NO753613L - - Google Patents

Info

Publication number
NO753613L
NO753613L NO753613A NO753613A NO753613L NO 753613 L NO753613 L NO 753613L NO 753613 A NO753613 A NO 753613A NO 753613 A NO753613 A NO 753613A NO 753613 L NO753613 L NO 753613L
Authority
NO
Norway
Prior art keywords
shavings
plate
layers
weight
chip
Prior art date
Application number
NO753613A
Other languages
Norwegian (no)
Inventor
N Dirilgen
B Simunic
Original Assignee
Durisol Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Durisol Ag filed Critical Durisol Ag
Publication of NO753613L publication Critical patent/NO753613L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/042Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/042Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/38Meshes, lattices or nets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Panels For Use In Building Construction (AREA)

Description

Det er kjent en fremgangsmåte for fremstilling av bygningsplater av tre, sement og vann, og det.skal her vises til US-patentskriftene nr..3 164 511 og 3 271 492. Den friske blanding blir etter en fra sponplatefremstilling kjent metode ført over på plater som løst flor, platene stables på hverandre A method is known for the production of building boards from wood, cement and water, and reference should be made here to the US patent documents no. 3 164 511 and 3 271 492. The fresh mixture is transferred to a plates that are loose, the plates are stacked on top of each other

og presses som en pakke i en presse til den ønskede platetykkel-'se. Overføringen til platene skjer fortrinnsvis på en slik måte at med sement omhyllede, fibre blir liggende på platens overflate, henholdsvis slik at disse fibre ved enlagsplater fordeler and pressed as a pack in a press to the desired plate thickness. The transfer to the boards preferably takes place in such a way that cement-encased fibers lie on the surface of the boards, respectively so that these fibers in the case of single-layer boards distribute

seg jevnt over hele platetykkelsen. Dette gjøres for å få en så høy bøyefasthet som mulig i den ferdige plate. evenly over the entire plate thickness. This is done to obtain as high a bending strength as possible in the finished plate.

Den såkalte vindsiktmetode tilhører likeledes tek-nikkens stand og det skal her vises til det tyske patentskrift nr. 1 06l 059. The so-called wind sifting method also belongs to the state of the art and reference should be made here to the German patent document no. 1 061 059.

En ulempe ved denne'. metode er at ved de på denne måte fremstilte plater får man en forholdsmessig ru overflate. Erfaringen viser at de store sponene, på overflaten lett sveller ut ved klimapåkjenninger, særlig ved plater som er slipt, og disse sponene løsner derfor etter hvert. Videre er den ru overflate ofte uønsket av estetiske grunner. A disadvantage of this'. method is that with the plates produced in this way, a relatively rough surface is obtained. Experience shows that the large chips on the surface easily swell due to climate stress, especially with boards that have been ground, and these chips therefore loosen over time. Furthermore, the rough surface is often undesirable for aesthetic reasons.

Dessuten er platetypen med rettede.spon • ikke alltid å foretrekke, -da man ved bygningskonstruksjoner ofte utfører underkonstruksjonen slik at de samme fastheter utnyttes i begge retninger, dvs. så vel i lengderetningen som i tverr^retningen. Videre, er spon- eller fiberblanding-. og tilsvarende også sement-fordelingen lik over hele platetverrsnittet. Ved for eksempel en brann vil derfor de ytre plateskjikt relativt raskt brenne, og platen brenner relativt dypt, noe som er en ulempe. En videre ulempe ved slike plater er at den relativt åpne, av lange spon eller fibre- over 12mm- bestående ytterhud hurtig opptar vann, hvilket føler til øket svelling. Den industrielle anvendelse, av denne oppfinnelse"støter på problem når det gjelder frem- - stilling av de ønskede fibre og det oppstår også spørsmålet om hva man skal gjøre med det ikke anvendte, fine materiale som fremkommer under tilformingen av sponene. Moreover, the board type with straight chips • is not always preferable, since in building constructions the substructure is often carried out so that the same fixings are used in both directions, i.e. both in the longitudinal direction and in the transverse direction. Furthermore, chip or fiber mix-. and correspondingly also the cement distribution is equal over the entire plate cross-section. In the event of a fire, for example, the outer plate layers will therefore burn relatively quickly, and the plate burns relatively deeply, which is a disadvantage. A further disadvantage of such plates is that the relatively open, outer skin consisting of long shavings or fibers over 12mm quickly absorbs water, which leads to increased swelling. The industrial application of this invention "runs into problems when it comes to the production of the desired fibers and the question also arises of what to do with the unused, fine material that appears during the shaping of the shavings.

Den nye bygningsplate utmerker seg ved at den gjennomsnittlige, av sponene opptatte, i disse innlagrede mineralsaltmengde utgjør minst 2 vekt-$ med hensyn på atrotrevekten. The new building board is distinguished by the fact that the average amount of mineral salt stored in these chips, taken up by the chips, amounts to at least 2 wt.-$ with regard to the atrore weight.

Den nye fremgangsmåte unngår disse ulemper. Den utmerker seg ved at sponblandingen etter spontilvirkingen oppde-les i minst to fraksjoner, fingodset med en sponstør.relse på 2 - 8 mm og normalgodset med en sponstørrelse på 8 - 20 mm - hvorav minst 80$ ikke er større enn 12 mm -, og ved at sponblandingen'etter blandingen strøs på et underlag ved hjelp av vindstrøing hvorhos ved mineraliseringen minst 2 vekt-$ mineraliseringsmiddel, regnet på absolutt tørre spon, trenger inn i sponene, The new method avoids these disadvantages. It is distinguished by the fact that the chip mixture after chip production is divided into at least two fractions, the fine material with a particle size of 2 - 8 mm and the normal material with a chip size of 8 - 20 mm - of which at least 80$ is not larger than 12 mm -, and in that, after mixing, the chip mixture is sprinkled on a substrate by means of wind scattering where during the mineralization at least 2% by weight of the mineralizing agent, calculated on absolutely dry chips, penetrates the chips,

og det ved strøingen oppstår minst tre jevnt i hverandre overgående, med hensyn på tresponsementforholdene ulike skjikt. and during the spreading, there is at least wood evenly overlapping each other, with regard to the trespassement conditions of different layers.

Ved på fremgangsmåten tilveiebringes det en bygningsplate som har en glatt overflate og hvis indre oppbygning, utmerker seg ved at de fine andeler av tre og sement er anriket ved platens overflate, og fiberdimensjonen ved en plate'med tre skjikt øker jevnt-.-mot midten av platetykkelsen. Det'mot midten av platen litt reduserte sementinnhold motsvarer den likeledes reduserte bindeovertflate til de der forhåndenværende grove fibre. By using the method, a building board is provided which has a smooth surface and whose internal structure is distinguished by the fact that the fine proportions of wood and cement are enriched at the board's surface, and the fiber dimension of a board with three layers increases steadily towards the middle of the plate thickness. The slightly reduced cement content towards the middle of the plate corresponds to the likewise reduced bonding surface to the coarse fibers present there.

Ved denne oppbygging og særlig som følge av antfikin-gen av sement på overflaten økes motstandsevnen mot ytre påkjen-ninger vesentlig, slik at platen får vesentlig bedre motstands-evne mot for eksempel klimapåkjenninger, soppangrep, termitan-grep osv.. With this build-up, and particularly as a result of the antifiking of cement on the surface, the resistance to external stresses is significantly increased, so that the board has significantly better resistance to, for example, climatic stresses, fungal attack, termite attack, etc.

Oppfinnelsen skal forklares nærmere under henvisning til. tegningene hvor figur 1 viser et tverrsnitt gjennom utstrødd flor med fra flormidten mot begge sider mot hovedflatene avtagen-de spon- eller fiberlengde, The invention shall be explained in more detail with reference to the drawings, where Figure 1 shows a cross-section through the scattered fleece with from the center of the fleece towards both sides towards the main surfaces the removed chip or fiber length,

figur 2 viser det med hensyn på absolutt tørr (atro) trevekt beregnede, prosentuale opptak av en mineraliseringsmiddel-løsning i vekt-$ i avhengighet av den effektive sponlengde, Figure 2 shows the calculated, percentage uptake of a mineralizing agent solution in weight-$ depending on the effective chip length, with regard to absolute dry (atro) wood weight,

figur 3 -viser den prosentuelle vektandel av utsiktede sponfraksjoner i avhengighet av den effektive sponlengde, figure 3 - shows the percentage by weight of expected chip fractions in dependence on the effective chip length,

figur 4 viser romvektens forløp i platetverrsni-ttet, figure 4 shows the progress of the space weight in the plate cross-section,

opptegnet over platetykkelsen for en plate av floret i figur 1, plotted over the plate thickness for a plate of the felt in figure 1,

figur 5 viser fordelingen av atro-trevekten pr. vo-lumenhet over platetykkelsen for en plate av floret ifølge figur 1, figure 5 shows the distribution of the atro wood weight per volume unit over the plate thickness for a plate of the felt according to figure 1,

figur 6 viser fordelingen av sementvekten pr. volum-enhet av atro-tre over platetykkelsen for en plate av floret i figur 1, figure 6 shows the distribution of the cement weight per volume unit of atro wood over the board thickness for a board of the floret in figure 1,

figur 7 viser den midlere branntemperatur ved avbrenning av like primærlaster i avhengighet av tiden for for-skjellige veggbekledninger A, B og C, figure 7 shows the average fire temperature when equal primary loads are burned in dependence on time for different wall coverings A, B and C,

figur 8 viser.trykkfastheten for en plate ifølge Figure 8 shows the compressive strength of a plate according to

figur 4 over platetykkelsen, figure 4 above the plate thickness,

figur 9 viser den rene strekkfasthet for en plate ifølge figur 1 over platetykkelsen, hvor bøyestrekkfastheten ligger mellom 120 og.l80 kp/cm figure 9 shows the pure tensile strength for a plate according to figure 1 over the plate thickness, where the bending tensile strength lies between 120 and 180 kp/cm

figur 10 viser tverrsnittet til en plate med fem figure 10 shows the cross-section of a plate with five

skjikt, nice,

figur 11 viser fordelingen av romvekten for en plate figure 11 shows the distribution of the room weight for a plate

ifølge figur 10, analogt med figur 4, according to figure 10, analogous to figure 4,

figur 12 viser fordelingen av trevekten av en plate ifølge figur 10, analogt med figur 5*figure 12 shows the distribution of the wood weight of a plate according to figure 10, analogous to figure 5*

figur Ij5 viser fordelingen av. sementvekten for en plate ifølge figur 10, analogt med figur 6, og figure Ij5 shows the distribution of. the cement weight for a slab according to figure 10, analogous to figure 6, and

figur 14 viser forløpet av strekkfastheten analogt figure 14 shows the course of the tensile strength analogously

med figur 9 for en plate- ifølge figur 10. with Figure 9 for a plate - according to Figure 10.

Det i figur 1 viste tverrsnitt av et flor viser at et grovt midtskjikt strøs ut. Dette midtskjikt går mot ytterkan-tene over i et stadig finere skjikt. Ovecgangen er kontinuerlig, som i og for seg er kjent fra vindstrømetoden. The cross-section of a flor shown in Figure 1 shows that a coarse middle layer has been spread out. This middle layer moves towards the outer edges into an increasingly finer layer. The transition is continuous, which is in itself known from the wind current method.

Et vesentlig skritt ved denne metode er mineraliseringen av sponene. Det er derved viktig at mineraliseringsmidde-let, for eksempel et mineralsalt, trenger helt.inn i tremateri-alet i løpet av en bestemt, tid, fortrinnsvis maksimalt 1 minutt. Som mineraliseringsmiddel kan anvendes kjente mineralsa.lter. For de foreliggende forsøk ble det anvendt en løsning av Al^SO^)-^i en konsentrasjon på 14 g pr. liter vann. Dette svarer til en vektkonsentrasjon på'" 1,4 % henholdsvis en tetthet på 1.014 g/cm . Beregningene tok dessuten utgangspunkt i en gjennomsnittlig yo-lumvekt på 280 kg/m - 7. atrotre. Det riktige valg av sponfraksjoner har ført til et overraskende resultat. I figur 2 viser kurven a den av sponene opptatte.mengde av mineraliseringll^isningen, An essential step in this method is the mineralization of the shavings. It is therefore important that the mineralizing agent, for example a mineral salt, penetrates completely into the wooden material during a specific time, preferably a maximum of 1 minute. Known mineral salts can be used as a mineralizing agent. For the present experiments, a solution of Al^SO^)-^ was used in a concentration of 14 g per liters of water. This corresponds to a weight concentration of'" 1.4%, respectively a density of 1,014 g/cm. The calculations were also based on an average yolum weight of 280 kg/m - 7. atro wood. The correct choice of chip fractions has led to a surprising result. In Figure 2, the curve a shows the amount of mineralization ice taken up by the chips,

i vekt-$ av de tørre spon som. en funksjonav sponstørrelsen. Det ble' fastslått at denne mengde asymsotisk nærmer seg en verdi av 5 % ved helt grove spon. Ved helt fine spon med en lengde på in weight-$ of the dry shavings which. a function of the chip size. It was established that this amount asymptotically approaches a value of 5% for very coarse chips. In the case of perfectly fine shavings with a length of

0,2 mm utgjør denne mengde bortimot 480 vekt-$. Da en mineral-saltløsningsmengde (1,4 vekt-$ig) på ca. l80 - 190 vekt-$ av sponene gir optimale resultater ved fremstilling av slike plater ble, i motsetning til tidligere erfaringer, også sponfraksjoner med mindre spon, for eksempel ned til ca. 0,5 tnin lengde, valgt. 0.2 mm amounts to this amount of almost 480 weight-$. Then a mineral-salt solution quantity (1.4 weight-$ig) of approx. l80 - 190 weight-$ of the shavings give optimal results in the production of such boards, contrary to previous experiences, also chip fractions with smaller shavings, for example down to approx. 0.5 tnin length, selected.

Det ble fastslått at ved tørre spon i en tidsenhet på et minutt og ved de valgte sponfraksjoner ble opptil 50$ It was determined that with dry chips in a time unit of one minute and with the selected chip fractions up to 50$

mer mineraliseringsmiddelløsning opptatt av sponene enn ved spon som for eksempel har en fuktighet på 80 vekt-$. more mineralizing agent solution taken up by the shavings than with shavings that, for example, have a moisture content of 80% by weight.

Denne virkning kunne man ikke vente- ut i fra diffu-sjonsteorien. I praksis kan man åpenbart ikke nå de betingelser som ligger til grunn' for den.teoretiske betraktning, i-hvert fall ikke på en økonomisk måte, noe som forsøk har vist. Kant-betingelsene vil i praksis være helt annerledes enn de man for-utsetter i teorien, idet man,teoretisk regner med en fullsten-dig neddykning, noe .som økonomisk sett er ugjennomførlig. This effect could not be expected from the diffusion theory. In practice, it is obviously not possible to reach the conditions that are the basis for the theoretical consideration, at least not in an economic way, as experiments have shown. In practice, the Kant conditions will be completely different from those assumed in theory, since, theoretically, a complete immersion is expected, which is economically unfeasible.

I figur 3 er de fraksjoner vist, viss valg ved pla-tefremstillingen har ført til de uventede resultater. Hovedfrak-sjonen (64$) består hovedsakelig av en sponblanding på 5 - 12 mm lengde som gir en utmerket armering av platen og i denne forbin-delse også sikrer de tilsvarende fastheter. Finandelen (0 - 5 mm) på ca. 14$ av totalvekten av spon vil bli liggende .i ytterskjikt-ene. Oppbyggingen av floret, som fører til en slik plate, er vist i figur 1. Den jevne overgang fra de ytterst liggende jevne finskjikt og til det innerst liggende grovskjikt ifølge disse fraksjoner sikrer den ønskede fordeling av spenningene ved bøye-påkjenninger. Platen er her bygget opp slik at materialmengdene (tre og sement) kommer dit hvor de sikrer de bestemte egenskaper-for platen: tilstrekkelige bøyefastheter, meget høy trykkfasthet og meget god ildfasthet. In figure 3, the fractions are shown, certain choices during the plate production have led to the unexpected results. The main fraction ($64) mainly consists of a chip mixture of 5 - 12 mm in length which provides an excellent reinforcement of the plate and in this connection also ensures the corresponding strengths. The fine part (0 - 5 mm) of approx. 14$ of the total weight of shavings will be left in the outer layers. The structure of the layer, which leads to such a plate, is shown in figure 1. The smooth transition from the outermost smooth fine layer to the innermost coarse layer according to these fractions ensures the desired distribution of the stresses in the case of bending stresses. The board is built up so that the quantities of material (wood and cement) arrive where they ensure the specific properties of the board: sufficient bending strength, very high compressive strength and very good fire resistance.

I figur 4 er fordelingen av volumvektene i kg/m vist over, platens tverrsnitt. Vesentlig er her å merke seg fordelingen av tremengden (figur 5) og sementmengden (figur 6). In Figure 4, the distribution of the volume weights in kg/m is shown above, the plate's cross-section. It is important to note here the distribution of the amount of wood (figure 5) and the amount of cement (figure 6).

Som følge av denne materlalforde 1ing sikres de vesentlige fordeler ved slike plater, nemlig høy værstandhet og høy ildfast-, het. De fine spon i ytterskjiktet er med tredobbelt mengde sement i den ytterste fase bedre beskyttet enn den midtre - indre del av platen. Ved. en brann vil de fine ytterskjikter drives opp på en finmasket måte og vil forbli hengende på resten av platen. Derved hindres inntrengingen av luft til platens indre del, og platen brenner derfor bare til en dybde på 5 - 6 mm. As a result of this material development, the essential advantages of such plates are ensured, namely high weather resistance and high refractoriness. The fine chips in the outer layer are better protected with three times the amount of cement in the outermost phase than the middle - inner part of the plate. By. a fire, the fine outer layers will be driven up in a finely meshed manner and will remain suspended on the rest of the plate. This prevents the penetration of air into the inner part of the plate, and the plate therefore only burns to a depth of 5 - 6 mm.

I figur 7 er det gjennomsnittlige branntemperaturer ved en avbrenning av like primærlaster vist skjematisk som funksjon av tiden for ulike veggbekledninger. Kurven A vedrører et bygningsmateriale som er helt ubrennbart, kurve B fremkommer . når man kler et rom med normalantennbare materialer, og kurve C .viser temperaturforløpet ved en bekledning med ifølge foreliggende oppfinnelse fremstilte plater. Kurven C har en høyere anten-nelsestemperatur og har samtidig en lavere avbrenningshastighet enn det normalantennbare materiale. In Figure 7, the average fire temperatures for a burn-off of equal primary loads are shown schematically as a function of time for different wall coverings. Curve A relates to a building material that is completely non-combustible, curve B appears. when lining a room with normally combustible materials, and curve C shows the temperature course when lining with panels manufactured according to the present invention. Curve C has a higher ignition temperature and at the same time has a lower burning rate than the normally flammable material.

Kurvene er fremkommet på den måten at i et utkledd forsøksrom på ca. 8 m ble en bestemt mengde (20 kg) tre antent. Ved temperaturøkingen i rommet ble også veggbekledningen i prø-verommet antent, i den grad den inneholdt brennbare bestanddeler. Alt etter bekledningens art og forhold under brann ble tem-peraturen øket som følge av den varmemengde som ble frigitt. The curves have been produced in such a way that in a fitted out experimental room of approx. 8 m, a certain amount (20 kg) of wood was ignited. As the temperature increased in the room, the wall covering in the test room was also ignited, to the extent that it contained flammable components. Depending on the type of cladding and conditions during the fire, the temperature was increased as a result of the amount of heat that was released.

I.figur 8 er fordelingen av de trykkfastheter vist In figure 8, the distribution of the compressive strengths is shown

som sikrer en meget høy slitasje- og slagfasthet. which ensures a very high wear and impact resistance.

Figur 9'viser den rene strekkfasthet som fører til tilsvarende bøyestrekkfastheter på 120 - l80 kp/cm . I de til-feller hvor man behøver enda høyere.bøyestrekkfastheter vil en annen, i det etterfølgende beskrevet utførelse av platen føre til det ønskede resultat. Figur 10 viser oppbyggingen av en slik plate. De yt-re fine skjikt 1 og 5 overtar den samme beskyttende funksjon som for platenti figur 1. Deretter følger skjiktene 2 og 4. Disse inneholder bare grovt materiåle og gir de ytre soner en øket strekkfasthet. Det sentrale fine skjikt 3 sikrer en meget god Figure 9 shows the pure tensile strength which leads to corresponding bending tensile strengths of 120 - 180 kp/cm. In cases where even higher flexural tensile strengths are needed, another design of the plate described below will lead to the desired result. Figure 10 shows the construction of such a plate. The outer fine layers 1 and 5 take over the same protective function as for the plates in figure 1. Then follow layers 2 and 4. These only contain coarse material and give the outer zones an increased tensile strength. The central fine condition 3 ensures a very good

skyvekraftoverføring og sørger for høye tverrstrekkfastheter. Denne utførelsen av platen muliggjør en innsparing i materialforbruket på 15 - 20 % tre og sement, eller en tilsvarende øking av fasthetsegenskapene. - thrust transmission and ensures high transverse tensile strengths. This design of the board enables a saving in the material consumption of 15 - 20% wood and cement, or a corresponding increase in the strength properties. -

Fordelingen av strekkfasthetene er vist i figur 14. The distribution of the tensile strengths is shown in Figure 14.

Materialfordelingen i en plate med 5 skjikt er vist i figur 11.. Figur 12 viser trefordelingen i platetverrsnittet og figur 13 viser tilsvarende sementfordeling. En plate med 5 skjikt ifølge denne utførelse vil ved brann oppføre seg enda bedre.enn den vanlige plate med de 3 skjikt.. Skj iktene vil ikke rives av sammen på en gang, men hver for .seg, og man får derfor en lignende virkning som ved glass med flere skjikt. The material distribution in a plate with 5 layers is shown in figure 11. Figure 12 shows the wood distribution in the plate cross-section and figure 13 shows the corresponding cement distribution. A plate with 5 layers according to this design will behave even better in a fire than the normal plate with 3 layers. The layers will not be torn off together at once, but separately, and you therefore get a similar effect as with glass with several layers.

En annen utførelse av varianten med 5 skjikt - med en annen rekkefølge av strøhodene - medfører en enorm forbedring av de mekaniske og andre egenskaper for platen, når man etter det første ytre finskjikt anordner et andre skjikt med større spon, deretter anordner sentralskjiktet med finmaterialet og så igjen anordner et- skjikt med grovspon og til slutt det siste ytre finskjikt. Denne, teknologisk sett beste plate utmerker seg ved følgende egenskaper:-fine ytterskjikt med glatt, klimabestandig og ildfast overflate; det andre og fjerde skjikt med grovt spon i det ytre område bidrar i stor grad til å forbedre platens bøyestrekkfastheter; det sentrale fine skjikt er avgjørende for forbedringen av tverrstrekkfasthetene, som faktisk fordobles sammenlignet med en utførelse med tre skjikt. Another version of the variant with 5 layers - with a different order of the straw heads - leads to an enormous improvement in the mechanical and other properties of the plate, when after the first outer fine layer a second layer with larger shavings is arranged, then the central layer is arranged with the fine material and then again arrange a layer of coarse shavings and finally the last outer fine layer. This, from a technological point of view, the best board is distinguished by the following properties: - fine outer layer with a smooth, climate-resistant and fire-resistant surface; the second and fourth layers of coarse shavings in the outer area greatly contribute to improving the sheet's flexural tensile strengths; the central fine layer is crucial for the improvement of the transverse tensile strengths, which are actually doubled compared to a design with three layers.

Ved utførelsen i figur 10 er -det mulig,, etter det første strøhode og foran det siste strøhode å innebygge arme-ringer 6 og 7>for eksempel av glassfibrer, i form av glassflor, plast- eller metallnett osv. og således i enda sterkere grad øke platens bøyestrekkfastheter. With the design in Figure 10, it is possible, after the first litter head and in front of the last litter head, to build in reinforcement rings 6 and 7> for example made of glass fibres, in the form of glass wool, plastic or metal mesh etc. and thus in even stronger degree increase the plate's bending tensile strengths.

Følgende punkter skal også fremheves: forskjellen mellom volumvektene i de ytre skjikt og i det sentrale skjikt svarer minst til forholdet 1,3:1. Forholdet fingods:normalgods ligger ved 2:4 - 6, fortrinnsvis ved 2:5. The following points must also be emphasized: the difference between the volume weights in the outer layers and in the central layer corresponds at least to the ratio 1.3:1. The ratio fine goods:normal goods is 2:4 - 6, preferably 2:5.

Ved plater med fem skjikt vil man i det nest ytterste skjikt .anbringe minst 70% av normalgodset, og man anbringer fingodset .hovedsakelig i det sentrale skjikt. For slabs with five layers, at least 70% of the normal goods will be placed in the second outermost layer, and the fine goods will be placed mainly in the central layer.

Det er også mulig å anordne for eksempel en alumi-niumsfolie 8 på transportinnretningen,.og å anordne en alumini-umsfolie 9 på sponråemnet og foreta en sammenbinding, med tilsvarende bindemidler, i en presse. Ved en slik utførelse kan man redusere den for avbindingen av sementen nødvendige vannmengde til det teoretisk nødvendige minimum, fordi vannet ikke kan for- dunste. Slike overflatearmerte plater har den høyeste bøye-strekkf asthet . It is also possible to arrange, for example, an aluminum foil 8 on the transport device, and to arrange an aluminum foil 9 on the chip raw material and make a bond, with corresponding binders, in a press. With such a design, the amount of water required for setting the cement can be reduced to the theoretically necessary minimum, because the water cannot evaporate. Such surface-reinforced plates have the highest bending-tensile strength.

Denne utførelsesform muliggjør en redusering av platenes volumvekter fra 1250 kg/m og ned til 600 kg/nr ved spe-v sialutførelser. This design makes it possible to reduce the volume weights of the plates from 1250 kg/m and down to 600 kg/no in special versions.

Det er også mulig å tilsette sement-' tresponblandin-. gen fine, ildfaste bestanddeler så som glimmer, perlit osv., for på den måten ytterligere å øke platenes ildfasthet. It is also possible to add cement-' wood chip mix. fine, refractory components such as mica, perlite, etc., in order to further increase the plates' fire resistance.

Dot har vist seg at man kan redusere sementtilsats-vannme.ngden og oppnå en bedre bedekking av sponene ved å røre sementen sammen med en andel av tilsatsvannet, for.dannelse av en sementmelk og tilsette denne i blanderen. Derved forkortes blandetiden og tilsatsvannet trekkes ikke ut av treet. It has been shown that you can reduce the quantity of cement additive water and achieve a better coverage of the chips by mixing the cement together with a proportion of the additive water, forming a cement milk and adding this to the mixer. This shortens the mixing time and the additive water is not extracted from the wood.

Den for platen egne, lukkede- overflate muliggjør en sparsom og allikevel virksom malig, en belegging med kunsthar-piksbundet puss og andre beleggmaterialer. The board's unique, closed surface enables a sparing and yet effective painting, a coating with synthetic resin-bonded plaster and other coating materials.

Ved hjelp av den i og for seg kjente vindsiktmetoden er det mulig å farge det ytre skjikt med for eksempel mineralske finmalte fargepigmenter. With the help of the wind sifting method, which is known in and of itself, it is possible to color the outer layer with, for example, mineral finely ground color pigments.

En på denne måte fremstilt plate oppbygges best av fingodsfraksjoner 2 - 8 mm og normalgodsfraksjoner 8-20 mm, idet spon under 12 mm skal utgjøre S0% av normalgodset. Spon-tykkelsen skal ikke overskride 0,8mm, idet-man på.den måten fremfor alt sikrer den gode mineraliseringen av platen. A plate produced in this way is best made up of fine material fractions 2 - 8 mm and normal material fractions 8-20 mm, as chips under 12 mm should make up 50% of the normal material. The chip thickness must not exceed 0.8 mm, as this way above all ensures the good mineralization of the board.

Selv om det foran er brukt tre .som spon- eller fiber-materiale, så kan man naturligvis også anvende et annet materiale, for eksempel lint eller lignende istedenfor eller sammen.med tre. Som hydraulisk bindemiddel benyttes fortrinnsvis portland-sement.. Prinsippielt- kan man imidlertid også benytte andre semen-ter, gips og lignende bindemidler. Although wood is used in the front as chip or fiber material, you can of course also use another material, for example lint or similar instead of or together with wood. Portland cement is preferably used as a hydraulic binder. In principle, however, other cements, gypsum and similar binders can also be used.

Claims (12)

1. Bygningsplate av organiske fibre eller spon og hydraulisk bindemiddel, hvilken plate har minst tre i hverandre overgående skjikt hvorav minst ett har .grovere spon og mindre bindemiddel enn minst et annet skjikt,karakterisertved at den gjennomsnittlige, av sponene opptatte, i sponene innlagrede mineralsaltmengde minst utgjør 2 vekt-$ av atrotrevekten.1. Building board of organic fibers or shavings and hydraulic binder, which board has at least three overlapping layers, at least one of which has coarser shavings and less binder than at least one other layer, characterized by the average amount of mineral salt taken up by the shavings and stored in the shavings at least make up 2 weight-$ of the atrore weight. 2. Bygningsplate ifølge krav 1,karakterisert vedat det foreligger et fraksjonsbånd på 1 - 25 mm sponlengde.2. Building board according to claim 1, characterized in that there is a fractional band of 1 - 25 mm chip length. 3- Bygningsplate ifølge krav 1,karakterisert ved. minst 75 vekt-$ av sponene ikke er lenger enn 12 mm.3- Building plate according to claim 1, characterized by. at least 75% by weight of the chips are no longer than 12 mm. 4. Fremgangsmåte til fremstilling av en av hydraulisk bindemiddelsement, trespon og vann bestående bygningsplate, ifølge, krav 1,karakterisert vedat sponblandingen etter spontilvirkingen deles opp i minst 2 fraksjoner, nemlig fingods med sponstørrelse 2 - 8 mmdg normalgods med sppnstørrelse 8 - 20 mm - hvorav minst 80$ ikke er større enn 12 mm - og etter blandingen strøs på et underlag ved hjelp av vindstrøing, hvorhos ved mineraliseringen minst 2 vekt-$ mineraliseringsmiddel, regnet ut i-fra absolutt tørre spon, trenger inn i sponene, og ved utleggingen minst 3 jevnt over i hverandre gående,, med hensyn på tresponsementforholdet ulike skjikt oppstår.4. Method for the production of a building board consisting of hydraulic binder cement, wood shavings and water, according to claim 1, characterized in that the chip mixture is divided into at least 2 fractions after the chip production, namely fines with a chip size of 2 - 8 mmdg normal goods with a chip size of 8 - 20 mm - of which at least 80$ is not larger than 12 mm - and after the mixture is sprinkled on a substrate by means of wind spreading, where during mineralization at least 2 weight-$ of mineralizing agent, calculated from absolutely dry shavings, penetrates into the shavings, and during laying at least 3 evenly overlapping each other,, with respect to the tresponse ratio, different layers occur. 5. Fremgangsmåte ifølge krav 4,karakterisert vedat forskjellen mellom volumvektene i de ytre og det imidtre .skjikt minst svarer til forholdet 1,3:1..5. Method according to claim 4, characterized in that the difference between the volume weights in the outer and inner layers at least corresponds to the ratio 1.3:1. '6. Fremgangsmåte ifølge krav 4,karakterisert vedat forholdet fingods:normalgods ligger ved 2:4-6.fortrinnsvis ved 2:5-'6. Method according to claim 4, characterized in that the ratio of fine goods: normal goods is at 2:4-6, preferably at 2:5- 7. Fremgangsmåte ifølge krav 4, karakteri-, sert ved at man ved en plate med fem skjikt legger ut minst 70$ av normalgodset i de nest ytterste skjikt og hovedsakelig bringer fingodset inn i det sentrale skjikt.7. Method according to claim 4, characterized in that, in the case of a plate with five layers, at least 70% of the normal material is laid out in the second outermost layers and mainly the fine material is brought into the central layer. 8. Fremgangsmåte ifølge krav 4,karakterisert vedat man erstatter en del av fingodset med mer ildb.estandige bestanddeler, for eksempel glimmer eller perlit, og at man ved strøingen bringer disse frem til platens overfla-ter.8. Method according to claim 4, characterized in that part of the fines is replaced with more refractory components, for example mica or perlite, and that these are brought to the surface of the plate during the sprinkling. 9. Fremgangsmåte ifølge krav 6,karakteriserty e d at ved en plate med fem skjikt"legges de mere ildbestandige materialer også i det sentrale skjikt.9. Method according to claim 6, characterized by the fact that in the case of a plate with five layers, the more fire-resistant materials are also placed in the central layer. 10. Fremgangsmåte ifølge krav 4,karakterisert vedat man i fremstillingsprosessen innbringer ildbestandige armeringsmidler etter det første og før det siste skjikt, for eksempel i form av glassfibre, glassfiberflor eller glassfibernett.10. Method according to claim 4, characterized in that fire-resistant reinforcements are introduced in the manufacturing process after the first and before the last layer, for example in the form of glass fibres, glass fiber fleece or glass fiber mesh. 11. Fremgangsmåte ifølge krav 4, karakteri-' sert ved at man i fremstillingsprosessen anbringer en armering på transportmiddelet, for eksempel en folie av for eksempel aluminium eller plast og anbringer en andre armering, særlig en folie på det ferdige råemne, og at man så forbinder hele systemet i pressen.11. Method according to claim 4, characterized in that in the manufacturing process a reinforcement is placed on the means of transport, for example a foil of, for example, aluminum or plastic and a second reinforcement, in particular a foil, is placed on the finished raw material, and that connects the entire system in the press. 12. Fremgangsmåte ifølge krav 4,karakterisert vedat sementen innføres i blanderen i form av sementmelk.12. Method according to claim 4, characterized in that the cement is introduced into the mixer in the form of cement milk.
NO753613A 1974-10-30 1975-10-28 NO753613L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1452474A CH596403A5 (en) 1974-10-30 1974-10-30

Publications (1)

Publication Number Publication Date
NO753613L true NO753613L (en) 1976-05-03

Family

ID=4401551

Family Applications (1)

Application Number Title Priority Date Filing Date
NO753613A NO753613L (en) 1974-10-30 1975-10-28

Country Status (11)

Country Link
BE (1) BE834996A (en)
CH (1) CH596403A5 (en)
DE (1) DE2548210B2 (en)
FI (1) FI752828A (en)
FR (1) FR2289692A1 (en)
GB (1) GB1529363A (en)
KE (1) KE3117A (en)
MY (1) MY8100299A (en)
NL (1) NL7512625A (en)
NO (1) NO753613L (en)
SE (1) SE7510686L (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3007012A1 (en) * 1980-02-25 1981-09-03 Fulguritwerke Seelze und Eichriede in Luthe bei Hannover Adolf Oesterheld GmbH & Co KG, 3050 Wunstorf BUILDING PLATE
CH659426A5 (en) * 1985-03-22 1987-01-30 Ametex Ag PROCESS FOR THE MANUFACTURE OF MOLDED PARTS.
DE4190153T1 (en) * 1990-01-23 1992-03-12 Nichiha Kk INORGANIC PLATE AND METHOD FOR PRODUCING THE SAME
JPH0688823B2 (en) * 1990-01-23 1994-11-09 ニチハ株式会社 Inorganic molded plate and method for manufacturing the same
US5342566A (en) * 1990-08-23 1994-08-30 Carl Schenck Ag Method of manufacturing fiber gypsum board
GB2248246A (en) * 1990-09-14 1992-04-01 Furniture Ind Res Ass Reinforced fiberboard
CA2130508C (en) * 1993-08-20 2005-04-12 Peter Douglas Chase Process for making thin, sealant-coated, fiber-reinforced gypsum panel and panel made thereby
DE29517568U1 (en) 1995-11-07 1996-01-11 Unger, Bernd, 09117 Chemnitz Lignocellulose insulation board
DE102004017325A1 (en) * 2004-04-06 2005-10-27 Fennen, Wolfgang, Dipl.-Ing. Component, in particular plate-like component and method for producing a component, in particular a plate-like component
DE202010004204U1 (en) 2010-03-25 2010-07-08 Binos Gmbh Cement particle board

Also Published As

Publication number Publication date
CH596403A5 (en) 1978-03-15
FR2289692B3 (en) 1978-07-28
DE2548210B2 (en) 1979-09-06
KE3117A (en) 1981-04-10
GB1529363A (en) 1978-10-18
FI752828A (en) 1976-05-01
SE7510686L (en) 1976-05-03
FR2289692A1 (en) 1976-05-28
BE834996A (en) 1976-02-16
DE2548210A1 (en) 1976-05-06
NL7512625A (en) 1976-05-04
MY8100299A (en) 1981-12-31

Similar Documents

Publication Publication Date Title
US7932195B2 (en) Use of pre-coated mat for preparing gypsum board
US8057915B2 (en) Acoustical gypsum board panel and method of making it
US7211318B2 (en) Incombustible composition for fire door/wall, fire door/wall using incombustible composition, and method of producing fire door/wall
US5256222A (en) Lightweight building material board
EP3110624B1 (en) Method of making fiber-reinforced coated mat-faced panels
US20050070636A1 (en) Incombustible composition, incombustible construction product using incombustible composition, and method of producing incombustible construction product
CN1803419A (en) Cortex treatment of mineralize plant fibre and construction material
JPH07914B2 (en) External thermal insulation system for buildings
CN101089323A (en) Composite building material
NO753613L (en)
US20160145779A1 (en) Hybrid nonwoven mats and methods
NO161841B (en) COATED FACING OR ROOFING INSULATION PLATE OF METAL FIBERS AND PROCEDURES OF PRODUCING THEREOF.
CN103570333A (en) Ultra-thin vermiculite-based fire-proof plate and preparation method thereof
DE1471005C3 (en) Fire protection panels
AT11690U1 (en) DRY PLATE
KR200403892Y1 (en) Lightweight Multilayer Sound Absorbing Panel for Construction
CA2795267A1 (en) Molding a lightweight cast acoustical product
CN105239744B (en) Fireproof partition laminate
CN208646199U (en) A kind of fire-proof and water-proof polymerization polyphenyl composite insulation board
CH202785A (en) Sound and heat insulating component.
CN208085154U (en) A kind of plate construction for making A grades of fireproof acoustic plates
US1681493A (en) Process of making building material
CN109291189A (en) A method of roofing tile is produced using bamboo wood
DE2229405A1 (en) Building components from cellulose wastes - using reaction between alkali (ne earth) hydroxide and oil residues to foam resin binder
DE649424C (en) Securing ceilings against fire and gas floors