NO751908L - - Google Patents

Info

Publication number
NO751908L
NO751908L NO751908A NO751908A NO751908L NO 751908 L NO751908 L NO 751908L NO 751908 A NO751908 A NO 751908A NO 751908 A NO751908 A NO 751908A NO 751908 L NO751908 L NO 751908L
Authority
NO
Norway
Prior art keywords
approx
stated
glycopeptide
hydroxide
extracted
Prior art date
Application number
NO751908A
Other languages
Norwegian (no)
Inventor
A Butti
G Prino
Original Assignee
Crinos Industria Farmaco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crinos Industria Farmaco filed Critical Crinos Industria Farmaco
Publication of NO751908L publication Critical patent/NO751908L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4732Casein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

"Fremgangsmåte for fremstil-"Procedure for manufacturing

ling avBulfoglykopeptider" ling of Bulfoglycopeptides"

Foreliggende oppfinnelse angår en fremgangeiåte for fremstilling av aulfoglykopeptider ved å gå ut fra glykopeptider ekstrahert fra melk eller tilsvarende kaaeiner. Ammonium- og metall-salter av de således oppnådde aulfoglykopeptider kan brukes som terapeutiske midler ved behandling av artroser og mavesår samt som arrhindrende og fibrinolytlike midler. The present invention relates to a process for the production of aulfoglycopeptides by starting from glycopeptides extracted from milk or similar cateins. Ammonium and metal salts of the thus obtained aulfoglycopeptides can be used as therapeutic agents in the treatment of osteoarthritis and stomach ulcers as well as as scar preventing and fibrinolytic agents.

Ekstrahering av glykopeptider fra melk av forskjellige pattedyr eller fra de tilsvarande kaseiner er allerede velkjent. Det er også kjent en fremgangsmåte for fremstilling av sulfoglyko-peptlder ved å gå ut fra glykopeptider ekstrahert fra dyreorganer, særlig fra moge-slimhinnen eller tolvfingertarmen hos svin. Extraction of glycopeptides from the milk of various mammals or from the corresponding caseins is already well known. A method is also known for the production of sulfoglyco-peptides by starting from glycopeptides extracted from animal organs, in particular from the mucous membrane of the stomach or the duodenum of pigs.

Oet er nå funnet at arbeidsbetingelsene som brukes for å fremstille de kjente sulfoglykopeptider ikke er effektive når de an-vendes for sulfonering av glykoproteiner ekstrahert fra melk eller kaseiner. Umuligheten av å overføre de arbeidsbetingelser som elk fektivt sulfonerer glykoproteiner ekstrahert fra dyreorganer, særlig fra mave-slimhinnen eller tolvfingertarmen hos svin, på fremgangsmåten f or sulfonering av glykolproteiner ekstrahert fra melk eller kaseiner, skyldes den forskjellige kjemiske sammensetning =v de to typer av glykolproteiner. Den kjemiske sammensetning av glykoproteiner oppnådd fra melk eller kaseiner er nemlig, i forhold til glykoproteiner ekstrahert fra dyreorganer,karakterisert vedet høyere forhold mellom aminosyre- og karbohydratinnholdet, samt ved enastørre mengde av fosforylerte aminosyrer og neuraminsyre. It has now been found that the working conditions used to prepare the known sulfoglycopeptides are not effective when used for sulfonation of glycoproteins extracted from milk or caseins. The impossibility of transferring the working conditions that effectively sulfonate glycoproteins extracted from animal organs, especially from the gastric mucosa or duodenum of pigs, to the method for sulfonating glycol proteins extracted from milk or caseins, is due to the different chemical composition of the two types of glycol proteins . The chemical composition of glycoproteins obtained from milk or caseins is namely, compared to glycoproteins extracted from animal organs, characterized by a higher ratio between the amino acid and carbohydrate content, as well as by a greater amount of phosphorylated amino acids and neuraminic acid.

Foreliggende oppfinnelse har derfor som formål å tilveie-bringe en fremgangsmåte for fremstilling av sulfoglykopeptider ved å gå ut fra glykopeptider ekstrahert fra melk eller kaaeiner, ved hvilken arbeidstrinnene er av en slik art at de svarer til de særlige egenskaper av disse glykopeptider. The purpose of the present invention is therefore to provide a method for the production of sulfoglycopeptides by starting from glycopeptides extracted from milk or cain, in which the working steps are of such a nature that they correspond to the special properties of these glycopeptides.

Fremgangsmåten for sulfonering av glykopeptider ekstrahert fra melk- eller kaseiner Uoverensstemmelse med oppfinnelsen, omfatter følgende trinns The process for sulfonation of glycopeptides extracted from milk or caseins Inconsistency with the invention, comprises the following steps

a) oppløsning av et glykopeptid ekstrahert fra melk oller kaseina) dissolution of a glycopeptide extracted from milk or casein

i et aprotisk, ihke-aromatisk, vannblandbart løsningsmiddel, b) tilsetning til løsningen av a) av en tertiær bae©aom har et kokepunkt fra ca. 100°C til ce. 250°c, c) sulfonering av produktet av b) ved å bringe det i kontakt rød et eulf©nøringsmiddel valgt fra gruppen bestående av svovelsyre, in an aprotic, non-aromatic, water-miscible solvent, b) addition to the solution of a) of a tertiary ba©aom having a boiling point from approx. 100°C to ce. 250°c, c) sulfonating the product of b) by bringing it into contact with a sulfonating agent selected from the group consisting of sulfuric acid,

oleura, klorsulfonayre eller et addukt av svovelsyreanhydrid og en organisk forbindelse, til å begynne med ved on temperatur på oleoresin, chlorosulfonic acid or an adduct of sulfuric anhydride and an organic compound, initially at a temperature of

fra oa. -20°c til + 20°c, og deretter ved on temperatur fra ca. from etc. -20°c to + 20°c, and then at a temperature from approx.

60°C til ca. 90°C, og gjenvinning av det resulterende sulfonyl-glykopeptid. Glykopeptidet kan tilsettes, hvis Ønsket, etter tilsetningen av den tertiære base, elter til og med etter tilsetningen av sulfoneringsmiddelet, istedenfor i trinn a). 60°C to approx. 90°C, and recovery of the resulting sulfonyl glycopeptide. The glycopeptide can be added, if desired, after the addition of the tertiary base, even after the addition of the sulfonating agent, instead of in step a).

Det er nå funnet at selv om de optimale eulf oner ing sb<3-tingelsar, når det gjelder glykopeptider ekstrahert fra dyreorganer, oppnås fiår glykopaptidet er suspendert i et reaksjonamodium bestående av on høterocyklisk tertiær base på@n 3lik måte at sulfo-néBingsreaksjonon finner sted i en heterogen fase, oppnås de optimale sulfoneringsbetingeIser, når det gjelder sulfoglykopeptider ekstrahert fra melk eller kaseiner, når. glykopaptidet er fullsten-dig oppløst i en lØsningsmiddeJLfase bestående av en aprotisk, ikke-aromatisk, vannblandbar forbindelse og en tertiær base, fortrinnsvis en aromatisk base, som har et kokepunkt på fra ca. 1C0°Ctil 250°C It has now been found that although the optimal sulfonation conditions, in the case of glycopeptides extracted from animal organs, are obtained when the glycopeptide is suspended in a reaction medium consisting of a heterocyclic tertiary base in a manner similar to the sulfonation reaction place in a heterogeneous phase, the optimal sulfonation conditions, in the case of sulfoglycopeptides extracted from milk or caseins, are achieved when. The glycopeptide is completely dissolved in a solvent phase consisting of an aprotic, non-aromatic, water-miscible compound and a tertiary base, preferably an aromatic base, which has a boiling point of from approx. 1C0°C to 250°C

For å oppnå oppløsning av glykopeptidet ekstrahert fraQBlk eller kaseiner under betingelser som egner seg best for gjen-nomføring av fremgangsmåten ifølge oppfinnelsen, er det fordelaktig å bruke i blanding med den tertiære base, som fortrinnsvis er en In order to achieve dissolution of the glycopeptide extracted from QBlk or caseins under conditions that are best suited for carrying out the method according to the invention, it is advantageous to use in mixture with the tertiary base, which is preferably a

heterooykllsk tertiær base valgt fra gruppen bestående av pyridin, metylpyridin, dimetylpyridin og kino lin, et aprotisk, ikke-aromatisk vannblandbart løsningsmiddel, så som f.eks. dimstylformamid, dimetylSulfoksyd, heksametylfosforamid, dimetylacetamid og lignende. Fremgangsmåten ifølge oppfinnelsen skal nå beskrives de-taljert under henvisning til hoved-arbeidstrinnene. heterocyclic tertiary base selected from the group consisting of pyridine, methylpyridine, dimethylpyridine and quinoline, an aprotic, non-aromatic water-miscible solvent, such as e.g. dimstylformamide, dimethylsulfoxide, hexamethylphosphoramide, dimethylacetamide and the like. The method according to the invention will now be described in detail with reference to the main working steps.

OppløsningResolution

Glykopeptid ekstrahert fra melk eller kasein blir først grundig tørret og malt og deretter oppløst i et aprotisk, ikke-aromatisk, vann-blandbart løsningsmiddel, f.eks. dimetylformamid, dimetylsulfoksyd, heksametylformamid, dlmetylacetamid og lignende. Den således oppnådde løsning tilsettes en tertiær base, fortrinnsvis en aromatisk base, som har et kokepunkt fra ca. 100°C til 250°C. Typiske tettlære heterocykliske baser omfatter pyridin, metylpyri-diner, etylpyridiner, dimetylpyridiner og kinolin. Det foretrekkes særlig vannfri pyridin. Glycopeptide extracted from milk or casein is first thoroughly dried and ground and then dissolved in an aprotic, non-aromatic, water-miscible solvent, e.g. dimethylformamide, dimethylsulfoxide, hexamethylformamide, dlmethylacetamide and the like. A tertiary base, preferably an aromatic base, which has a boiling point from approx. 100°C to 250°C. Typical close heterocyclic bases include pyridine, methylpyridines, ethylpyridines, dimethylpyridines and quinoline. Anhydrous pyridine is particularly preferred.

SulfoneringSulfonation

Passende sulfoneringsmidler omfatter svovelsyre, oleum, klorsulfonsyre og addukter av svovelsyreanhydrid med organiske for-bindelser, så som pyridin, dioksan og tertiære aminer (f.eks. tri-etylamin). Ilår man bruker oleum eller klorsulfonsyrer, kan det være fordelaktig å kombinere separat sulfoneringsmiddelet med den heterocykliske base, og bruke det resulterende addukt ved sulfoneringsreaksjonen. Suitable sulfonating agents include sulfuric acid, oleum, chlorosulfonic acid and adducts of sulfuric anhydride with organic compounds, such as pyridine, dioxane and tertiary amines (eg triethylamine). When using oleum or chlorosulfonic acids, it may be advantageous to separately combine the sulfonating agent with the heterocyclic base, and use the resulting adduct in the sulfonation reaction.

Sulfonering«reaksjonen utføres ved å bringe den glykopeptid rholdige løsningsmiddel-blanding i kontakt med sulfoneringsmiddelet ved en begynnelseétemperatur mellom ca. -20°c og ca, +20°C, og deretter ved en høyere temperatur mellom ca. 60°c og ca. 90°C, fortrinnsvis ved ca. 80°c, i fra 4 til 8 og fortrinnsvis 5 timer. Mengden av sulfoneringsmiddelet er mellom ca. 400 og 600%, fortrinnsvis 500%, beregnet på vekten av glykopeptidet. The sulfonation reaction is carried out by bringing the glycopeptide-containing solvent mixture into contact with the sulfonating agent at an initial temperature between approx. -20°c and approx. +20°C, and then at a higher temperature between approx. 60°c and approx. 90°C, preferably at approx. 80°c, for from 4 to 8 and preferably 5 hours. The quantity of the sulfonating agent is between approx. 400 and 600%, preferably 500%, calculated on the weight of the glycopeptide.

Ved slutten av sulfoneringsreaksjonen saoales sulfonatpro-duktet ved filtrering, og forurensningene fjernes med oppløsnings-fasen ved dialyse eller ved behandling med ionebytfeeharpikser. At the end of the sulphonation reaction, the sulphonate product is removed by filtration, and the impurities are removed with the dissolution phase by dialysis or by treatment with ion exchange resins.

Sulfoglykopeptid- salterSulfoglycopeptide salts

Des således oppnådde sulfoglykopeptid blir deretter om-dannet til det tilsvarende natrlumsalt med natriumhydroksyd, og natriumsaltet blir utfelt ved fortynning av dets vannløsninger mød passende løsningsmidler, så som aceton eller metanol. The sulfoglycopeptide thus obtained is then converted to the corresponding sodium salt with sodium hydroxide, and the sodium salt is precipitated by diluting its aqueous solutions with suitable solvents, such as acetone or methanol.

Den samme arbeidsmåte kan generelt brukes for å omdanne sulfoglykopeptidet til tilsvarende salter med andre alkali-, jordalkali- og tungmetaller, eller til tilsvarende ammoniumsalter. The same procedure can generally be used to convert the sulfoglycopeptide into corresponding salts with other alkali, alkaline earth and heavy metals, or into corresponding ammonium salts.

Disse salter kan oppnås fra det samme sulfoglykopeptld dannet ved sulfoneringsreaksjonen, ved hjelp av nøytralisering med alkali-, jordalkali eller ammoniumhydroksyd samt fra natriumsaltet ved dobbelt utvekslingsreaksjon med et jordalkalimetall- eller tungmetallsalt. Salter oppnådd ved,nøytralisering av sulfoglykopeptld med metallhydroksyd blir isolert ved behandling av deres vandige løsninger med et fellingsmiddel, så som aceton eller metanol. Det ér funnet at særlig gunstige resultater oppnås når det før utfellingen tilsettes en liten mengde av fra ca. 3 til ca. 7 vekt% basert på vekten av hydroksydet, av et acetat eller halogenid av det samme metall hvis hydroksyd brukes for nøytraliseringsreak-sjonen. Kationer som egner seg best for denne utførelsesform er kalium, litium, kalsium, barium, stronium og ammonium. These salts can be obtained from the same sulfoglycopeptld formed by the sulfonation reaction, by means of neutralization with alkali, alkaline earth or ammonium hydroxide as well as from the sodium salt by double exchange reaction with an alkaline earth metal or heavy metal salt. Salts obtained by neutralization of sulfoglycopeptid with metal hydroxide are isolated by treating their aqueous solutions with a precipitating agent such as acetone or methanol. It has been found that particularly favorable results are obtained when, before precipitation, a small amount of from approx. 3 to approx. 7% by weight based on the weight of the hydroxide, of an acetate or halide of the same metal if the hydroxide is used for the neutralization reaction. Cations most suitable for this embodiment are potassium, lithium, calcium, barium, strontium and ammonium.

Den dobbelte utvekslingsreaksjon mellom sulfoglykopeptid-natriumsaltet og salter av andre metaller utføres i vandig løsning, idet anionet av vedkommende salt fortrinnsvis bestar av et acetat eller halogenid. Den dobbelte utvekslingsreaksjon kan utføres ved å perkoleré en vandig løsning av natriumsaltet av sulfoglykopeptid gjennom en søyle av sterk kationisk bytteharpiks som tidligere er blitt forsaltet med det metallkation hvis sulfoglykopep^idsalt ønskes fremstilt. Den perkolerte løsning blir deretter behandlet med et fellingsmiddel, så som aceton eller metanol, fortrinnsvis etter tilsetning av en mindre mengde av et acetat eller halogenid av det samme metall hvis salt ønskes erholdt. Særlig fordelaktig kan ved denne dobbelte utvekslingsreaksjon fremstilles salter av sulfoglykopeptld med følgende metallerssink, kalsium, barium, strontium, kobber, nikkel, kobolt, magnesium, vismut, gull og aluminium. The double exchange reaction between the sulfoglycopeptide sodium salt and salts of other metals is carried out in aqueous solution, the anion of the salt in question preferably consisting of an acetate or halide. The double exchange reaction can be carried out by percolating an aqueous solution of the sodium salt of sulfoglycopeptide through a column of strong cation exchange resin which has previously been presalted with the metal cation whose sulfoglycopeptide salt is desired to be prepared. The percolated solution is then treated with a precipitating agent, such as acetone or methanol, preferably after the addition of a small amount of an acetate or halide of the same metal whose salt is desired. Salts of sulfoglycopeptid with the following metals zinc, calcium, barium, strontium, copper, nickel, cobalt, magnesium, bismuth, gold and aluminum can be prepared particularly advantageously by this double exchange reaction.

Z den følgende tabell angis endel analytiske verdier som er karakteristiske for natriumsalter av sulfoglykopeptld fremstilt som angitt ovenfor, svarende til materialer med laveste og høyeste sulfoneringøgradj The following table shows some analytical values which are characteristic of sodium salts of sulfoglycopeptid prepared as indicated above, corresponding to materials with the lowest and highest degrees of sulfonation

Fra farmakologisk synspunkt består .fordelene oppnådd ved sulfonering av glykopeptid ekstrahert fra keeein i tilstedeværelsen av nye raavesårhindrende, antipeptiske og utsondringshindrende egenskaper. From a pharmacological point of view, the advantages obtained by sulphonation of glycopeptide extracted from keeein consist in the presence of new anti-ulcer, anti-peptic and anti-excretion properties.

De farmakologiske resultater viste at oulfoglykopeptid-salter ifølge oppfinnelsen ikke var toksiske selv ved doser av The pharmacological results showed that ulfoglycopeptide salts according to the invention were not toxic even at doses of

400 mg/kg endoperitonea.lt, og 1 g/kg oralt. Kår den ble admini-strert oralt ved dose på 40, 64, 102,4 og 163,8 mg Ag, bevirket sulfoglykopeptld'en hindring av mavesårgraden på '&i^^Mc^fc""a£p"(N.S.), ~ 0^~ §®7^ fWe~^&&©976%, ' Den antipeptiske aktivitet ble undersøkt både in vivo og in vito. De anvendte konsentrasjoner (fra 0,5 til 4 mg/ral) og de administrerte doser (fra 40 til 160 mg Ag) kunne sam-menlignes med dem som allerede er beskrevet for andre sulfonerte 400 mg/kg endoperitonea.lt, and 1 g/kg orally. When administered orally at doses of 40, 64, 102.4 and 163.8 mg Ag, sulfoglycopeptid produced inhibition of the gastric ulcer grade of '&i^^Mc^fc""a£p"(N.S.), ~ 0^~ §®7^ fWe~^&&©976%, ' The antipeptic activity was investigated both in vivo and in vitro. The concentrations used (from 0.5 to 4 mg/ral) and the doses administered (from 40 to 160 mg Ag) could be compared with those already described for other sulfonates

makromolekyler (Lietti o.a.,Boll. Soc. It.Biol. Sper. 47.493, 1971). ■*■ - macromolecules (Lietti et al., Boll. Soc. It.Biol. Sper. 47,493, 1971). ■*■ -

Den utsondringshindrende aktivitet kunne påvises når man stimulerte oyreutsondringen ved hjelp av histamin og pantagastrih. De følgende, ikke begrensende eksempler illustrerer fremgangsmåten Ifølge oppfinnelsen. The secretion-inhibiting activity could be demonstrated when the uric acid secretion was stimulated with the help of histamine and pantagatrih. The following, non-limiting examples illustrate the method according to the invention.

Eksempel 1Example 1

En blanding av 170 ml dimetylformamid (DMF) og 230 ml pyridin ble kjølt til -20°C. Til denne løsning ble tilsatt 60 ml kibrsulfonsyre idet man sørget for ikke å overskride en temperatur på -15°C. Under disse betingelser dannet det seg et addukt pyridin/ klorsulf onsyre. Tii denne addukthoIdige fase ble det under omrø-ring ved 20°c tilsatt 20 gram av glykopeptid ekstrahert fra melk som tidligere var grundig tørket og kulemalt. Etter at tilsetningen var fullført ble temperaturen hevet til 80 c og holdt ved 80°C i 3 timer. Opphetningen og omrøringen ble da avbrutt og man lot blandingen stå ved romtemperatur i 2 timer. Det dannet seg en gelmassé som ble Isolert ved dekahtering. Fra denne masse ble utfelt ved tilsetning av 150 ral metanol et gul-aktig pulver som ble samlet opp ved filtrering og oppløst i 250 ml vann. Den vandige løsning ble behandlet ned 200 ml av en kation-bytteharpiks ("Araberlite" (^R-120) • Etter 10 minutter ble harpiksen fjernet ved filtrering, og filtratet ble behandlet med 200 ml av anion-bytteharpiks ("Amberlite" XR-410). Også denne harpiks ble fjernet ved filtrering etter 10 minutter, og pB av filtratet ble inestilt til 12 ved hjelp av en^natriumhydroksyd-løsning og deretter tii 6,5 ved tilsetning av eddlksyre. Løsningen ble fordampet under nedsatt trykk til et volum av 200 ml og deretter behandlet med 4 gram av natriumjodid og fortynnet med 1,2 volumdeler aceton, hvorved man oppnådde utfelling. Utfellingen ble vasket med etanol inntil jodidioner forsvant, deretter med etyleter og til slutt tørket. A mixture of 170 ml of dimethylformamide (DMF) and 230 ml of pyridine was cooled to -20°C. 60 ml of carbon sulfonic acid was added to this solution, taking care not to exceed a temperature of -15°C. Under these conditions, a pyridine/chlorosulfonic acid adduct was formed. During this adduct-containing phase, 20 grams of glycopeptide extracted from milk which had previously been thoroughly dried and ball milled were added while stirring at 20°c. After the addition was complete, the temperature was raised to 80°C and held at 80°C for 3 hours. The heating and stirring were then interrupted and the mixture was allowed to stand at room temperature for 2 hours. A gel mass was formed which was isolated by decantation. From this mass, a yellowish powder was precipitated by the addition of 150 ral of methanol, which was collected by filtration and dissolved in 250 ml of water. The aqueous solution was treated with 200 ml of a cation-exchange resin ("Araberlite" (^R-120) • After 10 minutes, the resin was removed by filtration, and the filtrate was treated with 200 ml of anion-exchange resin ("Amberlite" XR- 410). This resin was also removed by filtration after 10 minutes, and the pH of the filtrate was adjusted to 12 by means of a sodium hydroxide solution and then to 6.5 by the addition of acetic acid. The solution was evaporated under reduced pressure to one vol. of 200 ml and then treated with 4 grams of sodium iodide and diluted with 1.2 volumes of acetone to obtain a precipitate.The precipitate was washed with ethanol until iodide ions disappeared, then with ethyl ether and finally dried.

Det er samlet opp 19 gram av et alfenbenfarvet pulver som hadde følgende sammensetnings 19 grams of an ivory colored powder which had the following composition was collected

Eksempel 2 Example 2

Til en blanding av dimetylformamid (180 ml) og tørr pyridin (180 ml) kjølt til - 20°C i en reaksjonsbeholder ble tilsatt en blanding av 16 ml rykende svovelsyre (65% SO^) og 16 ml konsen-trert svovelsyre, idet man sørget for ikke å overskride -15°c. Til den således oppnådde suspensjon ble tilsatt 15 g av et glykopeptid oppnådd fra kumelk-kasein, grundig tørket og malt i en kulémølle, under omrøring ved 20°c. Etter at tilsetningen var fullført, ble temperaturen av blandingen hevet til 75°C og holdt ved denne verdi i 2,5 timer. Omrøringen ble deretter avbrutt og blandingen holdt ved 75°C i 90 minutter. To a mixture of dimethylformamide (180 ml) and dry pyridine (180 ml) cooled to -20°C in a reaction vessel was added a mixture of 16 ml of fuming sulfuric acid (65% SO 4 ) and 16 ml of concentrated sulfuric acid, made sure not to exceed -15°c. To the thus obtained suspension was added 15 g of a glycopeptide obtained from cow's milk casein, thoroughly dried and ground in a ball mill, with stirring at 20°c. After the addition was complete, the temperature of the mixture was raised to 75°C and held at this value for 2.5 hours. Stirring was then stopped and the mixture held at 75°C for 90 minutes.

En oljeaktig masse avsatte seg på bunnen av reaksjonsbeholderen og ble separert ved dekantering. Tilsetning av©etyl-alkohol (120 ml) ga en klebrig utfelling som ble vasket tsad metanol, deretter med etyleter, hvilket ga 23 g av et lysebrunt pulver. Råproduktet ble oppløst i 250 ml destillert vann og renset som beskrevet i forangåeride eksempel. An oily mass settled at the bottom of the reaction vessel and was separated by decantation. Addition of ethyl alcohol (120 ml) gave a sticky precipitate which was washed with tsad methanol, then with ethyl ether to give 23 g of a light brown powder. The crude product was dissolved in 250 ml of distilled water and purified as described in the previous example.

Det ble oppnådd 16 g av et alfenbenfarvet pulver med føl-gende sammensetning i 16 g of an ivory colored powder with the following composition was obtained

Eksempel 3 Example 3

Det ble fremstilt en blanding av 200 gram tørr pyridin og 300 g métylsulfokisyd kjølt til -20°C. Til denne blanding ble dråpa vis tilsatt 30 ml klorsulfonsyre, idet man sørget for ikke å overstige temperaturen 20°c. Etter avslutningen av tilsetningen av klor sulf onsyre ble temperaturen av blandingen brakt til 20°C. Deretter ble til blandingen tilsatt 15 gram glykopeptid ekstrahert fra melk og som var tidligere grundig tørket og til slutt malt i en kulemølle. Etter at glykopoptid-tilaetningen «ar avsluttet, ble temperaturen av blendingen hevet til 85°C og holdt ved denne verdi i 4 timer. Man lot blandingen stå ved romtemperatur i 3 timer. På bunnen av reaksjonsbeholderen avsatte det seg en klar, gelatinaktig masse som ble separert ved dekantering fra den overliggende fase. Tilsetning av 120 ml metanol til den gelatinaktigo masse bevirket dannelsen av et lyst elfenbenfaztoet pulver som ble oppløst i 200 ml destillert vann og utsatt f pr den samme rensning sprossas som 1 de forangående eksempler. Til slutt fikk man 18 gram av et hvitt pulver som hadde følgende sammensetning (basert på det tørre produkt) : A mixture of 200 grams of dry pyridine and 300 g of methyl sulfoxide cooled to -20°C was prepared. 30 ml of chlorosulfonic acid was added dropwise to this mixture, taking care not to exceed the temperature of 20°c. After the completion of the addition of chlorosulfonic acid, the temperature of the mixture was brought to 20°C. Then 15 grams of glycopeptide extracted from milk and which had previously been thoroughly dried and finally ground in a ball mill were added to the mixture. After the glycopeptide addition was completed, the temperature of the mixture was raised to 85°C and held at this value for 4 hours. The mixture was allowed to stand at room temperature for 3 hours. A clear, gelatinous mass settled at the bottom of the reaction vessel, which was separated by decantation from the overlying phase. Addition of 120 ml of methanol to the gelatinous mass resulted in the formation of a pale ivory colored powder which was dissolved in 200 ml of distilled water and subjected to the same purification process as in the previous examples. In the end, 18 grams of a white powder was obtained which had the following composition (based on the dry product):

Eksempel 4 '' Example 4''

100 g av natriumsaltet av glykopeptid ekstrahert fra kumelk og sulfonert som beskrevet i eksempel 1 ble oppløst i 1000 ml vann og hellet i 1000 ml av en 0,3 m løsning av vismutnitrat i is-eddik. 100 g of the sodium salt of glycopeptide extracted from cow's milk and sulfonated as described in Example 1 was dissolved in 1000 ml of water and poured into 1000 ml of a 0.3 m solution of bismuth nitrate in glacial acetic acid.

Oa 2000 ml av metanol ble tilsatt til løsningen, dannet About 2000 ml of methanol was added to the solution, formed

det seg en utfelling som ble oppsamlet ved sentrlfugering og vasket tre ganger ved triturering med en 3sl metanol-eddiksyre-blanding og deretter tre ganger med aceton, hvilket ga li<p>gram av et pulverfor-met produkt. Produktet ble tørket under vakuum og deretter oppløst i 15 wolumdeler destillert vann. En 1 n løsning av vandig natriumhydroksyd ble tilsatt til denne løsning for å Innstille dens pB til 6,5. Etter fortynning med 1,5 volumdelér aceton dannet det seg en utfelling. there was a precipitate which was collected by centrifugation and washed three times by trituration with a 3 s methanol-acetic acid mixture and then three times with acetone, giving 1 gram of a powdered product. The product was dried under vacuum and then dissolved in 15 parts by volume of distilled water. A 1 N solution of aqueous sodium hydroxide was added to this solution to adjust its pB to 6.5. After dilution with 1.5 parts by volume of acetone, a precipitate formed.

Denne utfelling ble oppsamlet ved sentrifugering, vasket tre ganger med én 2tl aceton-vann blanding og deretter tre ganger med aceton. Sluttproduktet ble tørket under vakuum og ga 105 g av et produkt som hadde følgende prosentmengde av svovel og vismuts S «-7,8%:, • •;Bi:« 17,1%' -,' This precipitate was collected by centrifugation, washed three times with one 2 tl acetone-water mixture and then three times with acetone. The final product was dried under vacuum to give 105 g of a product having the following percentages of sulfur and bismuth S «-7.8%:, • •;Bi:« 17.1%' -,'

Eksempel 5Example 5

Ved å arbeide analogt med metoden som er illustrert i eksempel 4, fikk man følgende salter av sulfonert glykopeptid» By working analogously to the method illustrated in example 4, the following salts of sulfonated glycopeptide were obtained"

aj magneslumsaltet av sulfonert glykopeptidaj the magnesium salt of sulfonated glycopeptide

b) kalsiumsaltet av sulfonert glykopeptidi c) aluminiumsaltet av sulfonert glykopeptid b) the calcium salt of sulfonated glycopeptide c) the aluminum salt of sulfonated glycopeptide

Claims (7)

1. Fremgangsmåte for fremstilling av sulfoglykopeptider ved å gå ut fra glykopeptider ekstrahert fra melk eller kasein, k a-rakterlsert ved følgende trinn»1. Process for the production of sulfoglycopeptides starting from glycopeptides extracted from milk or casein, characterized by the following steps" 1) man tilveiebringer en blanding av a) et glykopeptid ekstrahert fra melk eller kasein, b) et aprotisk, ikke-aromatisk, vann-blandbart løsningsmiddel, c) en tertiær base med et kokepunkt fra ca. 100°C til ca. 250°C, d) et sulfonerlngsmiddel valgt fra gruppen bestående av svovelsyre, d oleum, klorsulfonsyre og et addukt av svovelsyreanhydrid og en organisk forbindelse, 2) holder begynnelsestemperaturen ved kontakten mellom glykopeptid r» sulfrwsering&^iddelat ved fra ca. -20°C.til4 ;2 <0> oC, 3) hever temperaturen til et område fra ca. 60°C til ca. 90°c og 4) utvinner det resulterende sulfoglykopeptld.1) one provides a mixture of a) a glycopeptide extracted from milk or casein, b) an aprotic, non-aromatic, water-miscible solvent, c) a tertiary base with a boiling point from approx. 100°C to approx. 250°C, d) a sulfonating agent selected from the group consisting of sulfuric acid, d oleum, chlorosulfonic acid and an adduct of sulfuric anhydride and an organic compound, 2) maintains the initial temperature at the contact between glycopeptide r» sulfrwsering&^iddelat at from approx. -20°C.to4 ;2 <0> oC, 3) raises the temperature to a range from approx. 60°C to approx. 90°c and 4) recovering the resulting sulfoglycopeptid. 2. Fremgangsmåte som angitt i krav 1, karakter!-s er t ved at det aprotiske løsningsmiddel er dimetylformamid, dimetylsulfoksyd, heksametylfosforamid eller imetylacetamid.2. Method as stated in claim 1, character!-s is t in that the aprotic solvent is dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide or immethylacetamide. 3.. Fremgangsmåte som angitt i krav 2, karakterisert ved at den tertiære Bese er en heterocyklisk base valgt fra gruppen bestående av pyridin, metylpyridin, dimetylpyrldin og klnolin.3.. Method as set forth in claim 2, characterized in that the tertiary Bese is a heterocyclic base selected from the group consisting of pyridine, methylpyridine, dimethylpyrlidine and chloline. 4. Fremgangsmåte som angitt i krav 1, karakter!-s er t ved at kontaktiden med sulfoneringsmiddelet i trinn 2) og 3) er fra ca. 4 til ca. 8 timer.4. Method as stated in claim 1, character!-s is t in that the contact time with the sulfonating agent in steps 2) and 3) is from approx. 4 to approx. 8 hours. 5. Fremgangsmåte som angitt i krav 1, k & r& k t e r i-s e r t ved følgende ytterligere trinns 5) man omsetter sulfoglykopeptidet av 4) med et hydroksyd valgt fra gruppen bestående av alkali-, jordalkalimetall- og ammoniumhydroksyd åox å omdanne sulfoglykopeptidet til dets tilsvarende alkali-, jord-alkalimetsTl eller ammoniumøalt» og5. Method as stated in claim 1, k & r& k t e r i-s e r t in the following further step 5) one reacts the sulfoglycopeptide of 4) with a hydroxide selected from the group consisting of alkali, alkaline earth metal and ammonium hydroxide to convert the sulfoglycopeptide into its corresponding alkali -, earth-alkalimetsTl or ammonium øalt» and 6) man bringer det resulterende produkt av 5) i kontakt med aceton eller metylalkohol for å utfelle nevnte salt.6) bringing the resulting product of 5) into contact with acetone or methyl alcohol to precipitate said salt. 6. Fremgangsmåte som angitt i krav 5, karakterisert ved at hydroksydet er natriumhydroksyd og sulfoglykopep-tidsnltet er natriumsaltet.6. Process as stated in claim 5, characterized in that the hydroxide is sodium hydroxide and the sulfoglycopeptide is the sodium salt. 7. Fremgangsmåte som angitt i krav 6, karakterisert ved at en vandig løsning av natriumsaltet perkoleroa gjennom en kation-bytteharpiks som har som kation et metall valgt fra gruppen bestående av sink, kalsium, barium, strontium, kobber, nikkel, kobolt, magnesium, vismut, gull og aluminium.7. Method as stated in claim 6, characterized in that an aqueous solution of the sodium salt percoleroa through a cation-exchange resin which has as cation a metal selected from the group consisting of zinc, calcium, barium, strontium, copper, nickel, cobalt, magnesium, bismuth, gold and aluminium.
NO751908A 1974-05-30 1975-05-29 NO751908L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT23359/74A IT1037058B (en) 1974-05-30 1974-05-30 SULFODERIVATES OF GLOCOPEPTIDES EXTRACTS FROM MILK USEFUL AS MEDICATIONS AND PROCEDURE FOR THEIR PREPARATION

Publications (1)

Publication Number Publication Date
NO751908L true NO751908L (en) 1975-12-02

Family

ID=11206381

Family Applications (1)

Application Number Title Priority Date Filing Date
NO751908A NO751908L (en) 1974-05-30 1975-05-29

Country Status (23)

Country Link
JP (1) JPS5111718A (en)
AR (1) AR205198A1 (en)
AT (1) AT354649B (en)
BE (1) BE828960A (en)
CA (1) CA1033720A (en)
CH (1) CH605681A5 (en)
DE (1) DE2523432A1 (en)
DK (1) DK232175A (en)
ES (1) ES438034A1 (en)
FR (1) FR2273007A1 (en)
GB (1) GB1448660A (en)
IE (1) IE41368B1 (en)
IL (1) IL47382A0 (en)
IN (1) IN139132B (en)
IT (1) IT1037058B (en)
LU (1) LU72601A1 (en)
MY (1) MY7700284A (en)
NL (1) NL7506382A (en)
NO (1) NO751908L (en)
PL (1) PL94775B1 (en)
RO (1) RO72709A (en)
SE (1) SE7506121L (en)
ZA (1) ZA753456B (en)

Also Published As

Publication number Publication date
BE828960A (en) 1975-09-01
RO72709A (en) 1982-02-26
MY7700284A (en) 1977-12-31
CA1033720A (en) 1978-06-27
IL47382A0 (en) 1976-10-31
IE41368L (en) 1975-11-30
NL7506382A (en) 1975-12-02
JPS5111718A (en) 1976-01-30
ATA378275A (en) 1979-06-15
PL94775B1 (en) 1977-08-31
IE41368B1 (en) 1979-12-19
IT1037058B (en) 1979-11-10
CH605681A5 (en) 1978-10-13
SE7506121L (en) 1975-12-01
AT354649B (en) 1979-01-25
AU8163475A (en) 1976-12-02
LU72601A1 (en) 1975-10-08
FR2273007A1 (en) 1975-12-26
DE2523432A1 (en) 1975-12-11
DK232175A (en) 1975-12-01
ES438034A1 (en) 1977-02-16
IN139132B (en) 1976-05-08
ZA753456B (en) 1976-04-28
GB1448660A (en) 1976-09-08
AR205198A1 (en) 1976-04-12

Similar Documents

Publication Publication Date Title
EP0392396B1 (en) Complexes of iron or other metals with sulphonated derivatives of chitosan
AU2004319676B2 (en) Method for producing iron (III) gluconate complex
US4167622A (en) Process for preparing hydroxyethyl starch suitable as a plasma expander
NO751908L (en)
US3518243A (en) Sulfonated derivatives of a glycopeptide extracted from animal organs,useful as drugs and a process for the preparation thereof
CS230691A3 (en) Process for preparing calcium heparins
US3872075A (en) Salts of amino-acids with polysulfuric esters of natural gly-copeptides and process for preparing same
DE2652272B1 (en) Process for the production of heparin
US2606899A (en) Preparation of adenosinetriphosphoric acid and its salt
DE2546699A1 (en) PULLULAN SULPHATES AND THEIR SALT
US2799621A (en) Preparation of adrenocorticotropin and gonadotropins from pituitary material
US3262854A (en) Method for the recovery of heparin
US2668852A (en) Neutral calcium 4-aminosalicylate hemihydrate and preparation of the same
IL34740A (en) Sulfonated derivatives of a glycopeptide extracted from animal organs and their preparation
DE2031401C3 (en) Glycopeptide sulfonation products and their use in combating gastric ulcers
USRE23966E (en) Conversion of sodium aniline n-d-glucurono-
JPH0543715B2 (en)
WO2003066657A1 (en) A process for preparing ursodeoxycholic acid dusulphate and pharmaceutically acceptable salts thereof
KR810001154B1 (en) Process for preparing 5-sulfamoyl-orthanilic acids
JPS6141358B2 (en)
PL117279B3 (en) Process for preparing heparin of high purity
AT311332B (en) Process for the preparation of a new ester of 3,3-bis (p-hydroxyphenyl) -2-indolinone and its salts
DE501088C (en) Process for the preparation of derivatives of organic arsenic compounds
GB2080796A (en) 2-Hydroxy-5-phenylazobenzoic acid derivatives
DD269846A1 (en) PROCESS FOR THE PREPARATION OF 1,2-NAPHTHOCHINONDIAZIDE (2) -SULFOCHLORIDE (4)