NO750884L - - Google Patents

Info

Publication number
NO750884L
NO750884L NO750884A NO750884A NO750884L NO 750884 L NO750884 L NO 750884L NO 750884 A NO750884 A NO 750884A NO 750884 A NO750884 A NO 750884A NO 750884 L NO750884 L NO 750884L
Authority
NO
Norway
Prior art keywords
styrene
ethylene
polymers
propellant
particles
Prior art date
Application number
NO750884A
Other languages
Norwegian (no)
Inventor
G Zeitler
L Hoehr
H Mueller-Tamm
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of NO750884L publication Critical patent/NO750884L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2457/00Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

"Fremgangsmåte til fremstilling av skum-"Procedure for the production of foam

stoffer av masser som inneholder styren-substances of pulp containing styrene-

og etylenpolymerer" and ethylene polymers"

Denne oppfinnelse angår en fremgangsmåte til fremstilling av skumstoffer ved sintring av skumformige partikler av masser som inneholder styren- og etylen-polymerer og oppløsningsformidlere, under trykk og formgivning. This invention relates to a method for the production of foams by sintering foamy particles of masses containing styrene and ethylene polymers and dissolution agents, under pressure and shaping.

Ved fremstilling av formlegemer med cellestruktur anvendes åeindustrien særlig en fremgangsmåte hvor de drivmiddelholdige styrenpolymerer først oppskummes og de således erholdte partikler etter en kort lagringstid oppvarmes i en form, slik at de oppskummes ytterligere og sintrer til et formlegeme som i sine dimensjoner tilsvarer det indre hulrom i den anvendte form. Etter denne fremgangsmåte er det mulig å få fremstille formlegemer med komplisert utformning, for eksempel til bruk som emballasjeinlegg. In the production of moldings with a cellular structure, the industry in particular uses a method where the propellant-containing styrene polymers are first foamed and the thus obtained particles are heated in a mold after a short storage time, so that they are further foamed and sintered into a molding whose dimensions correspond to the inner cavity of the form used. Following this method, it is possible to produce shaped bodies with a complicated design, for example for use as packaging inserts.

Fra det østerrikske patent nr. 249 989 er det kjent en fremgangsmåte til fremstilling av formlegemer ut fra partikler av oppskummede styrenpolymerer, hvor fullstendig oppskummede gastikler oppvarmes til mykhingstemperaturen for styrenpolymerene og sintres under innvirkning av trykk.^From the Austrian patent no. 249 989, a method is known for the production of shaped bodies from particles of foamed styrene polymers, where completely foamed gasticles are heated to the softening temperature of the styrene polymers and sintered under the influence of pressure.^

Ved disse fremgangsmåter oppnår man skumstoffer med romvek-ter fra 10 til ca. 100 g/l. Skumstoffene har funnet en vid anvendelse som isoleringsmaterlale eller for støtderapningsformål ved em-baller ing. En ulempe er den store Ømfintlighet som disse formlegemer av styrenpolymerer oppviser overfor organiske løsningsmidler. Eksempelvis kan således fuktning med løsningsmidler, slik disse anvendes i maling, lakk eller klebemidler, bevirke en sammenfalling av skumstrukturen. Ved påføring av farge eller ved liming må man føl-gelig bruke spesielle typar maling, lakk, lim etc. som ikke inneholder skadelige løsningsmidler. With these methods, foam materials with a specific gravity of from 10 to approx. 100 g/l. The foams have found wide application as insulation material or for shock absorption purposes in embalming. A disadvantage is the great sensitivity that these shaped bodies of styrene polymers show to organic solvents. For example, wetting with solvents, such as those used in paint, varnish or adhesives, can cause the foam structure to collapse. When applying color or gluing, you must therefore use special types of paint, varnish, glue etc. that do not contain harmful solvents.

Oppfinnelsen tar således sikte på å tilveiebringe skumstoffer ved sintring av oppskummede partikler av termoplastiske polymerer under trykk og formgivning, hvilke skumstoffer ikke oppviser de The invention thus aims at providing foams by sintering foamed particles of thermoplastic polymers under pressure and shaping, which foams do not exhibit the

nevnte ulemper.mentioned disadvantages.

I henhold til oppfinnelsen oppnås dette ved at man ved fremstillingen av skumstoff-formlegemer av termoplastiske polymerer anvender pppskummede partikler av masser som inneholder en styrenpolymer, en etylenpolymer og en oppløsning silormidler. According to the invention, this is achieved by using ppp foamed particles of masses containing a styrene polymer, an ethylene polymer and a solution of silorants in the production of foam moldings from thermoplastic polymers.

Det er en fordel at man ved sintringen av de ifølge oppfinnelsen anvendte partikler av masser inneholdende styren- og etylen-polymerer og oppløsningsformidlere, får formlegemer som i sin utformning tilsvarer det indre hulrom av den anvendte form. Det er således mulig å fremstille formlegemer med relativt komplisert utformning og oelleaktig skumstruktur ved en teknisk enkel arbeidsmåte. It is an advantage that by sintering the particles of masses containing styrene and ethylene polymers and dissolution agents used according to the invention, molded bodies are obtained which in their design correspond to the inner cavity of the mold used. It is thus possible to produce shaped bodies with a relatively complicated design and an oelle-like foam structure using a technically simple working method.

Med masser menes i det foreliggende slike masser av styren-og etylen-poiymerer og oppløsningsformidlere som fås ved blanding av styrenpolymerer, etylenpolymerer og oppløsningsformidlere* Massene inneholder fordelaktig mellom 10 og 95 vektdeler, fortrinnsvis mellom 30 og 90 vektdeler, styrenpolymerer, 90-5, fortrinnsvis 70-10 vektdeler, etylenpolymerer, og, beregnet på 100 deler av blandingen av styren- og etylenpolymerer, 0,5-10 deler oppløsningsfos-midler. ;Med styrenpolymerer menes i det foreliggende homo- og kopolymerer av styren. Kopolymerene inneholder foruten styren også andre med styren kopolymeriserbare monomerer i slike mengder at andelen av styren, beregnet på monoraerene, utgjør minst 50 vekt%. Som slike kopolymeriseringskomponenter kan eksempelvis anvendes: a-metyl-styren, kjernehalogenerte styrener, akrylnitril, estere av akrylsyre eller roetakrylsyre og alkoholer med 1-8 karbonatomer, vinylkar-bazol eller også små mengder av forbindelser som inneholder to poly-meriserbare dobbeltbindinger, så som butadien, divinylbenzen eller butandioldiakrylat. Styrenpolymerene har smelteindekser som ligger mellom 0,1 og 50 g/10 min. (200°C/5 kg). ;Egnede etylenpolymerer er etylenhomo- og -kopolymerer. Således kan man for eksempel anvende etylenhomopolymerer fremstilt ved høytrykks- eller lavtrykks-polymerisering med en tetthet mellom 0,850 og 0,965 g/cm . Egnede etylenkopolymerer inneholder som ko-monomerer enten andre olefiner, så som propylen, buten-1 eller eksempelvis vinylestere av syrer med 2-4 karbonatomer, så som vinylacetat, vinylpropionat eller akrylsyre- og metakrylsyreestere av alkoholer med 1-10 karbonatomer. Videre kan man anvende karbonoksyd, styren, vinylklorid, svoveldioksyd, fumar- og maleinsyreestere.Ennvidere kan man bruke blandinger av etylenpolymerer, eksempelvis blandinger av høytrykks- eller lavtrykks-polyetylen og etylenkopolymerer,, så som kopolymerer av etylen og vinylacetat. ;Komonomerinnholdet i etylenkopolymerene ligger fortrinnsvis mellom 1 og 49 vekt%, spesielt mellom 3 og 35 vekt%. Kopolymerenes smelteindeks kan variere innen vide grenser og er spesielt 0,1-1000 g/10 min. (190°C/2,16 kg). ;Med oppløsningsformidlere, som også kan betegnes blandings-formidlere, menes i det foreliggende slike stoffer som ved tilset-ning til en blanding av styrenpolymerer og etylenpolymerer bevirker en finfordeling av den ene polymer i den andre. Prøvelegemer som fremstilles av masser inneholdende en styrenpolymer, en etylenpolymer og en oppløsningsfarmidler, har en høyere ridefasthet enn prø-velegemer av masser som utelukkende inneholder en styrenpolymer og en etylenpolymer. Forutsetningen er da at blandebetingelsene ved feemstillingen av massene er de samme. ;Egnede oppløsningsformidlere er eksempelvis pode polyme rer av styren på polyetylen, og kopolymerer av etylen og styren. Spesielt fordelaktige er hydrogenerte styren-butadien-blokkpolymerer, som for eksempel beskrevet i Houben-Weyl 14/1, side 833. Molekylvekten ligger mellom 3000 og 800 000, styrenandelen mellom 10 og 80 v©kt%. ;Andelen av styrenpolymer i polymermassene kan ligge mellom 10 og 95 vekt%. Ved 30-90 vekt% oppnås de beste resultater med hen-syn til hårdhet av skumstoffene og uømfintlighet overfor løsnings-midler. ;Massene av styrenpolymerene og etylenpolymerene og oppløs-ningsformidlere fremstilles på vanlig måte i knamaskiner eller eks-trudere. Partikkelstørrelser fra 0,5 til 3 mm - spesielt gunstig har partikler på 1-2 mm vist seg å være - fremstilles for eksempel ved ekstrudering av tynne strenger med tverrmål på 1-2 mm og oppde-ling med eller uten oppvarming. Man kan også anvende partikler fremstilt for eksempel ved maling av grovere granulat. ;Fremgangsmåten kan utføres på forskjellige måter. Særlig har det vist seg gunstig å oppskumme drivmiddelholdige partikler og sintre disse under de oppskummende partiklers trykk. ;Som drivmiddel inneholder partiklene hensiktsmessig lavmolekylære organiske stoffer som har et kokepunkt - ved normalbetin-gelser - mellom -50 og 100°C. Fortrinnsvis anvender man under nor-malbetingeIser gassformige eller væskeformige, alifatiske eller cykloalifatiske hydrokarboner, så som propan, butan, pentan, heksan eller cykloheksan, isobutan, isopantan eller isoheksan. Også halo-genhydrokarboner, så som metylklorid, metylenklorid, etylklorid, diklordifluormetan, trifluorklormetan, er egnet. Videre kan det anvendes etere, så som dimetyl- eller dietyleter, eller ketoner, så som aceton. Disse drivmidler kan anvendes alene eller i blandinger. De foreligger i de findelte masser i mengder mellom 2 og 15 vekt%, fortrinnsvis mellom 5 og 10 vekt%. Det,har vist seg fordelaktig å tilsette de drivmiddelholddjge masser «alkoholer i mengder på 1-10 vekt%, beregnet på drivmiddelmengden, for eksempel etanol, i tillegg til drivmidlene. ;De drivmiddelholdige partikler kan fremstillet etter forskjellige metoder, som i og for seg ikke hører med til oppfinnelsen. Eksempelvis kan således de findelte masser bringes i kontakt med ;drivmidlene; dette kan skje ved normaltemperåtur under normalt trykk eller ved overtrykk. Drivmidlene bringer massene til å ese og for-deler seg homogent i partiklene. For oppnåelse av en jevn forde-ling av drivmidlene i partiklene er det nødvendig med en oppholdstid i den drivmiddelholdige atmosfære på 0,5 til ca. 48 timer, fortrinnsvis 1-24 timer. Partiklene kan også fremstilles ved blanding av styren- og etylen-polymerer i nærvær av oppløsningsformidlere og drivmiddel i en ekstruder og påfølgende granu.lering av blandingen. ;Foruten de nevnte stoffer kon massene inneholde andre stoffer. Således kan massene inneholde brannhemmende midler, fargestof-fer, fyllstoffer, glidemidler eller andre polymere materialer, for eksempel kautsjuklignende stoffer, så som polyisobutylen. Det kan også være fordelaktig at det til massene tilsettes grovkornede eller fiberaktige fyll- éller forsterkningsstoffer. Videre kan det i skumstoffené innarbeides grovmasket vev eller andre flettverklig-nende materialer av termoplastiske polymerer i forsterkningsøyemed. ;De bppskummede partikler skal sintres under trykk og formgivning. Herfor anvendes lukkede former av sådan beskaffenhet at luft eller andre gassformige eller væskeformige bestanddeler kan unn-viE© fra formen ved oppvarming av partiklene under trykk, mens de ;skumformige masser ikke unnviker. Man anvender hensiktsmessig former hvis vegger er perforert, eller former hvor det i veggene er innbygget dyser med små åpninger, gjennom hvilke et oppvarmingsme-dium kan trenge inn i formen og luft kari passere ut fra formen. For spesielle utførelsesformer av fremgangsmåten er det påkrevet å anvende slike former hvor minst en av forcaens vegger er bevegelig, ;slik at formens innhold kan presses sammen under eller etter oppvar- ;mingen.;Formgivningen kan også utføres i kontinuerlig arbeidende innretninger, som for eksempel anvendt ved kontinuerlig fremstilling av formlegemer ut fra findelte oppskummede styrenpolymerer. Slike innretninger består eksempelvis av fire løpende bånd som er slik sammenstillet at de danner en kanal. I denne kanal innføres de skumformige partikler ved den ene ende, hvoretter de oppskummes ytterligere, og den dannede skumstoff-streng uttas ved kanalens andre ende. De løpende bånd kan også være slik anordnet at partiklene sammenpresses før sintringen. Videre kan de løpende bånd være plateformig oppdelt slik at det dannes en ledd-kjede. Ved fremstilling av meget brede baner er det oftest bare påkrevet ved to paral-lelle løpebånd ved hvis ende det er anbragt faste eller bevegelige vegger, slik at systemet danner en kanal* In the present context, masses mean such masses of styrene and ethylene polymers and solubilizers which are obtained by mixing styrene polymers, ethylene polymers and solubilizers* The masses advantageously contain between 10 and 95 parts by weight, preferably between 30 and 90 parts by weight, styrene polymers, 90-5, preferably 70-10 parts by weight, ethylene polymers, and, calculated on 100 parts of the mixture of styrene and ethylene polymers, 0.5-10 parts dissolving phos agents. In the present context, styrene polymers mean homo- and copolymers of styrene. In addition to styrene, the copolymers also contain other monomers that can be copolymerized with styrene in such quantities that the proportion of styrene, calculated on the monomers, amounts to at least 50% by weight. As such copolymerization components can be used, for example: α-methylstyrene, core halogenated styrenes, acrylonitrile, esters of acrylic acid or rotacrylic acid and alcohols with 1-8 carbon atoms, vinylcarbazole or also small amounts of compounds containing two polymerizable double bonds, such as butadiene, divinylbenzene or butanediol diacrylate. The styrene polymers have melt indices that lie between 0.1 and 50 g/10 min. (200°C/5 kg). Suitable ethylene polymers are ethylene homo- and copolymers. Thus, for example, ethylene homopolymers produced by high-pressure or low-pressure polymerization with a density between 0.850 and 0.965 g/cm can be used. Suitable ethylene copolymers contain as co-monomers either other olefins, such as propylene, butene-1 or, for example, vinyl esters of acids with 2-4 carbon atoms, such as vinyl acetate, vinyl propionate or acrylic acid and methacrylic acid esters of alcohols with 1-10 carbon atoms. You can also use carbon monoxide, styrene, vinyl chloride, sulfur dioxide, fumaric and maleic acid esters. You can also use mixtures of ethylene polymers, for example mixtures of high-pressure or low-pressure polyethylene and ethylene copolymers, such as copolymers of ethylene and vinyl acetate. The comonomer content in the ethylene copolymers is preferably between 1 and 49% by weight, especially between 3 and 35% by weight. The melt index of the copolymers can vary within wide limits and is in particular 0.1-1000 g/10 min. (190°C/2.16 kg). Dissolving agents, which can also be referred to as mixing agents, are used herein to mean such substances which, when added to a mixture of styrene polymers and ethylene polymers, cause a fine distribution of one polymer in the other. Specimens which are produced from masses containing a styrene polymer, an ethylene polymer and a solvent have a higher ride resistance than specimens from masses which exclusively contain a styrene polymer and an ethylene polymer. The prerequisite is then that the mixing conditions for the mixing of the masses are the same. Suitable solubilizers are, for example, grafted polymers of styrene on polyethylene, and copolymers of ethylene and styrene. Particularly advantageous are hydrogenated styrene-butadiene block polymers, as for example described in Houben-Weyl 14/1, page 833. The molecular weight is between 3,000 and 800,000, the styrene proportion between 10 and 80% by weight. The proportion of styrene polymer in the polymer masses can be between 10 and 95% by weight. At 30-90% by weight, the best results are achieved with regard to the hardness of the foams and insensitivity to solvents. The masses of the styrene polymers and ethylene polymers and solubilizers are produced in the usual way in kneaders or extruders. Particle sizes from 0.5 to 3 mm - particles of 1-2 mm have proven to be particularly advantageous - are produced, for example, by extruding thin strands with a cross-section of 1-2 mm and dividing with or without heating. You can also use particles produced, for example, by grinding coarser granules. ;The procedure can be carried out in different ways. In particular, it has proven beneficial to foam propellant-containing particles and sinter these under the pressure of the foaming particles. As a propellant, the particles suitably contain low-molecular organic substances which have a boiling point - under normal conditions - between -50 and 100°C. Preferably, under normal conditions, gaseous or liquid, aliphatic or cycloaliphatic hydrocarbons are used, such as propane, butane, pentane, hexane or cyclohexane, isobutane, isopantane or isohexane. Halogen hydrocarbons, such as methyl chloride, methylene chloride, ethyl chloride, dichlorodifluoromethane, trifluorochloromethane, are also suitable. Furthermore, ethers, such as dimethyl or diethyl ether, or ketones, such as acetone, can be used. These propellants can be used alone or in mixtures. They are present in the finely divided masses in amounts between 2 and 15% by weight, preferably between 5 and 10% by weight. It has proved advantageous to add to the propellant-containing masses "alcohols in amounts of 1-10% by weight, calculated on the amount of propellant, for example ethanol, in addition to the propellants. The propellant-containing particles can be produced by different methods, which in and of themselves do not belong to the invention. For example, the finely divided masses can thus be brought into contact with the propellants; this can happen at normal temperature under normal pressure or at overpressure. The propellants bring the masses to a boil and distribute themselves homogeneously in the particles. To achieve an even distribution of the propellants in the particles, a residence time in the propellant-containing atmosphere of 0.5 to approx. 48 hours, preferably 1-24 hours. The particles can also be produced by mixing styrene and ethylene polymers in the presence of dissolution agents and propellant in an extruder and subsequent granulation of the mixture. In addition to the substances mentioned, the masses may contain other substances. Thus, the masses can contain fire retardants, dyes, fillers, lubricants or other polymeric materials, for example rubber-like substances, such as polyisobutylene. It can also be advantageous if coarse-grained or fibrous fillers or reinforcing substances are added to the masses. Furthermore, coarse-meshed fabric or other plaiting materials made of thermoplastic polymers can be incorporated into the foam leg for reinforcement purposes. The foamed particles must be sintered under pressure and shaped. For this, closed molds are used of such a nature that air or other gaseous or liquid components can escape from the mold by heating the particles under pressure, while the foamy masses do not escape. It is appropriate to use molds whose walls are perforated, or molds where nozzles with small openings are built into the walls, through which a heating medium can penetrate into the mold and air can pass out of the mold. For special embodiments of the method, it is required to use such molds where at least one of the walls of the mold is movable, so that the contents of the mold can be pressed together during or after heating. The shaping can also be carried out in continuously working devices, such as used in the continuous production of molded bodies from finely divided foamed styrene polymers. Such devices consist, for example, of four conveyor belts which are assembled in such a way that they form a channel. In this channel, the foamy particles are introduced at one end, after which they are further foamed, and the formed foam string is taken out at the other end of the channel. The conveyor belts can also be arranged so that the particles are compressed before sintering. Furthermore, the running belts can be divided into plates so that a linked chain is formed. When producing very wide tracks, it is usually only required for two parallel conveyor belts at the end of which fixed or movable walls are placed, so that the system forms a channel*

De skumformige partikler skal opphetes«i formen til temperaturer ved hvilke de sintrer. Disse temperaturer er avhengig av mas-sens kjemiske sammensetning og de øvrige materialtilsetninger. I de fleste tilfeller er denne temperatur høyere enn polymerenes myk-ningstemperatur. The foamy particles must be heated in the mold to temperatures at which they sinter. These temperatures depend on the chemical composition of the mass and the other material additions. In most cases, this temperature is higher than the polymer's softening temperature.

I henhold til en særlig fordelaktig arbeidsmåte blir partiklene først for-oppskummet utenfor formen, det vil si de oppvarmes til oppskumning, hvorunder sintring unngås. Dette kan eksempelvis skje ved oppvarming av partiklene av de drivmiddelholdige masser ved hjelp av varmluft eller vanndamp i beholdere hvor partiklene beveges mekanisk, for eksempel ved hjelp av et røreverk. Etter en tids lagring blir de dannede celler fyllt på grunn av inndiffunde-ring av luft, slik at partiklene ekspanderer ved fornyet oppvarming. Slike "for-oppskummede" partikler kan nå anbringes i en form eller oppvarmes på ny, slik at de ekspanderer og sintrer under trykket av den i cellene innesluttede luft eller andre gassformige bestanddeler. According to a particularly advantageous working method, the particles are first pre-foamed outside the mould, that is to say they are heated to foaming, during which sintering is avoided. This can happen, for example, by heating the particles of the propellant-containing masses with the help of hot air or steam in containers where the particles are moved mechanically, for example with the help of an agitator. After a period of storage, the formed cells are filled due to diffusion of air, so that the particles expand upon renewed heating. Such "pre-foamed" particles can now be placed in a mold or reheated, so that they expand and sinter under the pressure of the air or other gaseous constituents enclosed in the cells.

Det er imidlertid også mulig å gjenta for-oppskummingen flere ganger, slik at man får partikler med særlig lav spesifikk vekt. I dette tilfelle kan partiklene med fordel oppvarmes i formen og sintres under anvendelse av et ytre trykk. Dette kan - som beskrevet ovenfor - skje ved at en formvegg eller et stempel beveges mot formens indre. Partiklene sammenpresses med fordel til et volum på 0,9-0,5 ganger volumet før sammenpressingen. However, it is also possible to repeat the pre-foaming several times, so that particles with a particularly low specific weight are obtained. In this case, the particles can advantageously be heated in the mold and sintered using an external pressure. This can - as described above - happen by a mold wall or a piston being moved towards the interior of the mould. The particles are advantageously compressed to a volume of 0.9-0.5 times the volume before compression.

Oppvarmingen av partiklene av de drivmiddelholdige masser henholdsvis de oppskummede masser før sintringen i formen kan foretas ved hjelp av forskjellige medier. Således er det eksempelvis mulig å lede varme gasser, vanndamp eller væsker inn i formen. Særlig fordelaktig er det å blåse vanndamp inn i formene, som er fyllt med skumformige partikler, slik at partiklene ekspanderer videre og sintrer. Oppvarmingen av partiklene i formen kan også foregå ved at formens vegger tilføres varme, videre er det mulig å føre partikler som er oppvarmet til sintringstemperatur utenfor formen, inn i formen og sintre partiklene i formen hurtig under trykk som utøves på The heating of the particles of the propellant-containing masses or the foamed masses before sintering in the mold can be carried out using different media. Thus, for example, it is possible to lead hot gases, water vapor or liquids into the mold. It is particularly advantageous to blow water vapor into the moulds, which are filled with foamy particles, so that the particles expand further and sinter. The heating of the particles in the mold can also take place by adding heat to the walls of the mold, it is also possible to bring particles that have been heated to sintering temperature outside the mold into the mold and sinter the particles in the mold quickly under pressure exerted on

en formvegg utenfra.a form wall from the outside.

Sammenlignet med skumstoffer av styren-, homo- og kopolymerer viser skumstoffer fremstilt i henhold til oppfinnelsen bedre mekaniske egenskaper, spesielt en bedre elastisitet og en mindre sprøhet ved lavere temperaturer. Spesielt fordelaktig er uømfintligheten overfor løsningsmidler, så som eddiksyreester og toluen. Compared to foams of styrene, homo- and copolymers, foams produced according to the invention show better mechanical properties, in particular better elasticity and less brittleness at lower temperatures. Particularly advantageous is the insensitivity to solvents, such as acetic acid ester and toluene.

De i eksemplene nevnte deler er vektdeler, og prosentangi-velsene er på vektbasis. The parts mentioned in the examples are parts by weight, and the percentages are on a weight basis.

Eksempel 1Example 1

40 deler av et høytrykkspolyetylen med tetthet på 0,91840 parts of a high-pressure polyethylene with a density of 0.918

g/cm 3 og en smelteindeks på 4 g/10 min. (190°C/2,16 kg) og 60 deler av et polystyren med smelteindeks på 2 g/10 min. (200°C/5 kg) og 5 deler av en hydrogenert styren-butadien-polyme.c blandes i en knamaskin ved 210 C i 5 minutter og forarbeides deretter i en ekstruder til et fingranulat av inmm tverrmål og 1 mm lengde. Dette findelte granulat blandes i en blander med 5 deler butan og 2 deler metylenklorid i 10 minutter. Etter en oppholdstid på 12 timer kan den findelte, esbare masse forarbeides til skumstoff. g/cm 3 and a melting index of 4 g/10 min. (190°C/2.16 kg) and 60 parts of a polystyrene with a melt index of 2 g/10 min. (200°C/5 kg) and 5 parts of a hydrogenated styrene-butadiene-polyme.c are mixed in a kneader at 210 C for 5 minutes and then processed in an extruder into a fine granulate of inmm cross-section and 1 mm length. This finely divided granulate is mixed in a mixer with 5 parts butane and 2 parts methylene chloride for 10 minutes. After a residence time of 12 hours, the finely divided, ashable mass can be processed into foam.

Ved "for-oppskumming" qg "utskumming" med vanndamp på i og for seg kjent måte får man et skumstoff med romvekt på 25 g/l. Skumstoff et kan anbringes i et organisk løsningsmiddel, for eksempel, xylen, uten å tape sin form. In the case of "pre-foaming" qg "ex-foaming" with water vapor in a manner known per se, a foam material with a bulk density of 25 g/l is obtained. Foam can be placed in an organic solvent, for example, xylene, without losing its shape.

E ksempel 2Example 2

60 deler av et lavtrykks po lyetylen med en tetthet på 0,942 g/ j cm 3 og en smelteindeks på 6 g/10 min. (190 oC/2,16 kg) og 40 deler polystyren med en smelteindeks på 9 g/10 min. (200°c/5 kg) og 2 deler av en styren-butadien-blokkpolymer med molekylvekt på 80 000 blandes i 10 minutter ved 230°C i en knamaskin og forarbeides i en ekstruder til granulat med korn-tverrmål på 2 x 3 mm. Dette granulat oppdeles i en prallplatemølle til en kornstørrelse på 1-2 mm og behandles i en blander med 10 deler metylformiat. Etter en oppholdstid på 6 timer fås oppskumbare masser. Ved direkte oppskumming av de drivmiddelholdige partikler får man et skumstoff med romvekt på 32 g/l. Skumstoffet kan limes med et løsningsmiddelholdig kle-bemiddel basert på butylacetat. 60 parts of a low-pressure polyethylene with a density of 0.942 g/j cm 3 and a melt index of 6 g/10 min. (190 oC/2.16 kg) and 40 parts polystyrene with a melt index of 9 g/10 min. (200°c/5 kg) and 2 parts of a styrene-butadiene block polymer with a molecular weight of 80,000 are mixed for 10 minutes at 230°C in a kneader and processed in an extruder into granules with a grain cross-section of 2 x 3 mm . This granulate is divided in a plate mill to a grain size of 1-2 mm and processed in a mixer with 10 parts methyl formate. After a residence time of 6 hours, foamable masses are obtained. By direct foaming of the propellant-containing particles, a foam with a bulk density of 32 g/l is obtained. The foam material can be glued with a solvent-based adhesive based on butyl acetate.

Claims (15)

1. Fremgangsmåte til fremstilling av skumstoffer ved sintring av oppskummede partikler av termoplastiske polymerer under trykk og formgivning, karakterisert ved at man anvender drivmiddelholdige masser som inneholder en styren-, en etylen-polymer og en oppløsningsformidler.1. Process for the production of foams by sintering foamed particles of thermoplastic polymers under pressure and shaping, characterized by using propellant-containing masses containing a styrene, an ethylene polymer and a solvent. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at styrenpolymerene består av polystyren med smelteindekser mellom 0,1 og 50 g/16 min. (200 °C/5 kg).2. Method according to claim 1, characterized in that the styrene polymers consist of polystyrene with melt indices between 0.1 and 50 g/16 min. (200 °C/5 kg). 3. Fremgangsmåte ffø^ge krav 1,, karakterisert ved at styrenpolymerene består av kopolymerer av styren i hvilke styren-andelen utgjør minst 50 vekt%.3. Method according to claim 1, characterized in that the styrene polymers consist of copolymers of styrene in which the styrene proportion is at least 50% by weight. 4. Fremgangsmåte ifølge krav 1 og 3, karakterisert ved at det anvendes en kopolymer av styren og akrylnitril.4. Method according to claims 1 and 3, characterized in that a copolymer of styrene and acrylonitrile is used. 5. Fremgangsmåte ifølge krav 1, karakterisert ved at det som etylenpolymerer anvendes etylenhomopolymerer som har en tetthet mellom 0,850 og 0,965 g/cm .5. Method according to claim 1, characterized in that the ethylene polymers used are ethylene homopolymers which have a density between 0.850 and 0.965 g/cm . 6. Fremgangsmåte ifølge krav 1, karakterisert ved at det som etylenpolymerer anvendes etylenkopolymerer som har smelteindekser på 0,1-1000 g/10 min. (190°C, 2,16 kg) og i hvilke etylen-andelen utgjør minst 50 vekt%.6. Process according to claim 1, characterized in that ethylene copolymers are used as ethylene polymers which have melt indices of 0.1-1000 g/10 min. (190°C, 2.16 kg) and in which the ethylene proportion is at least 50% by weight. 7. Fremgangsmåte ifølge krav 1, ,k a r a, k t é r i s e r t ved at det som oppløsningsformidler anvendes hydrogenerte styren-butadien-blokkpolymerer som har molekylvekter mellom 3000 og 800 000 og en styranandel mellom 10 og 80 vekt%.7. Method according to claim 1, characterized in that hydrogenated styrene-butadiene block polymers having molecular weights between 3,000 and 800,000 and a proportion of styrene between 10 and 80% by weight are used as dissolution agents. 8. Fremgangsmåte ifølge krav 1, karakterisert ved at det som oppløsningsformidler anvendes podepolymerer av styren på polyetylen.8. Method according to claim 1, characterized in that graft polymers of styrene on polyethylene are used as dissolution agents. 9. Fremgangsmåte ifølge krav 1, karakterisert ved at det som oppløsningsformidler anvendes en etylen-styreir-kopolymer.9. Method according to claim 1, characterized in that an ethylene-styrene copolymer is used as a dissolution agent. 10. Fremgangsmåte ifølge kaav 1, karakterisert ved at det som drivmiddel anvendes lavmolekylære organiske stoffer som har et kokepunkt mellom -50 og 100°C.10. Method according to claim 1, characterized in that low molecular weight organic substances are used as propellants which have a boiling point between -50 and 100°C. 11. Fremgangsmåte ifølge krav 1, 2 og 5, karakterisert ved at det som drivmiddel anvendes en blanding av butan og metylenklorid.11. Method according to claims 1, 2 and 5, characterized in that a mixture of butane and methylene chloride is used as propellant. 12. Fremgangsmåte ifølge krav 1, 2 og 5, karakterisert ved at det som drivmiddel anvendes metylformiat.12. Method according to claims 1, 2 and 5, characterized in that methyl formate is used as propellant. 13. Fremgangsmåte ifølge krav 1, 2 og 5, karakterisert ved at det som drivmiddel anvendes isopentan.13. Method according to claims 1, 2 and 5, characterized in that isopentane is used as propellant. 14. Fremgangsmåte ifølge krav 1, 2 og 5, karakterisert ved at det som drivmiddel anvendes triklorfluormetan.14. Method according to claims 1, 2 and 5, characterized in that trichlorofluoromethane is used as propellant. 15. Fremgangsmåte ifølge krav 1, 4 og 5, karakterisert ved at det som drivmiddel anvendes metylklorid.15. Method according to claims 1, 4 and 5, characterized in that methyl chloride is used as propellant.
NO750884A 1974-03-20 1975-03-14 NO750884L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2413375A DE2413375A1 (en) 1974-03-20 1974-03-20 PROCESS FOR THE PRODUCTION OF FOAM FROM BULK CONTAINING STYRENE AND ETHYLENE POLYMERISATE

Publications (1)

Publication Number Publication Date
NO750884L true NO750884L (en) 1975-09-23

Family

ID=5910625

Family Applications (1)

Application Number Title Priority Date Filing Date
NO750884A NO750884L (en) 1974-03-20 1975-03-14

Country Status (10)

Country Link
JP (1) JPS50127966A (en)
BE (1) BE826830A (en)
DE (1) DE2413375A1 (en)
DK (1) DK112075A (en)
ES (1) ES435767A1 (en)
FR (1) FR2264840A1 (en)
IT (1) IT1033437B (en)
NL (1) NL7503348A (en)
NO (1) NO750884L (en)
SE (1) SE7503069L (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830002140Y1 (en) * 1980-06-24 1983-10-15 후지덴기 세이조오 가부시기 가이샤 Water Supply System Cleaning Circuit in Beverage Vending Machine
US4690976A (en) * 1983-08-01 1987-09-01 The Dow Chemical Company Blends of olefinic and monovinylidene aromatic polymers
EP1607436B2 (en) 2003-03-25 2019-06-12 Sekisui Plastics Co., Ltd. Expandable resin beads of styrene-modified linear low-density polyethylene
US8309619B2 (en) 2004-09-03 2012-11-13 Pactiv LLC Reduced-VOC and non-VOC blowing agents for making expanded and extruded thermoplastic foams
US8026291B2 (en) 2006-02-22 2011-09-27 Pactiv Corporation Expanded and extruded polyolefin foams made with methyl formate-based blowing agents
JP2010513604A (en) 2006-12-14 2010-04-30 パクティヴ・コーポレーション Biodegradable and low discharge expanded and extruded foams obtained with methyl formate-based blowing agents
US7977397B2 (en) 2006-12-14 2011-07-12 Pactiv Corporation Polymer blends of biodegradable or bio-based and synthetic polymers and foams thereof
KR20150027221A (en) 2007-04-11 2015-03-11 바스프 에스이 Elastic particle foam based on polyolefin/styrene polymer mixtures
BRPI0909438A2 (en) * 2008-03-13 2015-12-22 Basf Se material of expandable temoplastic polymeric globules and process for the production thereof
DK2384354T3 (en) 2008-12-30 2013-05-13 Basf Se ELASTIC PARTICLE FOAM PLASTIC BASED ON POLYOLEFINE / STYRENE POLYMER MIXTURES
KR101353631B1 (en) 2009-03-05 2014-02-18 바스프 에스이 Elastic particle foam material based on polyolefin/styrene polymer mixtures
ITMI20122153A1 (en) 2012-12-17 2014-06-18 Versalis Spa EXPANDABLE POLYMER COMPOSITION WITH IMPROVED FLEXIBILITY AND RELATIVE PREPARATION PROCEDURE
DE102013224275A1 (en) 2013-11-27 2015-05-28 Basf Se Process for the preparation of expandable, thermoplastic polymer particles with improved blowing agent retention capacity
IT201600079947A1 (en) 2016-07-29 2018-01-29 Versalis Spa Expandable polymeric composition containing ethylene-vinyl acetate copolymers

Also Published As

Publication number Publication date
NL7503348A (en) 1975-09-23
SE7503069L (en) 1975-09-22
DE2413375A1 (en) 1975-10-23
JPS50127966A (en) 1975-10-08
ES435767A1 (en) 1976-12-16
BE826830A (en) 1975-09-18
IT1033437B (en) 1979-07-10
FR2264840B3 (en) 1977-11-25
FR2264840A1 (en) 1975-10-17
DK112075A (en) 1975-09-21

Similar Documents

Publication Publication Date Title
CA1120649A (en) Process for producing expandable thermoplastic resin beads using polypropylene as nucleus
US4168353A (en) Process for producing foamable polyethylene resin particles
US3959189A (en) Process for producing polyethylene resin particles and foamable polyethylene resin particles
US3960784A (en) Bodies of expandable synthetic resins and method of preparation
US2848428A (en) Latent foaming compositions of vinyl aromatic resins and method of making
US3224984A (en) Process of preparing expanded polystyrene containing a polyolefin
US7767723B2 (en) Expandable resin particles of styrene-modified straight-chain and low-density polyethylenne, process the production thereof, pre-expanded particles, and foams
NO750884L (en)
US4927859A (en) Expandable polymers in particle form
CA1162000A (en) Particulate styrene polymers containing blowing agent
WO2004085528A1 (en) Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for production thereof, pre-expanded beads, and foams
US3956203A (en) Manufacture of particulate expandable styrene polymers requiring shot minimum residence times in the mold
US3975327A (en) Particulate, expandable self-extinguishing styrene polymers showing good processability
US3013996A (en) Method of treating expandable styrene polymer compositions
US6232358B1 (en) Expandable rubber-modified styrene resin compositions
US4042541A (en) Expandable polystyrene particles
US3351569A (en) Process for the preparation of expandable polymeric products
DE3814783A1 (en) Expandable polymer alloy in particle form, and process for the preparation thereof
NO750886L (en)
JPH07258444A (en) Foam comprising polystyrenic resin composition
US2878194A (en) Method for making cellular vinyl aromatic polymers using neopentane as the blowing agent
KR100805577B1 (en) Anti-lumping Compounds for Use with Expandable Polystyrenes
US4020022A (en) Process for producing particles of expandable styrene polymers and articles of cellular structure formed from said particles
CA1120650A (en) Process for producing expandable thermoplastic resin beads
NO750882L (en)