en) | 1977-08-11 |
DE2702657C3 (en) | 1979-12-13 |
FR2340289B3 (en) | 1979-10-05 |
BE851086A (en) | 1977-08-04 |
DK40277A (en) | 1977-08-07 |
DE2702657B2 (en) | 1978-06-29 |
SE7701065L (en) | 1977-08-07 |
CH587979A5 (en) | 1977-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5529624A (en) | Insulation material | |
US4901488A (en) | Fire/smoke protection structure for a plastic pipe or cable channel portion in a floor or wall | |
US3868801A (en) | Building panel | |
DE4339435C2 (en) | Multi-pane panel as a thermally insulating component | |
NO770371L (en) | HEAT INSULATION MASSES. | |
CN201151698Y (en) | Pearl stone drying plate | |
US1934788A (en) | Sheet metal faced structural and insulating unit | |
RU2324037C2 (en) | Vacuum concrete block and method of making same | |
EP0055561A1 (en) | Bricks having thermal insulation and a method for the production thereof | |
CN206829399U (en) | Overall antidetonation foam concrete wallboard | |
CN104563379B (en) | A kind of preparation method of EPS-foam cement composite self-insulation stalk building block | |
RU167086U1 (en) | FIRE RESISTANT PROFILE DESIGN | |
CN110469004B (en) | A interior wall connection structure for passive room of light steel | |
US6068795A (en) | Process and product for providing fire resistance and acoustic and thermal insulation | |
CN205840051U (en) | Assembled solar heating combined wall board | |
CN207277677U (en) | A kind of light cellular partition board being easily installed | |
Guan et al. | Influence of reflective insulation coating on heat transfer characteristics of composite thermal insulation wall | |
CN204370662U (en) | A kind of XPS-foam cement composite self-insulation T-shaped wall corner building block | |
JPS643817B2 (en) | ||
ES485737A1 (en) | Wall thermal and acoustic insulation - using cement compsn. contg. plastic foam overlaid with crosslinked structures and plastic paint layers | |
CN210767198U (en) | Inner wall heat-bridge-free design for light steel passive house | |
JPH0637141Y2 (en) | Fire resistant composite | |
CN101649667A (en) | Energy-saving light-weight wall board of solar energy phase transition heat accumulation and manufacturing method thereof | |
CN208966094U (en) | A kind of insulated fire Anti-pressure rock wool polyurethane cold-storage board | |
CN204370667U (en) | The building block of a kind of XPS-foam cement composite self-insulation stalk |