NO343949B1 - Formulation with immunostimulant / adjuvant activity and use as vaccines for vertebrates - Google Patents

Formulation with immunostimulant / adjuvant activity and use as vaccines for vertebrates Download PDF

Info

Publication number
NO343949B1
NO343949B1 NO20140763A NO20140763A NO343949B1 NO 343949 B1 NO343949 B1 NO 343949B1 NO 20140763 A NO20140763 A NO 20140763A NO 20140763 A NO20140763 A NO 20140763A NO 343949 B1 NO343949 B1 NO 343949B1
Authority
NO
Norway
Prior art keywords
fish
formulation
cells
virus
salmon
Prior art date
Application number
NO20140763A
Other languages
Norwegian (no)
Other versions
NO20140763A1 (en
Inventor
Brenda Modak Canobra
Mónica Imarai Bahamonde
Beatriz Valenzuela Montenegro
Original Assignee
Univ Santiago Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Santiago Chile filed Critical Univ Santiago Chile
Publication of NO20140763A1 publication Critical patent/NO20140763A1/en
Publication of NO343949B1 publication Critical patent/NO343949B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/30Boraginaceae (Borage family), e.g. comfrey, lungwort or forget-me-not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants

Description

OPPFINNELSENS OMRÅDE FIELD OF THE INVENTION

Den foreliggende oppfinnelsens formål er å tilveiebringe en formulering som inneholder et aktivt prinsipp med immunstimulerende/adjuvante aktiviteter oppnådd fra det harpiksaktige eksudatet fra plantearten Heliotropium huascoense, og som er nyttig hos salmonidarter for å øke immunogenisiteten til et antigen og/eller komponentene fra en vaksine. The purpose of the present invention is to provide a formulation containing an active principle with immunostimulating/adjuvant activities obtained from the resinous exudate of the plant species Heliotropium huascoense, and which is useful in salmonid species to increase the immunogenicity of an antigen and/or the components of a vaccine.

OPPFINNELSENS BAKGRUNN BACKGROUND OF THE INVENTION

Lakseindustri og helseutfordringer: Salmon industry and health challenges:

I løpet av de siste årene har Chile utviklet en svært viktig industri med akvakultur av laks. I 1994 økte eksporten av lakseprodukter til US$ 349 millioner. Etter et tiår var dette tallet sju ganger høyere, og i 2007 nådde det US$ 2207 milliarder. I dag er laks en av de viktigste eksportindustriene i Chile, med en kvote på 10,8 % for eksport. Denne industrien utgjør et viktig element for diversifikasjonen av nasjonal økonomi, og er en av grunnpilarene i strategien for å gjøre Chile til en betydningsfull matprodusent (SalmonChile, 2010). In recent years, Chile has developed a very important salmon aquaculture industry. In 1994, exports of salmon products increased to US$ 349 million. After a decade, this figure was seven times higher, and in 2007 it reached US$ 2207 billion. Today, salmon is one of the most important export industries in Chile, with a quota of 10.8% for exports. This industry constitutes an important element for the diversification of the national economy, and is one of the cornerstones of the strategy to make Chile a significant food producer (SalmonChile, 2010).

Generelt er fiskeoppdrett konstant utsatt for angrep fra flere infeksiøse sykdommer på grunn av de ekstreme produksjonsforholdene, som forårsaker at veksten av mikroorganismer enkelt sprer seg og representerer et problem som er vanskelig å kontrollere. Det er en rekke infeksiøse sykdommer som rammer fiskeoppdrett og representerer den viktigste dødsårsaken. Sykdommer kan forårsakes av virus, bakterier, parasitter og sopp, og forårsake betydelige produksjonstap hvert år. Nedgang i lakseeksport i 2009 var forårsaket av et utbrudd av virussykdommer. Ifølge den månedlige rapporten om utenrikshandel (Informe Mensual de Comercio Exterior) som utarbeides av det nasjonale tollvesenet (Servicio Nacional de Aduanas), gikk forsendelsene som utgjorde 55 % av fiske og akvakultur, ned med 17 % i 2009 (SalmonChile, 2010). For Chile, et land som i mange år har vært fritt for mange sykdommer som rammer dyreproduksjon, har globalisering av verdensmarkeder betydd at landet ikke lenger har denne fordelen, og landets mulighet for å oppnå høy konkurransedyktighet er satt i fare. In general, fish farming is constantly exposed to attacks from several infectious diseases due to the extreme production conditions, which cause the growth of microorganisms to spread easily and represent a problem that is difficult to control. There are a number of infectious diseases that affect fish farming and represent the most important cause of death. Diseases can be caused by viruses, bacteria, parasites and fungi, causing significant production losses each year. The decline in salmon exports in 2009 was caused by an outbreak of viral diseases. According to the monthly report on foreign trade (Informe Mensual de Comercio Exterior) prepared by the National Customs Service (Servicio Nacional de Aduanas), shipments that accounted for 55% of fishing and aquaculture decreased by 17% in 2009 (SalmonChile, 2010). For Chile, a country that for many years has been free of many diseases affecting animal production, the globalization of world markets has meant that the country no longer has this advantage, and the country's ability to achieve high competitiveness has been jeopardized.

De mange sykdommene som har rammet og spredd seg i oppdrettslaks sør i Chile, som i noen tilfeller har blitt endemiske patologier, inkluderer bakteriell nyresyke (BKD), salmonid rickettsialsyndrom (SRS) og Enteric Red Mouth Disease (ERM). Disse patologiene har sannsynligvis kommet til dette landet gjennom eggimport, som Chile var nesten utelukkende avhengig av tidligere, da kravene til innslipp ikke var så strenge (Pinto, 2003). I løpet av de siste årene har det dukket opp andre sykdommer hovedsakelig forårsaket av bakterier, slik som vibriose, streptokokkinfeksjon og atypisk furunkulose, og av parasitter slik som Diphyllobothrium sp., som gir amøbegjellesykdom (Torres, 2000) og Caligus, en parasitt som forårsaker sår og stress hos fisken, svekker forsvaret deres og gjør dem utsatt for angrep av andre patogene mikroorganismer slik som bakterier og virus. Blant de virale infeksiøse agensene som påvirker salmonider, er infeksiøs pankreas nekrose-viruset (IPNV), som er et birnavirus (Birnaviridae-familien) (Dobos et al., 1979), og det viruset med flest tilfeller verden over (Wolf, 1988). Viruset er detektert i majoriteten av lakseproduksjonssentre verden over, inkludert Chile (Wolf, 1988;. Hill, og Way, 1995). IPNV rammer hovedsakelig ung fisk (yngel og småfisk) og forårsaker stor grad av dødelighet (Wolf, 1988, Imajoh et al., 2005), selv om den også infiserer mer utviklet fisk. Utbruddet av infeksiøse sykdommer hos laks er et av hovedproblemene til fiskeoppdrettssentere, siden de ikke har lukkede, kontrollerte rom som gjør det mulig å hindre at patogener enkelt sprer seg i innsjøer og havet. The many diseases that have affected and spread in farmed salmon in southern Chile, which in some cases have become endemic pathologies, include bacterial kidney disease (BKD), salmonid rickettsial syndrome (SRS) and enteric red mouth disease (ERM). These pathologies probably arrived in this country through egg imports, on which Chile was almost exclusively dependent in the past, when the requirements for admission were not so strict (Pinto, 2003). In recent years, other diseases have emerged mainly caused by bacteria, such as vibriosis, streptococcal infection and atypical furunculosis, and by parasites such as Diphyllobothrium sp., which causes amoebic gall disease (Torres, 2000) and Caligus, a parasite that causes wounds and stress in the fish, weakens their defenses and makes them susceptible to attack by other pathogenic microorganisms such as bacteria and viruses. Among the viral infectious agents affecting salmonids is infectious pancreatic necrosis virus (IPNV), which is a birnavirus (Birnaviridae family) (Dobos et al., 1979), and the virus with the most cases worldwide (Wolf, 1988) . The virus has been detected in the majority of salmon production centers worldwide, including Chile (Wolf, 1988; Hill, and Way, 1995). IPNV mainly affects young fish (fry and small fish) and causes a high degree of mortality (Wolf, 1988, Imajoh et al., 2005), although it also infects more developed fish. The outbreak of infectious diseases in salmon is one of the main problems of fish farming centers, since they do not have closed, controlled rooms that make it possible to prevent pathogens from easily spreading in lakes and the sea.

På grunn av den miljømessige og økonomiske betydningen er det lagt mye innsats i studier assosiert med infeksiøs pankreas nekrose-viruset (IPNV), og søket etter antivirale forbindelser (Saint-Jean et al., 2003). Nå finnes det vaksiner som bidrar til å hindre smitte av IPN-viruset (Christie, 2004; Salgado Miranda, 2006), men inokulasjonen av småfisk gir ikke de forventede resultatene siden immunsystemet deres er umodent. På den andre siden finnes det noen antivirale forbindelser som hemmer replikeringen av cellekulturer, for eksempel ribavirin og 5-etynyl-1-β-D-ribofuransulimidazol-4-karboksamid (EICAR) (Migus og Dobos, 1980; Jashes et al., 1996; Jashes et al., 2000). Ribavirin har imidlertid ikke hatt gode resultater i forsøk utført in vivo (Somogyi og Dobos, 1980), og fisks dødelighet reduseres med EICAR, men den er ikke stabil i vann (Moya et al., 2000). Because of the environmental and economic importance, much effort has been put into studies associated with the infectious pancreatic necrosis virus (IPNV), and the search for antiviral compounds (Saint-Jean et al., 2003). There are now vaccines that help prevent infection by the IPN virus (Christie, 2004; Salgado Miranda, 2006), but the inoculation of small fish does not give the expected results since their immune systems are immature. On the other hand, there are some antiviral compounds that inhibit the replication of cell cultures, such as ribavirin and 5-ethynyl-1-β-D-ribofuransulimidazole-4-carboxamide (EICAR) (Migus and Dobos, 1980; Jashes et al., 1996 ; Jashes et al., 2000). However, ribavirin has not had good results in experiments carried out in vivo (Somogyi and Dobos, 1980), and fish mortality is reduced by EICAR, but it is not stable in water (Moya et al., 2000).

En annen infeksiøs sykdom som rammer laksefarmer i betydelig grad, forårsakes av infeksiøs lakseanemi-viruset (ISA-viruset), oppdaget i Norge i 1984 (Thorud og Djupvik, 1988). Denne agensen har vært et problem for lakseakvakultur på den nordlige halvkule, inkludert Norge, Canada, Skottland, Færøyene og USA, og de høye dødsratene inkluderte nesten hele produksjonen i tilfellet med Norge (Mjaaland et al., 1997). I Chile ble ISA-virus registrert første gang i 2001, men i motsetning til tilfellet i landene på den nordlige halvkule, var det ikke assosiert med høy dødelighet og tap med en gang (Kibenge et al., 2001). I 2007 begynte imidlertid ISA-viruset å ødelegge den chilenske laksen opptil et tap på 40 % av den nasjonale produksjonen. Another infectious disease that affects salmon farms to a significant extent is caused by the infectious salmon anemia virus (ISA virus), discovered in Norway in 1984 (Thorud and Djupvik, 1988). This agent has been a problem for salmon aquaculture in the Northern Hemisphere, including Norway, Canada, Scotland, the Faroe Islands and the USA, and the high mortality rates included almost the entire production in the case of Norway (Mjaaland et al., 1997). In Chile, ISA virus was first recorded in 2001, but unlike the case in the countries of the Northern Hemisphere, it was not associated with high mortality and losses immediately (Kibenge et al., 2001). However, in 2007 the ISA virus began to devastate the Chilean salmon up to a loss of 40% of the national production.

I dag hindres sykdommer som rammer laks, hovedsakelig gjennom helseforvaltningspraksis, anvendelsen av autoriserte vaksiner og/eller utvalg av frisk avlsfisk. Anvendte behandlinger må være forskrevet av en veterinær, og bare legemidlene som er registrert for anvendelse hos akvatiske arter, kan anvendes (Sandoval, 2004). De store tapene som forårsakes av denne typen infeksiøse sykdommer, fører til leting etter løsninger som kan regulere deres utvikling på en eller annen måte. På den andre siden anvendes en profylaktisk behandling med antibiotika med det mål å hindre bakterielle infeksjoner hos svært mottakelig fisk. Behandling med antibiotika i lakseakvakultur utføres ved immersjon med legemidler og medisinert mat. I begge tilfeller finnes det mulighet for at antibiotika går ut i omgivelsene og forårsaker virkninger hos dyrelivet. Det er flere bekymringer når det gjelder den omfattende bruken av antibiotika i lakseakvakultur, og blant dem er veksten av antibiotikaresistente bakterier i floraen og de normale patogenene i pooler, virkningene som forårsakes av disse legemidlenes persistens, og antibiotikarestene som er funnet i sedimenter og i vannsøylen. Disse antibiotikaene fremmer veksten av frie antibiotikaresistente bakterier, en prosess som endrer sammensetningen av normal bakterieflora i fersk- og saltvann. Data indikerer at disse antibiotikaresistente organismene i marint miljø i sin tur vil overføre sine antibiotikaresistente gener til andre bakterier, inkludert menneske- og dyrepatogener. Antibiotika kan også påvirke sammensetningen av fytoplanktonsamfunnet, zooplanktonsamfunnet, og til og med mangfoldet av større dyrepopulasjoner. Følgelig kan de mulige endringene i det marine mikrobiotamangfoldet forårsaket av antibiotikaene endre homeostasen til marine miljøer og ramme komplekse livsformer, inkludert fisk, bløtdyr, marine pattedyr og mennesker. I tilfellet med oksytetrasyklin er det for eksempel vist lav absorpsjon i fiskens tarmkanal, derfor utsondres mye av legemiddelet uten endringer til det akvatiske miljøet, der det distribueres mellom sedimentet og vannsøylen, eller konsumeres av det marine dyrelivet (Paone, 2001). Oppsummert er behandlinger som anvendes nå for å regulere infeksiøse sykdommer hos salmonider, basert på anvendelsen av kjemikalier og vaksiner som ikke har en god effektivitetsprosent. På den andre siden gir mange av disse kjemikaliene bivirkninger eller er forbudte stoffer i andre land. Today, diseases affecting salmon are prevented, mainly through health management practices, the use of authorized vaccines and/or the selection of healthy breeding fish. Treatments used must be prescribed by a veterinarian, and only the drugs registered for use in aquatic species can be used (Sandoval, 2004). The great losses caused by this type of infectious diseases lead to the search for solutions that can regulate their development in one way or another. On the other hand, a prophylactic treatment with antibiotics is used with the aim of preventing bacterial infections in highly susceptible fish. Treatment with antibiotics in salmon aquaculture is carried out by immersion with drugs and medicated food. In both cases, there is the possibility that the antibiotics are released into the environment and cause effects in wildlife. There are several concerns regarding the widespread use of antibiotics in salmon aquaculture, and among them are the growth of antibiotic-resistant bacteria in the flora and normal pathogens in pools, the effects caused by the persistence of these drugs, and the antibiotic residues found in sediments and in the water column . These antibiotics promote the growth of free antibiotic-resistant bacteria, a process that changes the composition of normal bacterial flora in fresh and salt water. Data indicate that these antibiotic-resistant organisms in the marine environment will in turn transfer their antibiotic-resistant genes to other bacteria, including human and animal pathogens. Antibiotics can also affect the composition of the phytoplankton community, the zooplankton community, and even the diversity of larger animal populations. Consequently, the possible changes in the marine microbiota diversity caused by the antibiotics may alter the homeostasis of marine environments and affect complex life forms, including fish, molluscs, marine mammals and humans. In the case of oxytetracycline, for example, low absorption has been shown in the intestinal tract of fish, therefore much of the drug is excreted unchanged into the aquatic environment, where it is distributed between the sediment and the water column, or consumed by marine wildlife (Paone, 2001). In summary, treatments that are used now to control infectious diseases in salmonids are based on the use of chemicals and vaccines that do not have a good percentage of effectiveness. On the other hand, many of these chemicals cause side effects or are banned substances in other countries.

I tillegg påvirkes laksens livssyklus av flere faktorer indusert av menneskelig intervensjon, slik som fisketrykk, forurensing, geografiske barrierer og akvakulturfarmer. Disse faktorene har stor innvirkning på deres overlevelse, spesielt på deres evne til å tåle stress, slik som å utsettes for et innesperret kultursystem. Dette har skapt en signifikant nedgang i deres forsvarssystem som kan utnyttes av de infeksiøse mikroorganismene som forårsaker sykdom og død i laksepopulasjoner, eller asymptomatiske infeksjoner som fører til inntreden av asymptomatiske bærere som kan overføre mikroorganismer over lang tid og lange avstander. Uheldige scenarier i kultur, og hovedsakelig eksponeringen for patogene mikroorganismer, krever en god immunologisk tilstand hos laksen for at den skal møte sin livssyklus på en sunn måte. In addition, the salmon's life cycle is affected by several factors induced by human intervention, such as fishing pressure, pollution, geographical barriers and aquaculture farms. These factors have a major impact on their survival, especially on their ability to withstand stress, such as being exposed to a confined culture system. This has created a significant decrease in their defense system that can be exploited by the infectious microorganisms that cause disease and death in salmon populations, or asymptomatic infections that lead to the entry of asymptomatic carriers that can transmit microorganisms over long periods of time and long distances. Unfortunate scenarios in culture, and mainly the exposure to pathogenic micro-organisms, require a good immunological state of the salmon for it to face its life cycle in a healthy way.

Immunsystemet til teleoster, slik som laks, har likhetstrekk med det til høyere virveldyr. Det er kjent at pattedyr og teleoster har veldefinert lymfoid vev, slik som tymus, milt, nyre, og vev assosiert med hud og gjeller (Press, Evensen et al. Fisk har imidlertid ikke benmarg, lymfesystem eller Peyers plakk slik som pattedyr har (Rombout, Huttenhuis et al. 2005). Laksens immunsystem er karakteristisk for teleoster (Penagos et al., 2008) idet det er identifisert (i) immunsystem med medfødt respons, som samsvarer med den fylogenetiske eller nedarvede mekanismen som kan fjerne ethvert fremmedlegeme, hovedsakelig ved å aktivere et sett med reseptorer for rekognosering av patogenassosiert molekylært mønster (PAMP), og (ii) den adaptive immunresponsen som, avhengig av lymfocyttene, kan gjenkjenne og eliminere eksterne angripere. På tross av denne klassifikasjonen samvirker mekanismene i medfødt og adaptiv immunitet og opererer sammen mot et eksternt angrep. Leukocytter involvert i fiskeimmunitet er B-lymfocytter (IgM+- og IgT+-celler) og T-lymfocytter. Eksistensen av T-hjelperlymfocytter (CD4+ T-celler) er bevist indirekte i fisk, inkludert laks og ørret, på grunn av tilstedeværelsen av gener som er homologe med CD4, TCR og CD3e, blant andre (Suetake, Araki et al 2004; Laing, Zou et al 2006; Nakanishi et al., 2011), og nylig, ved hjelp av immunmagnetisk isolering og karakterisering av CD4 -celler (Imarai et al., upublisert). I tillegg er cytotoksiske T-lymfocytter (CD8+ T) isolert, og deres funksjon in vitro er demonstrert (Fischer, Utke et al 2006; Sato and Okamoto 2008; Utke, Kock et al 2008). På lignende vis synes antigeninntredenen å skje som hos pattedyr på grunn av tilstedeværelsen av MHC klasse I-, TAP- og LMP-gener. The immune system of teleosts, such as salmon, shares similarities with that of higher vertebrates. Mammals and teleosts are known to have well-defined lymphoid tissues, such as the thymus, spleen, kidney, and tissues associated with skin and gills (Press, Evensen et al. However, fish do not have bone marrow, lymphatic systems or Peyer's patches as mammals do (Rombout , Huttenhuis et al. 2005).The salmon immune system is characteristic of teleosts (Penagos et al., 2008) in that it has been identified (i) immune system with innate response, which corresponds to the phylogenetic or inherited mechanism that can remove any foreign body, mainly by to activate a set of pathogen-associated molecular pattern (PAMP) recognition receptors, and (ii) the adaptive immune response which, depending on the lymphocytes, can recognize and eliminate external invaders. Despite this classification, the mechanisms of innate and adaptive immunity interact and operate together against an external attack. Leukocytes involved in fish immunity are B lymphocytes (IgM+ and IgT+ cells) and T lymphocytes. The existence of T helper lymphocytes phocytes (CD4+ T cells) have been demonstrated indirectly in fish, including salmon and trout, due to the presence of genes homologous to CD4, TCR and CD3e, among others (Suetake, Araki et al 2004; Laing, Zou et al 2006; Nakanishi et al., 2011), and more recently, using immunomagnetic isolation and characterization of CD4 cells (Imarai et al., unpublished). In addition, cytotoxic T lymphocytes (CD8+ T) have been isolated, and their function in vitro has been demonstrated (Fischer, Utke et al 2006; Sato and Okamoto 2008; Utke, Kock et al 2008). Similarly, antigen entry appears to occur as in mammals due to the presence of MHC class I, TAP and LMP genes.

Antigenpresenterende celler, slik som makrofager, er rikelig i fisk, og celler som ligner dendrittiske celler, er nylig identifisert i fisk (Ohta, Landis et al.2004; Yoder og Litman, 2000). Sammen støtter bevisene eksistensen av en adaptiv immunrespons hos teleoster, inkludert salmonider. Antigen-presenting cells, such as macrophages, are abundant in fish, and cells resembling dendritic cells have recently been identified in fish (Ohta, Landis et al. 2004; Yoder and Litman, 2000). Together, the evidence supports the existence of an adaptive immune response in teleosts, including salmonids.

Immunresponsen påvirkes av flere faktorer som avhenger av verten, inkludert alder, fysiologisk tilstand eller stress, egenskaper ved det akvatiske miljøet, slik som vanntemperaturer eller tilstedeværelsen av toksiner deri, og for det tredje av organismen som er involvert (Penagos et al., 2009). Den høye dødeligheten forårsaket av infeksiøse sykdommer som nå er observert i lakseindustrien, indikerer at det haster med å utvikle nye farmakologiske verktøy for å stimulere den beskyttende immunresponsen hos salmonider. The immune response is influenced by several factors that depend on the host, including age, physiological state or stress, characteristics of the aquatic environment, such as water temperatures or the presence of toxins therein, and thirdly, by the organism involved (Penagos et al., 2009). . The high mortality caused by infectious diseases now observed in the salmon industry indicates the urgency of developing new pharmacological tools to stimulate the protective immune response in salmonids.

Slekten Heliotropium: Genus Heliotropium:

Forskernes interesse for medisinske planter som naturlig kilde for mange aktive komponenter har økt betraktelig de siste to tiårene. I den forstand er det i altfor lang tid blitt isolert og karakterisert sekundære metabolitter oppnådd fra de harpiksaktige eksudatene av plantene i slekten Heliotropium (familien Heliotropiaceae) som vokser nord i Chile. Arten Heliotropium vokser i tørre regioner under ekstreme miljøforhold, og er karakterisert ved at den produserer et harpiksaktig eksudat gjennom kjertelaktige trikomer som dekker deres bladoverflate og stamme. Fytokemisk forskning avslørte at harpiksen hovedsakelig består av flavonoider og aromatiske geranilerte derivater, i mindre mengder (Torres et al., 1994, 1996; Urzúa et al., 1993, 1998, 2000, 2001; Researchers' interest in medicinal plants as a natural source of many active components has increased considerably in the last two decades. In that sense, secondary metabolites obtained from the resinous exudates of the plants of the genus Heliotropium (family Heliotropiaceae) growing in the north of Chile have been isolated and characterized for far too long. The species Heliotropium grows in arid regions under extreme environmental conditions, and is characterized by producing a resinous exudate through glandular trichomes that cover their leaf surface and stem. Phytochemical research revealed that the resin mainly consists of flavonoids and aromatic geranylated derivatives, in smaller amounts (Torres et al., 1994, 1996; Urzúa et al., 1993, 1998, 2000, 2001;

Modak et al., 2003, 2007, 2009). Under leting etter en forklaring på rollen til harpiksaktige eksudater har det blitt foreslått at de kan utgjøre den første beskyttelsesbarrieren mot rovdyr. Denne beskyttelsen kan skyldes en mekanisk virkning assosiert med dens klebrige karakter som gjør at rovdyr setter seg fast (Eigenbrode et al., 1996), samt en kjemisk beskyttelse på grunn av tilstedeværelsen av sekundære metabolitter med antimikrobielle, antioksidante og cytotoksiske egenskaper (Hoffman et al., 1983). Videre har den overveiende tilstedeværelsen av harpiksaktig eksudat i planter som vokser i tørre og halvtørre soner, blitt forklart med de ekstreme miljøforholdene (Downum et al., 1988), og spesielt den økte oksidative belastningen de utsettes for (González -Coloma et al., 1987). Det er også foreslått at tilstedeværelsen av antioksidantflavonoider i eksudatene kan hindre oksidativ nedbrytning av harpiksens andre komponenter, hvilket kan føre til tap av dens kjemofysiske egenskaper (Urzúa og Mendoza, 1993). Modak et al., 2003, 2007, 2009). In search of an explanation for the role of resinous exudates, it has been suggested that they may constitute the first protective barrier against predators. This protection may be due to a mechanical effect associated with its sticky nature that causes predators to stick (Eigenbrode et al., 1996), as well as a chemical protection due to the presence of secondary metabolites with antimicrobial, antioxidant and cytotoxic properties (Hoffman et al. ., 1983). Furthermore, the predominant presence of resinous exudate in plants growing in arid and semi-arid zones has been explained by the extreme environmental conditions (Downum et al., 1988), and especially the increased oxidative stress to which they are exposed (González-Coloma et al., 1987). It has also been suggested that the presence of antioxidant flavonoids in the exudates may prevent oxidative degradation of the resin's other components, which may lead to the loss of its chemophysical properties (Urzúa and Mendoza, 1993).

Det er studier av sammensetningen av resin fra ulike arter av slekten Heliotropium, samt visse biologiske og kjemiske aktiviteter hos slike eksudatet og deres komponenter (Modak et al., 2004 og 2010). Spesielt har pinocembrin, 3-O-metilgalangine, 3,7-O-dimetilgalangine, alpinone og carrizal-syre (eng.: carrizaloic acid) blitt isolert fra Heliotropium huascoense (Urzúa et al., 2000;.Villarroel et al., 2001). Generelt viser studier utført med flavonoider isolert fra arten Heliotropium at de presenterer hovedsakelig antioksidantaktivitet (Lissi et al., 1999; Modak et al., 2003; Modak et al., 2007, Modak et al., 2009; Choudhary et al., 2008). There are studies of the composition of resin from various species of the genus Heliotropium, as well as certain biological and chemical activities of such exudates and their components (Modak et al., 2004 and 2010). In particular, pinocembrin, 3-O-methylgalangine, 3,7-O-dimethylgalangine, alpinone and carrizal acid (eng.: carrizaloic acid) have been isolated from Heliotropium huascoense (Urzúa et al., 2000; Villarroel et al., 2001 ). In general, studies conducted with flavonoids isolated from the species Heliotropium show that they present mainly antioxidant activity (Lissi et al., 1999; Modak et al., 2003; Modak et al., 2007, Modak et al., 2009; Choudhary et al., 2008 ).

Vaksiner for fisk: Vaccines for fish:

Under naturlige forhold er sykdom et fenomen som er iboende for alle levende vesener, og som styrkes når individet utsettes for stressende forhold, inkludert innesperret kultur. Den intensive dyreproduksjonen legger forholdene til rette for endring av balansen mellom miljø, patogen og vert, hvilket fører til sykdom og dødelighet. Derfor løser den inngitte oppfinnelsen dette tekniske problemet på en svært annerledes måte enn det som er beskrevet i teknikkens stand. Under natural conditions, disease is a phenomenon that is inherent to all living beings, and which is strengthened when the individual is exposed to stressful conditions, including confined culture. The intensive animal production creates the conditions for a change in the balance between environment, pathogen and host, which leads to disease and mortality. Therefore, the submitted invention solves this technical problem in a very different way from what is described in the prior art.

For å hindre infeksiøse sykdommer er vaksinering ett av de mest verdifulle verktøyene i akvakultur idet det sikrer et rent produkt som ikke endrer miljøet. På tross av at noen forfattere tror at i akvakultur er kun én vaksinasjon nok til å indusere beskyttelse inntil fisken samles inn (Heppell og Davis, 2000; Bowden et al., 2003), og denne kan ha gyldighet etter immuniseringene intraperitonealt, krever vaksinasjon av populasjoner på hundretusenvis av individer massive immuniseringsmetoder (immersjon og oral), som i de fleste tilfeller krever revaksinasjon (Romalde et al., 2004; Vandenberg, 2004). Hos noen fisk oppnås egnede beskyttelsesnivåer først når modifiserte levende vaksiner anvendes, slik det er tilfellet med vaksinen mot Edwardsiella ictaluri hos steinbitakvakulturer i USA. På tross av den åpenbare sikkerheten ved bakteriner, fikk fiskevaksinasjoner et varsel i 2001, da tilsynekomsten av en isotype med høyere virulens, med modifikasjoner i membranproteinene, og som kunne infisere og drepe vaksinert fisk, ble introdusert ved anvendelsen av et bakterin mot streptokokker (Bachrach et al., 2001) i en regnbueørret (Onchorhynkus mykiss)-farm i Israel. I tillegg har noen ekstracellulære produkter (ECP-er) fra bakterier blitt testet med tvilsomme resultater i vaksinasjonen av fisk mot streptokokker. Klesius et al.,2000, og Evans et al., 2004 sammenlignet i tilapia (Oreochromisniloticus) den beskyttende virkningen til konvensjonelle bakteriner og bakteriner tilsatt ECP-er mot Streptococcus iniae og Streptococcus agalactiae, og egnede beskyttelsesnivåer ble bare funnet når konsentrerte ECP-er ble tilsatt i vaksinene. DNA-vaksiner er i sin tur ansett som de mest effektive i å indusere beskyttelse og respons fra immunsystemet til fisken ved å trigge iboende og adaptive immunmekanismer) hvilket også sikrer effektive responser humoralt og cellulært (Heppell og Davis, 2000). På den andre siden er det til dags dato ingen inaktivert vaksine tilgjengelig som er svært effektiv mot IPNV-viruset (Salgado-Miranda, 2006). Virusbehandlingen med formalin eller β-propiolakton for anvendelse i vaksiner inaktiverte viruset fullstendig, men reduserte antigenisiteten opptil 50 % (Dixon, 1983). En aktiv vaksine som inkluderte en ikke-patogen stamme av IPNV-viruset, følsomt for normalt ørretserum, overførte heller ingen beskyttelse til forsøksutfordringen (Dorson, 1977). Inaktiverte og rekombinante vaksiner anvendes også. Derfor inneholder den rekombinante vaksinen, den første med lisens for å administreres til fisk, det strukturelle proteinet VP2 produsert i Escherichia coli, og induserer produksjonen av spesifikke antistoffer mot IPNV-viruset (Christie, 2004). To prevent infectious diseases, vaccination is one of the most valuable tools in aquaculture as it ensures a clean product that does not change the environment. Despite the fact that some authors believe that in aquaculture only one vaccination is sufficient to induce protection until the fish are collected (Heppell and Davis, 2000; Bowden et al., 2003), and this may be valid after the immunizations intraperitoneally, vaccination of populations of hundreds of thousands of individuals massive immunization methods (immersion and oral), which in most cases require revaccination (Romalde et al., 2004; Vandenberg, 2004). In some fish, suitable levels of protection are only achieved when modified live vaccines are used, as is the case with the vaccine against Edwardsiella ictaluri in catfish aquaculture in the USA. Despite the apparent safety of bacterins, fish vaccinations received a warning in 2001, when the appearance of an isotype with higher virulence, with modifications in the membrane proteins, which could infect and kill vaccinated fish, was introduced in the application of a bacterin against streptococci (Bachrach et al., 2001) in a rainbow trout (Onchorhynkus mykiss) farm in Israel. In addition, some extracellular products (ECPs) from bacteria have been tested with questionable results in the vaccination of fish against streptococci. Klesius et al., 2000, and Evans et al., 2004 compared in tilapia (Oreochromisniloticus) the protective effect of conventional bacterins and bacterins added to ECPs against Streptococcus iniae and Streptococcus agalactiae, and suitable levels of protection were found only when concentrated ECPs was added to the vaccines. DNA vaccines are in turn considered the most effective in inducing protection and response from the immune system of the fish by triggering innate and adaptive immune mechanisms), which also ensures effective humoral and cellular responses (Heppell and Davis, 2000). On the other hand, to date there is no inactivated vaccine available that is highly effective against the IPNV virus (Salgado-Miranda, 2006). The virus treatment with formalin or β-propiolactone for use in vaccines completely inactivated the virus but reduced antigenicity up to 50% (Dixon, 1983). An active vaccine which included a non-pathogenic strain of the IPNV virus, sensitive to normal trout serum, also did not transfer protection to the experimental challenge (Dorson, 1977). Inactivated and recombinant vaccines are also used. Therefore, the recombinant vaccine, the first licensed to be administered to fish, contains the structural protein VP2 produced in Escherichia coli, and induces the production of specific antibodies against the IPNV virus (Christie, 2004).

Adjuvanser av veterinær kvalitet: Veterinary grade adjuvants:

Konvensjonelle veterinærvaksiner består hovedsakelig av svekkede levende patogener, inaktiverte organismer eller inaktiverte bakterielle toksiner (Chang et al., 1998). Selv om attenuerte former for patogener anvendes som veterinærvaksiner, er det bekymring med hensyn til dette, siden det av og til returnerer til den virulente formen eller uønskede virkninger observeres hos immunsvekkede dyr. Anvendelsen av døde organismer eller deler derav er et alternativ, selv om den lavere effekten er tydelig. Conventional veterinary vaccines consist mainly of attenuated live pathogens, inactivated organisms or inactivated bacterial toxins (Chang et al., 1998). Although attenuated forms of pathogens are used as veterinary vaccines, there is concern regarding this, as it occasionally reverts to the virulent form or adverse effects are observed in immunocompromised animals. The use of dead organisms or parts thereof is an alternative, although the lower effect is evident.

Som et resultat av disse begrensningene er det utviklet nye vaksiner med betydelige fordeler i forhold til de tidligere. De inkluderer underenheter av rekombinante proteiner og DNA (Rankin et al., 2002). Selv om disse nye alternativene kan være gunstige, er et vanlig problem at, innen veterinærmedisin er de ofte immunogenisk svake (Bahenmann et al., 1987; Loehr et al., 2001). Tradisjonelle vaksiner inneholder ofte komponenter som kan bidra til modningen av T-celler og fungerer som adjuvanser, for eksempel det bakterielle DNA, eller LPS. Disse komponentene er imidlertid eliminert fra de nye vaksinegenerasjonene, derfor øker behovet for å identifisere adjuvanser som skal styrke og drive den nødvendige immunresponsen. As a result of these limitations, new vaccines have been developed with significant advantages over the previous ones. They include subunits of recombinant proteins and DNA (Rankin et al., 2002). Although these new alternatives may be beneficial, a common problem is that, in veterinary medicine, they are often immunogenically weak (Bahenmann et al., 1987; Loehr et al., 2001). Traditional vaccines often contain components that can contribute to the maturation of T cells and act as adjuvants, for example the bacterial DNA, or LPS. However, these components have been eliminated from the new vaccine generations, therefore increasing the need to identify adjuvants that will strengthen and drive the necessary immune response.

Immunadjuvansene ble opprinnelig beskrevet av Ramon (1924) som "stoffer anvendt i kombinasjon med et spesifikt antigen som produserer en mer robust immunrespons enn antigenet alene". Denne definisjonen inkluderer en rekke materialer. En omfattende vurdering av adjuvanser anvendt av nærings- og legemiddeletaten (eng.: Food and Drug Administration) hos mennesker begrenset imidlertid anvendelsen av aluminiumsalter. Disse saltene viser et godt sikkerhetsresultat, men komparative studier av dyr viser at det er en god adjuvans for å indusere antistoffer i vaksiner med rekombinante proteiner, og induserer en type-Th2-respons, mer enn den ønskede type-Th1-responsen (Gupta, 1998), som er mer effektiv i å beskytte mot intracellulære patogener. I tillegg er toksisitet et nøkkelelement i studiet av adjuvanser. I løpet av de første 50 årene henviste følgelig tillatte adjuvanser til aluminiumsaltene. The immune adjuvants were originally described by Ramon (1924) as "substances used in combination with a specific antigen which produce a more robust immune response than the antigen alone". This definition includes a variety of materials. However, a comprehensive assessment of adjuvants used by the Food and Drug Administration in humans limited the use of aluminum salts. These salts show a good safety result, but comparative animal studies show that it is a good adjuvant for inducing antibodies in vaccines with recombinant proteins, and induces a type Th2 response, more than the desired type Th1 response (Gupta, 1998), which is more effective in protecting against intracellular pathogens. In addition, toxicity is a key element in the study of adjuvants. Consequently, during the first 50 years, permitted adjuvants referred to the aluminum salts.

For profylaktisk immunisering hos dyr kan bare adjuvanser som gir minimale uønskede virkninger, lokalt og systemisk, aksepteres. Viktige spørsmål i utviklingen adjuvanser er reaksjonen på injeksjonsstedet, elimineringen eller den biologiske nedbrytningen av adjuvansen, og varigheten og retensjonen på injeksjonsstedet. Typene adjuvanser som anvendes hos dyr, er oppsummert nedenfor (Singh og O’Hagan, 2003): For prophylactic immunization in animals, only adjuvants that produce minimal adverse effects, locally and systemically, can be accepted. Important issues in the development of adjuvants are the reaction at the injection site, the elimination or biological degradation of the adjuvant, and the duration and retention at the injection site. The types of adjuvants used in animals are summarized below (Singh and O'Hagan, 2003):

● Mineralsalter: Aluminiumhydroksid, aluminiumfosfat. ● Mineral salts: Aluminum hydroxide, aluminum phosphate.

● Immunstimulerende adjuvanser: Cytokiner, saponiner, bakterielt DNA, LPS (lipopolysakkarid), lipopeptider. ● Immunostimulating adjuvants: Cytokines, saponins, bacterial DNA, LPS (lipopolysaccharide), lipopeptides.

● Lipidpartikler: Emulsioner av Freud, ISA 25, 51, 206, SAF, MF59, liposom. ● Adjuvansslim: Mutanttoksiner, inkludert LTK63 og LTR72, mikropartikler, polymeriserte liposomer, kitosan. ● Lipid particles: Emulsions by Freud, ISA 25, 51, 206, SAF, MF59, liposome. ● Adjuvant mucus: Mutant toxins, including LTK63 and LTR72, microparticles, polymerized liposomes, chitosan.

Mineralsalter, særlig de av aluminium, stimulerer produksjonen av antistoffer ved en Th2-respons. De har imidlertid den ulempen at de produserer en lav innvirkning i indusering av en cellulær immunrespons. Disse adjuvansene er også kjent for å indusere immunitet på kort sikt, noe som impliserer anvendelsen av injeksjoner med flere påfyllinger. I tillegg er det ikke uvanlig å observere granulose på injeksjonsstedet (Nicklas, 1992). Mineral salts, especially those of aluminium, stimulate the production of antibodies in a Th2 response. However, they have the disadvantage that they produce a low impact in inducing a cellular immune response. These adjuvants are also known to induce immunity in the short term, implying the use of multi-prime injections. In addition, it is not unusual to observe granulosis at the injection site (Nicklas, 1992).

Freud-adjuvansen har blitt anvendt i mer enn 50 år, spesielt når begrensede mengder antigen er tilgjengelig. Dens toksisitet har imidlertid vært kjent i lang tid, og med den økende interessen for forsøksdyrs velvære, finnes det et betydelig press for å begrense deres bruk (Morris et al., 1999). I veterinærbransjen er de bredere anvendte adjuvansene i veterinærvaksiner mineraloljeemulsjoner (olje-i-vann eller vann-i-olje), slik som ISA 25,51, 206, MF59. MF59 er den olje-i-vann-emulsjonen som har blitt mest vurdert med hensyn til dens anvendelse som adjuvans. Det er en mikrofluidisert emulsjon som inneholder et terpenisk derivat, skvalen, sammen med to surfaktanter: Tween 80, og Span-85, i natriumsitratbuffer. Skvalen er en naturlig forbindelse oppnådd fra planter og dyr. Det er ikke en adjuvans i seg selv, men skvalenemulsjonene med surfaktanter forbedrer immunresponsen til mennesker og dyr. Et eksempel er MF59 (US-patent 6.299.884 B) som er en adjuvans fremstilt av Novartis Lab, og tilsettes i The Freud adjuvant has been used for more than 50 years, especially when limited amounts of antigen are available. However, its toxicity has been known for a long time, and with the growing interest in the welfare of laboratory animals, there is considerable pressure to limit their use (Morris et al., 1999). In the veterinary industry, the more widely used adjuvants in veterinary vaccines are mineral oil emulsions (oil-in-water or water-in-oil), such as ISA 25,51, 206, MF59. MF59 is the oil-in-water emulsion that has been most evaluated for its use as an adjuvant. It is a microfluidized emulsion containing a terpenic derivative, squalene, together with two surfactants: Tween 80, and Span-85, in sodium citrate buffer. Squalene is a natural compound obtained from plants and animals. It is not an adjuvant per se, but the squalene emulsions with surfactants improve the immune response of humans and animals. An example is MF59 (US patent 6,299,884 B) which is an adjuvant produced by Novartis Lab, and is added in

influensavaksinen. the flu vaccine.

Saponiner er en annen type adjuvans som anvendes. Disse kommer fra det chilenske treet Quillaja saponaria Molina, og består av terpenoide derivater, som er anvendt på mennesker og dyr. Det ubearbeidede ekstraktet fra dette treet kalles saponin. Quil A, og spikoside er delvis rensede blandinger, og QS21 er en fraksjon. Quil A er bredt anvendt i veterinærmedisin, og har blitt anvendt i bruksdyr-, grise-, heste, hunde- og kattevaksiner, inkludert FeLV-vaksine for hesteinfluensaviruset, parvovirus. QS21 anvendes i FeLV-vaksinene, og hundevaksinen for Lyme-sykdom (Kim et al., 2006). Saponins are another type of adjuvant used. These come from the Chilean tree Quillaja saponaria Molina, and consist of terpenoid derivatives, which have been used on humans and animals. The raw extract from this tree is called saponin. Quil A, and spicoside are partially purified mixtures, and QS21 is a fraction. Quil A is widely used in veterinary medicine, and has been used in farm animal, pig, horse, dog and cat vaccines, including the FeLV vaccine for the equine influenza virus, parvovirus. QS21 is used in the FeLV vaccines, and the dog vaccine for Lyme disease (Kim et al., 2006).

WO 2012178118 A1 beskriver farmasøytiske formuleringer omfattende en kombinasjon as utvalgte bærere, vitaminer, tanniner og flavonoider som antigen spesifikke immunmodulatorer. WO 2012178118 A1 describes pharmaceutical formulations comprising a combination of selected carriers, vitamins, tannins and flavonoids as antigen-specific immunomodulators.

WO 2010078556 A1 beskriver adjuvnasformuleringer og anvendelser av slike. WO 2010078556 A1 describes adjuvant formulations and uses thereof.

WO 0010600 A2 beskriver aktivering og beskyttelse av T-celler (CD4+ og CD8+) ved bruk av en H2-reseptor agonist og andre T-celle aktiveringsmidler. WO 0010600 A2 describes the activation and protection of T-cells (CD4+ and CD8+) using an H2-receptor agonist and other T-cell activating agents.

DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION

Den foreliggende oppfinnelsens formål er å tilveiebringe en formulering som inneholder et aktivt prinsipp med immunstimulerende/adjuvante aktiviteter oppnådd fra det harpiksaktige eksudatet fra plantearten Heliotropium huascoense, og som er nyttig hos salmonidarter for å øke immunogenisiteten til et antigen og/eller komponentene fra en vaksine. The purpose of the present invention is to provide a formulation containing an active principle with immunostimulating/adjuvant activities obtained from the resinous exudate of the plant species Heliotropium huascoense, and which is useful in salmonid species to increase the immunogenicity of an antigen and/or the components of a vaccine.

Foreliggende oppfinnelse frembringer en formulering med immunstimulerende/adjuvant aktivitet, omfattende: The present invention produces a formulation with immunostimulating/adjuvant activity, comprising:

a) (-)-alpinone, hvis strukturelle formel er: a) (-)-alpinone, whose structural formula is:

der R1er OH, og R2er OCH3, med en optisk aktivitet på [ α]25ºD= -28,1 (c.0.215,CHCl3), og en S-konfigurasjon av karbon 2 og 3; where R1 is OH, and R2 is OCH3, with an optical activity of [ α]25ºD= -28.1 (c.0.215,CHCl3), and an S configuration of carbons 2 and 3;

b) dimetylsulfoksid; og b) dimethyl sulfoxide; and

c) saltløsning. c) salt solution.

Formuleringen omfatter fortrinnsvis a) (-)-alpinone: 0,05 % vekt/volum til 0,5 % vekt/volum The formulation preferably comprises a) (-)-alpinone: 0.05% w/v to 0.5% w/v

b) DMSO: 0,8 til 8,0 % vekt/volum, og b) DMSO: 0.8 to 8.0% w/v, and

c) Saltløsning: Nødvendig mengde for å fullføre 100 % volum. c) Saline: Amount required to complete 100% volume.

Foreliggende oppfinnelse frembringer videre en formulering med immunstimulerende /adjuvant aktivitet ifølge opppfinnelse, for anvendelse som en vaksine for virveldyr. The present invention further produces a formulation with immunostimulating/adjuvant activity according to the invention, for use as a vaccine for vertebrates.

Fortrinnsvis er nevnte virveldyr en salmonid art. Preferably, said vertebrate is a salmonid species.

Formuleringens aktive prinsipp er flavonoidet (-)-alpinone, og den viser ingen toksisitet hos behandlede individer, tvert i mot gir den en forbedring av det generelle utseendet, sannsynligvis på grunn av dens antioksidant- og stresskontrollerende egenskaper hos individer som gjennomgår behandling. The formulation's active principle is the flavonoid (-)-alpinone, and it shows no toxicity in treated individuals, on the contrary, it provides an improvement in general appearance, probably due to its antioxidant and stress-controlling properties in individuals undergoing treatment.

Dette aktive prinsippet har egenskapen med å indusere modning i dendrittiske celler, som samsvarer med de første stadiene av induksjon av immunresponsen hos høyere virveldyr. This active principle has the property of inducing maturation in dendritic cells, which corresponds to the first stages of induction of the immune response in higher vertebrates.

Det aktive prinsippet i formuleringen ifølge den foreliggende oppfinnelsen er flavonoidet 3,5-dihydroksy-7-O-metoksyflavanon (Alpinone). Formuleringen ifølge den foreliggende oppfinnelsen skiller seg fra andre tidligere patenterte ved at den er en formulering der den aktive agensen er et naturlig flavonoid oppnådd fra vegetabilske arter, og derfor er biologisk nedbrytbar, siden den ikke påvirker miljøet. I den foreliggende oppfinnelsen er det utviklet en formulering ifølge hvilken visse mengder av en aktiv agens, det vil si en fenolisk forbindelse (flavonoid), er tilgjengelig, der posisjon 3 og 5 er hydroksylert, posisjon 7 er metoksylert, og i posisjon 4 er det et karbonyl. Den har to stereogene sentre, der konfigurasjonen av karbon 2 og 3 må være "S". I formuleringen ifølge den foreliggende søknaden er flavonoidet i forening med farmakologisk aksepterte fortynningsmidler, inkludert, men ikke begrenset til, dimetylsulfoksid, og saltløsning. The active principle in the formulation according to the present invention is the flavonoid 3,5-dihydroxy-7-O-methoxyflavanone (Alpinone). The formulation according to the present invention differs from other previously patented ones in that it is a formulation in which the active agent is a natural flavonoid obtained from vegetable species, and is therefore biodegradable, since it does not affect the environment. In the present invention, a formulation has been developed according to which certain amounts of an active agent, i.e. a phenolic compound (flavonoid), are available, where positions 3 and 5 are hydroxylated, position 7 is methoxylated, and in position 4 there is a carbonyl. It has two stereogenic centers, where the configuration of carbons 2 and 3 must be "S". In the formulation according to the present application, the flavonoid is in association with pharmacologically accepted diluents, including, but not limited to, dimethyl sulfoxide, and saline.

Spesifikt består formuleringen ifølge den foreliggende immunstimulerende/adjuvante oppfinnelsen for fisk av: Specifically, the formulation according to the present immunostimulating/adjuvant invention for fish consists of:

DMSO: 8 % vekt/volum DMSO: 8% w/v

(-)-alpinone: 0,5 % vekt/volum (alpinone må presentere en "S"-konfigurasjon i sine stereogene sentre). (-)-alpinone: 0.5% w/v (alpinone must present an "S" configuration in its stereogenic centers).

Saltløsning: 91,5 % vekt/volum Salt solution: 91.5% weight/volume

Formuleringen har som en aktiv ingrediens flavonoidet med generell formel: The formulation has as an active ingredient the flavonoid with general formula:

der R1må være OH, og R2må være OCH3. I tillegg må den ha en optisk aktivitet på [ α]25ºD= -28,1 (c.0.215,CHCl3), og en "S"-konfigurasjon av karbon 2 og 3. where R1 must be OH, and R2 must be OCH3. In addition, it must have an optical activity of [ α]25ºD= -28.1 (c.0.215,CHCl3), and an "S" configuration of carbons 2 and 3.

Den foreliggende oppfinnelsen tilveiebringer en immunstimulerende formulering som ikke er spesifikt rettet mot et utvalgt patogen, eller en gruppering av utvalgte patogene agenser. The present invention provides an immunostimulatory formulation that is not specifically directed against a selected pathogen, or a grouping of selected pathogenic agents.

Formålet med den foreliggende oppfinnelsen er å tilveiebringe en immunstimulerende/adjuvant formulering som kan administreres intramuskulært for å trigge immunresponsen hos salmonidarter og/eller forbedre responsen på de eksisterende vaksinene. The purpose of the present invention is to provide an immunostimulating/adjuvant formulation that can be administered intramuscularly to trigger the immune response in salmonid species and/or improve the response to the existing vaccines.

Den foreliggende oppfinnelsen har fordelen i forhold til andre adjuvanser av markedskvalitet, inkludert, men ikke begrenset til, Montanide, der formuleringens aktive prinsipp anvendes i lave doser, og i sonen der den injiseres, observeres ingen nekrose eller skade rundt vevet. I stedet genererer adjuvansen av markedskvalitet, Montanide, granulomer på injeksjonsstedet (Mutoloki et al., 2004). Videre krever den injiserbare løsningen ifølge den foreliggende oppfinnelsen en mindre mengde aktivt prinsipp, i motsetning til adjuvansene av markedskvalitet. The present invention has the advantage over other adjuvants of market quality, including, but not limited to, Montanide, where the active principle of the formulation is used in low doses, and in the zone where it is injected, no necrosis or damage is observed around the tissue. Instead, the market-grade adjuvant, Montanide, generates granulomas at the injection site (Mutoloki et al., 2004). Furthermore, the injectable solution according to the present invention requires a smaller amount of active principle, in contrast to the adjuvants of market quality.

BESKRIVELSE AV FIGURENE DESCRIPTION OF THE FIGURES

Figur 1. Analyse av uttrykkelsen av MHCII i muse-dendrittiske celler ved strømningscytometri. Figure 1. Analysis of the expression of MHCII in mouse dendritic cells by flow cytometry.

Figur 2. Nivåer av cytokin mRNA i SHK-1-celler stimulert med potensielle immunstimulerende forbindelser. Figure 2. Levels of cytokine mRNA in SHK-1 cells stimulated with potential immunostimulatory compounds.

Figur 3. Nivåer av cytokintranskripter i nyren til fisk behandlet med immunstimulerende forbindelser. Figure 3. Levels of cytokine transcripts in the kidney of fish treated with immunostimulating compounds.

Figur 4. Analyse av den humorale responsen hos fisk immunisert med ovalbumin. Figure 4. Analysis of the humoral response in fish immunized with ovalbumin.

Figur 5. Deteksjon av viralt RNA ved RT-PCR. Figure 5. Detection of viral RNA by RT-PCR.

Eksempel Example

Eksempel 1: Det aktive prinsippets virkning på modningen av muse-dendrittiske celler Example 1: The effect of the active principle on the maturation of mouse dendritic cells

Den immunstimulerende evnen til formuleringens aktive prinsipp fra den foreliggende oppfinnelsen i den primære kulturen av muse-dendrittiske celler (DC) ble testet. For dette forsøket ble dendrittiske celler oppnådd fra musens benmarg dyrket i 6 dager i et RPMI-1640-medium supplementert med 10 % kalvefosterserum (SFB), 4 mM L-Glutamin (Hyclone), penicillin/streptomycin (Hyclone), og 10 ng/ml GM-CSF. Etter denne tiden ble cellene inkubert med 5 ug av formuleringens aktive prinsipp i 6 h ved 37 ºC. Celletriggingstilstanden ble evaluert ved uttrykkelsne av klasse II MHC på overflaten av muse-DC ved å anvende et spesifikt antistoff (FITC-antimus IAd, BD, USA) for å detektere det molekylet ved strømningscytometri. De observerte resultatene i dette forsøket (figur 1) indikerer at det aktive prinsippet øker uttrykkelsen av klasse II MHC-molekyl i dendrittiske celler. Dette indikerer at forbindelsen induserer modning av de dendrittiske cellene, som er en egenskap ved forbindelser anvendt som immunstimulanter eller adjuvanser. Som konklusjon har formuleringens aktive prinsipp immunstimulerende aktivitet, nærmere bestemt produserer trigging av muse-dentrittiske celler. The immunostimulatory ability of the active principle of the formulation of the present invention in the primary culture of mouse dendritic cells (DC) was tested. For this experiment, dendritic cells obtained from mouse bone marrow were cultured for 6 days in an RPMI-1640 medium supplemented with 10% fetal calf serum (SFB), 4 mM L-Glutamine (Hyclone), penicillin/streptomycin (Hyclone), and 10 ng/ ml GM-CSF. After this time, the cells were incubated with 5 µg of the formulation's active principle for 6 h at 37 ºC. The cell triggering state was evaluated by the expression of class II MHC on the surface of mouse DC by using a specific antibody (FITC-antimouse IAd, BD, USA) to detect that molecule by flow cytometry. The observed results in this experiment (figure 1) indicate that the active principle increases the expression of class II MHC molecule in dendritic cells. This indicates that the compound induces maturation of the dendritic cells, which is a property of compounds used as immunostimulants or adjuvants. In conclusion, the active principle of the formulation has immunostimulatory activity, more precisely produces the triggering of mouse dentritic cells.

Eksempel 2: Det aktive prinsippets virkning på cytokinuttrykkelse i SHK-1-cellelinjen Example 2: The effect of the active principle on cytokine expression in the SHK-1 cell line

Evalueringen av den immunstimulerende evnen ble utført også i SHK-1-cellelinjen som samsvarer med celler utledet fra en beriket kultur av makrofager oppnådd fra atlanterhavslaksens bakre nyre. Hvorledes immunstimulantene skal trigge uttrykkelsen av cytokiner som er vesentlige for å trigge immunresponsen hos individet, og dette skjer ved aktivering av gentranskripsjonen; økningen i uttrykkelsen av pro-inflammatoriske cytokingener, inkludert IL-1, IL-8, IL-10, IL12 og TNFα; anti-inflammatoriske cytokiner, inkludert TGFβ1; og det antivirale cytokinet IFNα ble kvantifisert. Cellene ble dyrket i 6-brønners plater i løpet av 3 dager inntil en konfluens på ca.90 % ble nådd; deretter ble de inkubert med 5 ug av formuleringens aktive prinsipp i 24 h ved 15 ºC i et L-15-medium supplementert med 10 % SFB, 4 mM L-Glutamin, 40 uM 2-merkaptoetanol, 50 ug/ml Gentamicin. For å oppnå RNA ble celler løsnet ved mekanisk aktivering av brønnene, konsentret ved sentrifugering, og homogenisert i 1 ml Trisure (Bioline, USA). Så ble 200 ul kloroform tilsatt hver prøve, og de ble blandet i en vortekser i 1 min. Suspensjonen ble sentrifugert ved 13200 x g i 15 min ved 4 ºC. Den vandige fasen ble innsamlet og overført til et annet rør som inneholder 500 ul kald isopropanol (Merck). Blandingen ble inkubert i 20 min ved -20 ºC, og ble sentrifugert på nytt ved 13200 x g i 10 min ved 4 ºC; supernatanten ble fjernet, og 1 ml 75 % kald etanol ble tilsatt i hvert rør. Rørene ble sentrifugert ved 6000 x g i 5 min ved 4 ºC, supernatanten ble kassert, og RNA-pelleten ble oppløst i 20 ul nukleasefritt vann (Invitrogen). RNA ble inkubert ved 65 ºC i 10 min, og ble lagret ved -20 ºC. Den kontaminerende DNA-spaltingen i prøven ble utført ved en behandling med DNAsa RQ1 (Promega).2 ug RNA ble behandlet i henhold til betingelsene fremsatt av produsenten. cDNA-syntese ble utført ved å anvende 200 U/ul omvendt transkriptaseenzym M-MLV (Promega), 500 ng/ul oligo dT (Promega), 1mM dNTPs (Bioline), og enzym 5X (Promega) buffer i et endelig volum på 25 ul. Blandingen ble inkubert i 60 min ved 42 ºC, og så ved 70 ºC i 15 min. Generert cDNA ble lagret ved -20 ºC. The evaluation of the immunostimulatory ability was also performed in the SHK-1 cell line which corresponds to cells derived from an enriched culture of macrophages obtained from the hind kidney of Atlantic salmon. How the immunostimulants will trigger the expression of cytokines that are essential for triggering the immune response in the individual, and this happens by activating the gene transcription; the increase in the expression of pro-inflammatory cytokine genes, including IL-1, IL-8, IL-10, IL12 and TNFα; anti-inflammatory cytokines, including TGFβ1; and the antiviral cytokine IFNα was quantified. The cells were cultured in 6-well plates during 3 days until a confluence of about 90% was reached; then they were incubated with 5 ug of the formulation's active principle for 24 h at 15 ºC in an L-15 medium supplemented with 10% SFB, 4 mM L-Glutamine, 40 uM 2-mercaptoethanol, 50 ug/ml Gentamicin. To obtain RNA, cells were detached by mechanical activation of the wells, concentrated by centrifugation, and homogenized in 1 ml of Trisure (Bioline, USA). Then 200 µl of chloroform was added to each sample and they were mixed in a vortexer for 1 min. The suspension was centrifuged at 13200 x g for 15 min at 4 ºC. The aqueous phase was collected and transferred to another tube containing 500 µl of cold isopropanol (Merck). The mixture was incubated for 20 min at -20 ºC, and was centrifuged again at 13200 x g for 10 min at 4 ºC; the supernatant was removed, and 1 mL of 75% cold ethanol was added to each tube. The tubes were centrifuged at 6000 x g for 5 min at 4 ºC, the supernatant was discarded, and the RNA pellet was dissolved in 20 µl of nuclease-free water (Invitrogen). RNA was incubated at 65 ºC for 10 min, and was stored at -20 ºC. The contaminating DNA cleavage in the sample was carried out by a treatment with DNAsa RQ1 (Promega). 2 µg of RNA was processed according to the conditions stated by the manufacturer. cDNA synthesis was performed using 200 U/ul reverse transcriptase enzyme M-MLV (Promega), 500 ng/ul oligo dT (Promega), 1 mM dNTPs (Bioline), and enzyme 5X (Promega) buffer in a final volume of 25 ul. The mixture was incubated for 60 min at 42 ºC, and then at 70 ºC for 15 min. Generated cDNA was stored at -20 ºC.

Reaksjonen i kvantitativ sanntid (qRT-PCR) ble utført i 96-brønners plater (AXIGEN) dekket med optiske lokk på utstyret STRATAGENE 7300. Hver reaksjon ble utført i et endelig volum på 25 ul, ved anvendelse av 12,5 ul Quantace SYBR Green/ROX qPCR master mix (2X) (Bioline), 1,25 ul sens-starter (10 uM), 1,25 ul antisens-starter (10 uM), 8 ul ultrarent destillert vann (Invitrogen), 2 ul cDNA 1:2 fortynning. I alle reaksjoner ble det utført kontroller uten bråkjøling. Resultatene viser at formuleringens aktive prinsipp induserer en økning i uttrykkelsen av pro-inflammatoriske cytokiner, inkludert IL-1, IL-8, TNF-α; det antivirale cytokinet IFNα, samt cytokiner som er viktige i denne T-hjelper 1 (Th1)-typen respons, slik som IL-12 (fig. 2). R-forbindelsen som anvendes som positiv kontroll, øker uttrykkelsen av cytokiner, hovedsakelig av den pro-inflammatoriske typen, inkludert IL-1, IL-8 og IL-12 (figur 2). Disse resultatene viser at formuleringens aktive prinsipp kan indusere høye nivåer av proinflammatoriske, antivirale og Th1-responsinduserende cytokiner i SHK-1-cellelinjen til laks. The quantitative real-time (qRT-PCR) reaction was performed in 96-well plates (AXIGEN) covered with optical lids on the STRATAGENE 7300 instrument. Each reaction was performed in a final volume of 25 µl, using 12.5 µl of Quantace SYBR Green /ROX qPCR master mix (2X) (Bioline), 1.25 µl sense primer (10 µM), 1.25 µl antisense primer (10 µM), 8 µl ultrapure distilled water (Invitrogen), 2 µl cDNA 1: 2 dilution. In all reactions, controls were performed without quenching. The results show that the formulation's active principle induces an increase in the expression of pro-inflammatory cytokines, including IL-1, IL-8, TNF-α; the antiviral cytokine IFNα, as well as cytokines important in this T-helper 1 (Th1)-type response, such as IL-12 (Fig. 2). The R compound used as a positive control increases the expression of cytokines, mainly of the pro-inflammatory type, including IL-1, IL-8 and IL-12 (Figure 2). These results show that the formulation's active principle can induce high levels of proinflammatory, antiviral and Th1 response-inducing cytokines in the SHK-1 cell line of salmon.

Som konklusjon er det fastslått at formuleringens aktive prinsipp kan anvendes som en immunstimulant/adjuvans for å trigge en tidlig antiviral respons og en type-Th1-respons. In conclusion, it has been established that the formulation's active principle can be used as an immunostimulant/adjuvant to trigger an early antiviral response and a type-Th1 response.

Eksempel 3: Det aktive prinsippets virkning som en immunstimulant hos atlanterhavslaks Example 3: The effect of the active principle as an immunostimulant in Atlantic salmon

For analysen in vivo ble 15 atlanterhavslaks på 40–50 g anvendt, som ble injisert intramuskulært (IM) med doser på 100 ug av formuleringens aktive prinsipp i et endelig volum på 100 ul. Som kontroller ble fisk injisert med 8 % DMSO (formuleringskomponent) oppløst i 100 ul saltløsning, og med 5 mg kontrollforbindelse Ribomunyl oppløst i 100 ul saltløsning. Som kontrollgruppe ble en gruppe fisk bare injisert med 100 ul saltløsning, mens den andre ikke ble injisert. Etter 48 h ble fiskene avlivet med en benzokainoverdose, og deres nyre og milt ble tatt ut for etterfølgende analyse. For å oppnå RNA ble organer desintegrert i 1 ml Trisure ved anvendelse av en vevshomogeniserer. Deretter ble den samme protokollen som ble anvendt i RNA-oppnåelsesforsøket fra SHK-1-celler, utført. Som et resultat ble det observert at i nyren øker formuleringens aktive prinsipp uttrykkelsesnivåene for pro-inflammatoriske cytokiner IL-1 og IL-8, og for IL-12 (type-Th1-cytokin). I tillegg øker det nivåene av anti-inflammatorisk cytokin TGF-β1 og av antiviralt cytokin IFNα (figur 3). For the in vivo analysis, 15 Atlantic salmon of 40–50 g were used, which were injected intramuscularly (IM) with doses of 100 µg of the formulation's active principle in a final volume of 100 µl. As controls, fish were injected with 8% DMSO (formulation component) dissolved in 100 µl saline, and with 5 mg of the control compound Ribomunyl dissolved in 100 µl saline. As a control group, one group of fish was only injected with 100 µl saline, while the other was not injected. After 48 h, the fish were euthanized with a benzocaine overdose, and their kidney and spleen were removed for subsequent analysis. To obtain RNA, organs were disintegrated in 1 ml of Trisure using a tissue homogenizer. Then, the same protocol used in the RNA extraction experiment from SHK-1 cells was performed. As a result, it was observed that in the kidney, the active principle of the formulation increases the expression levels of pro-inflammatory cytokines IL-1 and IL-8, and of IL-12 (type Th1 cytokine). In addition, it increases the levels of the anti-inflammatory cytokine TGF-β1 and of the antiviral cytokine IFNα (Figure 3).

Forbindelsen Ribomunyl, anvendt som kontroll for sine kjente virkninger på aktivering av museceller (Spisek et al., 2004), økte uttrykkelsen av IL-1, TNF-α, IL-12 og IFNα (fig. 3). Videre presenterer nyren fra kontrollen, DMSO, saltløsning og ubehandlet fisk ingen endringer i uttrykkelsen av slike cytokiner. The compound Ribomunyl, used as a control for its known effects on mouse cell activation (Spisek et al., 2004), increased the expression of IL-1, TNF-α, IL-12 and IFNα (Fig. 3). Furthermore, the kidney from the control, DMSO, saline and untreated fish presents no changes in the expression of such cytokines.

Som konklusjon har formuleringens aktive prinsipp ifølge den foreliggende søknaden immunstimulerende egenskaper i salmonid fisk. In conclusion, according to the present application, the formulation's active principle has immunostimulating properties in salmonid fish.

Eksempel 4: Det aktive prinsippets virkning som adjuvans på vaksiner for salmonid Example 4: The effect of the active principle as an adjuvant on vaccines for salmonids

For å evaluere den adjuvante evnen til formuleringens aktive prinsipp fra den foreliggende oppfinnelsen ble det utført et antigenavhengig lymfocyttisk proliferasjonsforsøk ved å anvende ovalbumin som et immunogen. Det forsøket utføres i lymfocyttkulturer som prolifererer klonalt når de stimuleres med antigenet. Dette skjer bare når en tidligere immunisering med antigenet har skjedd. Et protein slik som ovalbumin krever en adjuvansforbindelse for at immuniseringen skal skje. Følgelig mottok grupper på 350 g-fisk (regnbueørret) to doser med formuleringen kombinert med proteinet ovalbumin (Sigma). Grupper i forsøket mottok den injiserbare løsningen (formulering ifølge den foreliggende søknaden) bestående av 100 ug kombinert forbindelse med 10 ug protein ovalbumin oppløst i 100 ul saltløsning (0,9 % NaCl). En positiv kontroll, Montanide ISA 763 a VG (Seppic, Francia), en oljeaktig adjuvans anvendt i veterinærvaksiner, ble anvendt, og den ble blandet med 10 ug ovalbumin. Fremstillingen av Montanide ble utført i henhold til produsentens anbefalinger. På den andre siden ble to kontrollgrupper anvendt, som ble delt inn i fisk som mottok 10 ug protein ovalbumin oppløst i saltløsning, og fisk som ble injisert med 100 ul saltløsning. Dosen med ovalbumin ble bestemt i et tidligere forsøk i henhold til en protokoll utført av Joosten et al., 1997. Fisk ble holdt i akvarier med 30 l ferskvann, og en kontinuerlig tilførsel av oksygen til en biomasse på 10–12 kg/m3 ved 15 ºC. Til mating ble det brukt en pellet av markedskvalitet, og ble administrert i akvariene én gang per dag. In order to evaluate the adjuvant ability of the formulation's active principle from the present invention, an antigen-dependent lymphocytic proliferation experiment was performed using ovalbumin as an immunogen. That experiment is performed in lymphocyte cultures that proliferate clonally when stimulated with the antigen. This only happens when a previous immunization with the antigen has occurred. A protein such as ovalbumin requires an adjuvant compound for immunization to occur. Accordingly, groups of 350 g fish (rainbow trout) received two doses of the formulation combined with the protein ovalbumin (Sigma). Groups in the experiment received the injectable solution (formulation according to the present application) consisting of 100 µg of combined compound with 10 µg of protein ovalbumin dissolved in 100 µl of saline (0.9% NaCl). A positive control, Montanide ISA 763 a VG (Seppic, Francia), an oily adjuvant used in veterinary vaccines, was used and it was mixed with 10 µg ovalbumin. The preparation of Montanide was carried out according to the manufacturer's recommendations. On the other hand, two control groups were used, which were divided into fish that received 10 µg of protein ovalbumin dissolved in saline, and fish that were injected with 100 µl of saline. The dose of ovalbumin was determined in a previous experiment according to a protocol carried out by Joosten et al., 1997. Fish were kept in aquariums with 30 l of fresh water, and a continuous supply of oxygen to a biomass of 10–12 kg/m3 at 15 ºC. A pellet of market quality was used for feeding, and was administered in the aquariums once per day.

Temperatur-, pH-, oksygen- og ammoniumnivåer ble overvåket daglig for å opprettholde parameterne innenfor optimale områder. I tillegg ble akvarienes vann skiftet daglig. Temperature, pH, oxygen and ammonium levels were monitored daily to maintain parameters within optimal ranges. In addition, the aquarium's water was changed daily.

Etter 5 dager ble miltene til behandlet fisk desintegrert i 100-mesh nett med RPMI-1640 (Gibco) medium supplementert med 10 % kalvefosterserum, 4 mM L-Glutamin (Hyclone), 40 uM 2-Merkaptoetanol (Gibco) og 50 ug/ml Gentamicin (USB Biological). Cellesuspensjonen ble sentrifugert ved 2600 x g i 5 min ved 4 ºC. After 5 days, the spleens of treated fish were disintegrated in 100-mesh mesh with RPMI-1640 (Gibco) medium supplemented with 10% fetal calf serum, 4 mM L-Glutamine (Hyclone), 40 uM 2-Mercaptoethanol (Gibco) and 50 ug/ml Gentamicin (USB Biological). The cell suspension was centrifuged at 2600 x g for 5 min at 4 ºC.

Cellepelletene ble resuspendert i supplementert RPMI-medium, og antallet celler ble fastslått i et hemocytometer, og levedyktigheten ved Trypan-blå-farging på et invertert fasekontrastmikroskop. For in vitro stimulering ble 1x106 celler seedet i 96-brønners plater med 100 ul RPMI/s medium pluss 50 ug ovalbumin (OVA). Etter 3 dager, 18 h før fullførelsen av forsøket, ble 1 ul tritiert tymidin (3H-Tymidin) tilsatt, 5 µCi/ml (PerkinElmer) i hver brønn. Så ble cellene resuspendert i 1 ml ultrarent vann, og suspensjonen ble overført til fiberglassfiltre som ble vakuumtørket. Filtrene ble anbrakt i scintilleringsvæske, og radioaktivitet ble kvantifisert i en scintilleringsteller (Tri-Carb 2100 TR; Packard). Forsøksdata ble uttrykt i tellinger per minutt (CPM). The cell pellets were resuspended in supplemented RPMI medium, and the number of cells was determined in a hemocytometer, and viability by Trypan blue staining on an inverted phase contrast microscope. For in vitro stimulation, 1x106 cells were seeded in 96-well plates with 100 µl RPMI/s medium plus 50 µg ovalbumin (OVA). After 3 days, 18 h before the completion of the experiment, 1 µl of tritiated thymidine (3H-Thymidine) was added, 5 µCi/ml (PerkinElmer) to each well. Then the cells were resuspended in 1 ml of ultrapure water, and the suspension was transferred to fiberglass filters that were vacuum dried. The filters were placed in scintillation fluid, and radioactivity was quantified in a scintillation counter (Tri-Carb 2100 TR; Packard). Experimental data were expressed in counts per minute (CPM).

Som et resultat observeres det at kulturene fra fisk immunisert med ovalbumin og Montanide (OVA+Montanide) presenterte høyere nivåer av inkorporert tymidin enn de fra cellene til kontrollfisk injisert med kun ovalbumin (OVA) (tabell 1), hvilket bekrefter kontrollforbindelsens adjuvansvirkning. Videre observeres det også en økning av tymidininnlemmelsen når formuleringen anvendes (tabell 1). As a result, it is observed that the cultures from fish immunized with ovalbumin and Montanide (OVA+Montanide) presented higher levels of incorporated thymidine than those from the cells of control fish injected with only ovalbumin (OVA) (Table 1), confirming the adjuvant effect of the control compound. Furthermore, an increase in thymidine incorporation is also observed when the formulation is used (table 1).

Eksempel 5: Analyse av spesifikke antistoffer Example 5: Analysis of specific antibodies

Immunisering med ovalbumin i en formel som inneholder det aktive prinsippet som en adjuvans, induserer også en bedre humoral respons. Spesifikt IgM ble kvantifisert for OVA ved ELISA i serum etter immuniseringen. I denne analysen ble det anvendt sera fra fisk behandlet med formuleringen (100 μg aktivt prinsipp, 8 % DMSO og 100 μl saltløsning). I forsøket ble Maxisorp (Nunc) 96-brønners plater aktivert med 10 μg av ovalbumin-proteinet anvendt ved 37 ºC hele natten. Neste dag ble 200 μl blokkeringsløsning (1 % BSA, 5 % sukrose i salt fosfatbuffer) tilsatt i hver brønn, og platene ble inkubert i 30 min ved 37 ºC. Så ble blokkeringsløsningen fjernet og 100 μl serum fra hver behandlede fisk ble tilsatt i hver brønn i triplikat, og platene ble inkubert i 1 h ved 25 ºC. Etter denne tiden ble brønnene vasket med 0,05 % Tween 20 i PBS. Deretter ble 100 ul ørret anti-IgM-antistoff tilsatt i brønnene, og så ble platene inkubert i 1 h ved 25 ºC. Igjen ble brønnene vasket og inkubert i 30 min med 100 ul muse antiimmunoglobulin-antistoff konjugert til alkalisk fosfatase (Sigma) fortynnet i 1:1000. Til slutt ble brønnene vasket, og 100 ul utviklende løsning (50 mM Na2CO3, 2 mM MgCl2, og 14 mg p-nitrofenylfosfat) ble tilsatt i hver brønn. Platene ble inkubert i 15 min ved 37 ºC og analysert i en ELISA-leser ved 405 nm. Immunization with ovalbumin in a formula containing the active principle as an adjuvant also induces a better humoral response. Specific IgM was quantified for OVA by ELISA in serum after the immunization. In this analysis, sera from fish treated with the formulation (100 μg active principle, 8% DMSO and 100 μl saline solution) were used. In the experiment, Maxisorp (Nunc) 96-well plates activated with 10 μg of the ovalbumin protein were used at 37 ºC overnight. The next day, 200 μl of blocking solution (1% BSA, 5% sucrose in saline phosphate buffer) was added to each well, and the plates were incubated for 30 min at 37 ºC. Then the blocking solution was removed and 100 μl of serum from each treated fish was added to each well in triplicate, and the plates were incubated for 1 h at 25 ºC. After this time, the wells were washed with 0.05% Tween 20 in PBS. Then 100 ul of trout anti-IgM antibody was added to the wells, and then the plates were incubated for 1 h at 25 ºC. Again, the wells were washed and incubated for 30 min with 100 µl mouse anti-immunoglobulin antibody conjugated to alkaline phosphatase (Sigma) diluted 1:1000. Finally, the wells were washed, and 100 µl of developing solution (50 mM Na 2 CO 3 , 2 mM MgCl 2 , and 14 mg p-nitrophenyl phosphate) was added to each well. The plates were incubated for 15 min at 37 ºC and analyzed in an ELISA reader at 405 nm.

Som et resultat ble det bemerket at det var en større mengde spesifikke antistoffer mot OVA i gruppen med fisk behandlet med adjuvansen Montanide (figur 4) i forhold til resten av kontrollgruppenene og fisk behandlet med formuleringen ifølge den foreliggende oppfinnelsen, og formuleringen ifølge den foreliggende søknaden presenterer også en liten økning i nivåene med spesifikke antistoffer mot OVA i forhold til kontrollene som er statistisk signifikante (figur 4). As a result, it was noted that there was a greater amount of specific antibodies against OVA in the group of fish treated with the adjuvant Montanide (Figure 4) compared to the rest of the control groups and fish treated with the formulation according to the present invention, and the formulation according to the present application also present a small increase in the levels of specific antibodies against OVA compared to the controls which is statistically significant (Figure 4).

Eksempel 6: Antiviral virkning av formuleringens aktive prinsipp Example 6: Antiviral effect of the formulation's active principle

Økningen av de transkriberte IFNα-nivåene i SHK-1-celler behandlet med det aktive prinsippet antyder at IFNα også kan utskilles til dyrkingsmediet. I dette tilfellet må også supernatanten til de behandlede cellene vise en antiviral virkning. For å verifisere denne hypotesen ble supernatantvirkningen på ISA-virusproliferasjonen i ASK-cellemonosjikt evaluert. The increase in the transcribed IFNα levels in SHK-1 cells treated with the active principle suggests that IFNα may also be secreted into the culture medium. In this case, the supernatant of the treated cells must also show an antiviral effect. To verify this hypothesis, the supernatant effect on ISA virus proliferation in ASK cell monolayers was evaluated.

For å oppnå kondisjonerte supernatanter ble SHK-1-celler dyrket i 6-brønners plater ved 15 ºC i Leibovitz L-15-medium supplementert med 10 % SFB, 4 mM L-Glutamin, 40 uM 2-merkaptoetanol og 50 ug/ml Gentamicin inntil en konfluens på 90–100 % ble nådd, og de ble stimulert ved å tilsette 5 ug av formuleringens aktive prinsipp eller 20 ug/ml Poly I:C (Sigma) i hver brønn, anvendt som en kontroll. Platene ble inkubert i 24 h, og medium fra hver brønn ble samlet inn etterpå, og ble sentrifugert ved 3000 rpm i 5 min ved 4 ºC. Supernatantene ble lagret ved -80 ºC. Videre spredte ISA-viruset seg i monosjikt av SHK-1-celler med en 60 % konfluens, som ble inokulert med viruset i et infeksjonsmedium (MOI 0,1)( Leibovitz L-15-medium uten SFB, 4 mM L-Glutamine, 40 uM 2-Merkaptoetanol, 50 ug/ml Gentamicin). Protokollen beskrevet av Jensen et al., 2002, ble fulgt. To obtain conditioned supernatants, SHK-1 cells were grown in 6-well plates at 15 ºC in Leibovitz L-15 medium supplemented with 10% SFB, 4 mM L-Glutamine, 40 µM 2-mercaptoethanol and 50 µg/ml Gentamicin until a confluence of 90–100% was reached, and they were stimulated by adding 5 µg of the formulation's active principle or 20 µg/ml Poly I:C (Sigma) to each well, used as a control. The plates were incubated for 24 h, and medium from each well was collected afterwards, and was centrifuged at 3000 rpm for 5 min at 4 ºC. The supernatants were stored at -80 ºC. Furthermore, the ISA virus spread in monolayers of SHK-1 cells at a 60% confluence, which were inoculated with the virus in an infection medium (MOI 0.1)( Leibovitz L-15 medium without SFB, 4 mM L-Glutamine, 40 uM 2-Mercaptoethanol, 50 ug/ml Gentamicin). The protocol described by Jensen et al., 2002, was followed.

Til forsøket med antiviral aktivitet ble det anvendt ASK-celler. (Rivas–Aravena et al., 2011). Celler ble spredt i 48-brønners plater inntil en konfluens på 90–100 % ble nådd, deretter inkubert i 48 h med 1:100-fortynninger av hver supernatant fra både stimulerte og ikke-stimulerte SHK-1-celler. Så ble cellene infisert med ISAV ved en fortynning på 1/40 i L-15-medium. På dag 2, 4 og 7 etter infeksjon (PI) ble supernatanten samlet inn, og viralt RNA ble ekstrahert ved å anvende et Kit ifølge produsentens protokoll (Omega Biotek, E.N.Z.A). ASK cells were used for the antiviral activity experiment. (Rivas–Aravena et al., 2011). Cells were spread in 48-well plates until a confluence of 90–100% was reached, then incubated for 48 h with 1:100 dilutions of each supernatant from both stimulated and unstimulated SHK-1 cells. Then the cells were infected with ISAV at a dilution of 1/40 in L-15 medium. At days 2, 4 and 7 post-infection (PI), the supernatant was collected and viral RNA was extracted using a Kit according to the manufacturer's protocol (Omega Biotek, E.N.Z.A).

Inhiberingen av den virale replikeringen ble bestemt ved RT-PCR, idet denne fremgangsmåten er mer spesifikk, mer sensitiv og raskere i å detektere og identifisere viruset. Til dette ble det anvendt spesifikke startere rettet mot fragment 8 av ISA-viruset. 10 ul av RNA-et oppnådd fra ekstraheringen ble inkubert med 1 ul sens-starter (10 uM), 1 ul antisens-starter (10 uM) (se tabell 1), 5 ul master mix (Kit one step Syber Green), og 3 ul ultrarent vann (Invitrogen). cDNA ble syntetisert, og PCR ble utført i Stratagene 7300-utstyret. The inhibition of the viral replication was determined by RT-PCR, this method being more specific, more sensitive and faster in detecting and identifying the virus. For this, specific primers targeting fragment 8 of the ISA virus were used. 10 µl of the RNA obtained from the extraction was incubated with 1 µl sense starter (10 µM), 1 µl antisense starter (10 µM) (see Table 1), 5 µl master mix (Kit one step Syber Green), and 3 µl ultrapure water (Invitrogen). cDNA was synthesized, and PCR was performed in the Stratagene 7300 equipment.

Tabell I: Sekvens av startere anvendt til detektering av ISA-viruset som er til stede i ASK-cellekulturer. Table I: Sequence of primers used for detection of the ISA virus present in ASK cell cultures.

Som et resultat bemerket vi at supernatanten fra SHK-1-celler, stimulert med formuleringens aktive prinsipp, utsetter den virale replikeringen inntil dag 4 (figur 6), i motsetning til supernatanten oppnådd ved stimulering med Poly I:C. Resultatene indikerer at det er en forbindelse med antiviral aktivitet indusert av det aktive prinsippet ifølge den foreliggende oppfinnelsen i supernatanten fra stimulerte celler, som sannsynligvis samsvarer med en type-I IFN. Derfor vil formuleringens aktive prinsipp være nyttig i å trigge en tidlig antiviral respons. As a result, we noted that the supernatant from SHK-1 cells, stimulated with the active principle of the formulation, delays the viral replication until day 4 (Figure 6), in contrast to the supernatant obtained by stimulation with Poly I:C. The results indicate that there is a compound with antiviral activity induced by the active principle of the present invention in the supernatant of stimulated cells, which probably corresponds to a type-I IFN. Therefore, the formulation's active principle will be useful in triggering an early antiviral response.

Figur 1 viser middelfluorescensintensiteten (MFI) for uttrykkelse av MHCII i ubehandlet kontroll-DC, og DC behandlet med 0,5 eller 5 ug av formuleringens aktive prinsipp. R er en forbindelse anvendt som positiv kontroll. Som negativ kontroll ble det anvendt ubehandlet DC, samt DC behandlet med DMSO (0,02 %) som samsvarer med bæreren anvendt for å oppløse den studerte forbindelsen. Resultatene ble analysert med enveis ANOVA sammen med Bonferronis multiple sammenligning etter test (*P<0,05). Figure 1 shows the mean fluorescence intensity (MFI) for expression of MHCII in untreated control DC, and DC treated with 0.5 or 5 µg of the active principle of the formulation. R is a compound used as a positive control. As a negative control, untreated DC was used, as well as DC treated with DMSO (0.02%) corresponding to the vehicle used to dissolve the studied compound. Results were analyzed by one-way ANOVA along with Bonferroni's multiple comparison post-test (*P<0.05).

Figur 2 viser nivåene av cytokin mRNA i SHK-1-celler stimulert med potensielle immunstimulerende forbindelser. Til det ble SHK-1-celler inkubert med kontrollforbindelsen Ribomunil og med formuleringens aktive prinsipp, samt DMSO-løsemiddel i 24 h ved 15 ºC i supplementert L-15-medium. Uttrykkelsen av cytokintranskripter ble evaluert ved qRT-PCR. Grafen viser den normaliserte og relative uttrykkelsen. Normalisering ble utført i forbindelse med de ubehandlede kulturene og det konstitutivt uttrykte genet 18s. Statistiske forskjeller ble fastslått ved den ikkeparametriske t-testen (Mann-Whitney) blant de ubehandlede gruppene og forsøksgruppene (* P<0,05). Figure 2 shows the levels of cytokine mRNA in SHK-1 cells stimulated with potential immunostimulatory compounds. For that, SHK-1 cells were incubated with the control compound Ribomunil and with the formulation's active principle, as well as DMSO solvent for 24 h at 15 ºC in supplemented L-15 medium. The expression of cytokine transcripts was evaluated by qRT-PCR. The graph shows the normalized and relative expression. Normalization was performed relative to the untreated cultures and the constitutively expressed gene 18s. Statistical differences were determined by the non-parametric t-test (Mann-Whitney) among the untreated and experimental groups (* P<0.05).

Figur 3 viser nivåene av cytokintranskripter i nyren til fisk behandlet med immunstimulerende forbindelser. Grupper med fisk (Salmo salar) ble injisert IM med 100 ug aktivt prinsipp i 100 ul saltløsning, med kontrollforbindelsen Ribomunil, 8 % DMSO, eller med saltløsning. Uttrykkelsen av cytokintranskripter ble evaluert ved qRT-PCR. Grafen viser den normaliserte og relative uttrykkelsen (NRE). Normalisering ble utført i forbindelse med nivåene av uttrykkelse i ubehandlet fisk og i forbindelse med den konstitutive uttrykkelsen av gen 18s. Statistisk signifikante forskjeller ble fastslått ved den ikke-parametriske t-testen (Mann-Whitney) blant ubehandlet fisk og forsøksfisk (* P<0,05). Figure 3 shows the levels of cytokine transcripts in the kidney of fish treated with immunostimulating compounds. Groups of fish (Salmo salar) were injected IM with 100 µg active principle in 100 µl saline, with the control compound Ribomunil, 8% DMSO, or with saline. The expression of cytokine transcripts was evaluated by qRT-PCR. The graph shows the normalized and relative expression (NRE). Normalization was performed in relation to the levels of expression in untreated fish and in relation to the constitutive expression of gene 18s. Statistically significant differences were determined by the non-parametric t-test (Mann-Whitney) between untreated fish and experimental fish (* P<0.05).

Figur 4 viser analysen av humoral respons hos fisk immunisert med ovalbumin. ELISA-plater ble aktivert med 10 ug ovalbumin hele natten i fosfatbuffer.100 ul sera fra fisk behandlet med formuleringen pluss OVA, ISA763 pluss OVA, kun OVA, og ubehandlet ble tilsatt platene, og inkubert i 1 h ved romtemperatur. 100 ul ørret anti-IgM-antistoff ble tilsatt i hver brønn, og til slutt ble platene inkubert med et IgG antimuseantistoff. Resultatene ble analysert i en BIORAD-plateleser. Figure 4 shows the analysis of the humoral response in fish immunized with ovalbumin. ELISA plates were activated with 10 µg ovalbumin overnight in phosphate buffer. 100 µl sera from fish treated with the formulation plus OVA, ISA763 plus OVA, only OVA, and untreated were added to the plates and incubated for 1 h at room temperature. 100 µl of trout anti-IgM antibody was added to each well, and finally the plates were incubated with an IgG anti-mouse antibody. The results were analyzed in a BIORAD plate reader.

Figur 5 viser deteksjonen av viralt RNA ved RT-PCR. ASK-cellemonosjikt ble infisert med en 1:40-fortynning av ISA-viruset. På dag 2, 4 og 7 ble supernatanten samlet inn, og ekstraheringen av viralt RNA ble utført. Prøver ble analysert ved RT-PCR. Ct indikerer antallet sykluser der amplifikasjonen starter. (Jo høyere Ct, jo lavere viralt RNA er til stede i prøven). Figure 5 shows the detection of viral RNA by RT-PCR. ASK cell monolayers were infected with a 1:40 dilution of the ISA virus. On days 2, 4 and 7, the supernatant was collected and the extraction of viral RNA was performed. Samples were analyzed by RT-PCR. Ct indicates the number of cycles at which amplification starts. (The higher the Ct, the lower the viral RNA present in the sample).

Tabell 2. Proliferasjon av antigen spesifikt for regnbueørretsplenocyttene immunisert med ovalbumin (OVA). Table 2. Proliferation of antigen specific for the rainbow trout splenocytes immunized with ovalbumin (OVA).

Ovalbuminet (10 ug) ble injisert rent, med ISA 763 (Montanide OVA), og sammen med formuleringen. Etter ekstrahering av splenocyttene fra miltene ble de dyrket i 3 dager med 50 ug ovalbumin. Etter den tidsperioden ble tritiert tymidin tilsatt, og tilsetningen av tymidin ble kvantifisert 18 h senere i en scintilleringsteller. Hver verdi representerer gjennomsnittet av 1 forsøk i triplikat med 3 fisk i hver forsøksgruppe. Statistisk signifikante forskjeller ble fastslått ved enveis ANOVA sammen med en ikkeparametrisk t-test (Mann-Whitney) (* P<0,05). The ovalbumin (10 µg) was injected neat, with ISA 763 (Montanide OVA), and together with the formulation. After extracting the splenocytes from the spleens, they were cultured for 3 days with 50 µg ovalbumin. After that time period, tritiated thymidine was added, and the addition of thymidine was quantified 18 h later in a scintillation counter. Each value represents the mean of 1 experiment in triplicate with 3 fish in each experimental group. Statistically significant differences were determined by one-way ANOVA together with a non-parametric t-test (Mann-Whitney) (* P<0.05).

Tabell III: Komparativt diagram mellom den foreslåtte oppfinnelsen og konkurransen (adjuvans av markedskvalitet Montanide). Table III: Comparative chart between the proposed invention and the competition (market quality adjuvant Montanide).

HENVISNINGER REFERRALS

1. Bachrach G, Zlotkin A, Hurvitz A, Evans D, Eldar A. (2001). Recovery of Streptococcus iniae from Diseased Fish Previously Vaccinated with a Streptococcus Vaccine. Appl Envir Microbiol. 67,3756-3758. 1. Bachrach G, Zlotkin A, Hurvitz A, Evans D, Eldar A. (2001). Recovery of Streptococcus iniae from Diseased Fish Previously Vaccinated with a Streptococcus Vaccine. Appl Envir Microbiol. 67,3756-3758.

2. Bahenmann. G, Mesquita. J (1987). Oil adjuvant vaccine against foot-and-mouth disease. Biol. Centr. Panam. Fiebre, 53, 25–30 2. Bahenmann. G, Mesquita. J (1987). Oil adjuvant vaccine against foot-and-mouth disease. Biol. Centr. Panama. Fever, 53, 25–30

3. Bogdan,C, Rollinghoff. M, Diefenbach. A. (2000), Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol, 12, 64-76. Bowden T, Bricknell I, Ellis A. (2003). Fish Vaccination, an overview. Industry report IntraFish. 5-20. 3. Bogdan, C, Rollinghoff. M, Diefenbach. A. (2000), Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol, 12, 64-76. Bowden T, Bricknell I, Ellis A. (2003). Fish Vaccination, an overview. Industry report IntraFish. 5-20.

4. Chang. J, Diveley. J, Savary. J, Jensen. F (1998). Adjuvant activity of incomplete Freund's adjuvant. Ad. Drug Del. Rev., 32 ,173–186. 4. Chang. J, Diveley. J, Savary. J, Jensen. F (1998). Adjuvant activity of incomplete Freund's adjuvant. Adv. Drug Del. Rev., 32 ,173–186.

5. Choudhary. M, Hareem. S, Siddiqui. H, Anjum. S, Ali. S, Atta-ur-Rahman, Zaidi. M (2008). A benzil and isoflavone from Iris tenuifolia. Phytochemistry., 69,1880-1885. 5. Choudhary. M, Hareem. S, Siddiqui. H, Anjum. S, Ali. S, Atta-ur-Rahman, Zaidi. M (2008). A benzyl and isoflavone from Iris tenuifolia. Phytochemistry., 69, 1880-1885.

6. Christie. K, (2004). Immunization with viral antigens: infectious pancreatic necrosis. J. Virol.24, 13829-13838. 6. Christie. K, (2004). Immunization with viral antigens: infectious pancreatic necrosis. J. Virol. 24, 13829-13838.

7. Dixon. P, Hill. B (1983). Inactivation of infectious pancreatic necrosis virus for vaccine use. Journal of Fish Diseases,6-399–409. 7. Dixon. P, Hill. B (1983). Inactivation of infectious pancreatic necrosis virus for vaccine use. Journal of Fish Diseases, 6-399–409.

8. Dobos. P, Hill. B, Hallett. R, Kells. D, Becht. H, Teninges. D. (1979). 8. Dobos. P, Hill. B, Hallett. R, Kells. D, Becht. H, Tenings. D. (1979).

Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol., 32, 593-605. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol., 32, 593-605.

9. Dorson M. (1977). Vaccination trials of rainbow trout fry against infectious pancreatic necrosis. Bull Off Int Epizoot.87-405-406. 9. Dorson M. (1977). Vaccination trials of rainbow trout fry against infectious pancreatic necrosis. Bull Off Int Epizoot.87-405-406.

10. Downum. K, Dole. J, Rodríguez. E (1998) Nordihydroguaiaretic acid: inter- and intra population variation in the Sonoran Desert Creasote bush (Larrea tridentate, Zygophyllaceae). Biochem. Syst. Ecol., 15, 551-555. 10. Downum. K, Dole. J, Rodríguez. E (1998) Nordihydroguaiaretic acid: inter- and intra population variation in the Sonoran Desert Creasote bush (Larrea tridentate, Zygophyllaceae). Biochem. Syst. Ecol., 15, 551-555.

11. Droge. W. (2002), Free radicals in the physiological control of cell function. Physiol Rev., 82, 47-95. 11. Drug. W. (2002), Free radicals in the physiological control of cell function. Physiol Rev., 82, 47-95.

12. Eingenbrode. S, Trumble. J, White. K (1996). Trichome exudates and resistance to beet armyworm (Lepidoptera: Noctuidade) in Lycopersicum hirsutum f. typicum accessions. Environ. Entomol., 25, 90-95. 12. Eingenbrode. S, Trumble. J, White. K (1996). Trichome exudates and resistance to beet armyworm (Lepidoptera: Noctuidade) in Lycopersicum hirsutum f. typicum accessions. Environment. Entomol., 25, 90-95.

13. Evans. J, Klesius. P, Shoemaker. C (2004). Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine,22, 3769–3773. 13. Evans. J, Clesius. P, Shoemaker. C (2004). Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine, 22, 3769–3773.

14. Fischer U, Utke K, Somamoto T, Kollner B, Ototake M, Nakanishi T. (2006). “ Cytotoxic activities of fish leucocytes”. Fish Shellfish Immunol. 20,209-26. 14. Fischer U, Utke K, Somamoto T, Kollner B, Ototake M, Nakanishi T. (2006). "Cytotoxic activities of fish leucocytes". Fish Shellfish Immunol. 20,209-26.

15. González-Coloma. A, Wisdom. C, Rundel. P (1987). Ozone impact on the antioxidant nordihydroguairetic acid content in the external leaf resin of Larrea tridentate. Biochem. Syst. Ecol., 16, 59-64. 15. González-Coloma. Ah, Wisdom. C, Roundel. P (1987). Ozone impact on the antioxidant nordihydroguairetic acid content in the external leaf resin of Larrea tridentate. Biochem. Syst. Ecol., 16, 59-64.

16. Gupta. R (1998). Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev., 32,155–172 16. Gupta. R (1998). Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev., 32,155–172

17. Heppell J, Davis Hl. (2000), Application of DNA vaccine technology to aquaculture. Adv Drug Deliv Rev.,43,29-43. 17. Heppell J, Davis Hl. (2000), Application of DNA vaccine technology to aquaculture. Adv Drug Deliv Rev.,43,29-43.

18. Hill, B. J. and Way, K (1995) Serological classification of infectius pancreatic necrosis (IPN) virus and other birnaviruses. Annu. Rev. Fish. 5, 55-77. 18. Hill, B. J. and Way, K (1995) Serological classification of infectious pancreatic necrosis (IPN) virus and other birnaviruses. Annu. Fox. Fish. 5, 55-77.

19. Hoffman. J, Kingsolver. B, McLaughlin. S, Timmermann. B, (1983). 19. Hoffman. J, Kingsolver. B, McLaughlin. S, Carpenter. B, (1983).

“Production of resins by arid adapted Astereae” in Recent Advances in Photochemistry Phytochemical Adaptations to stress. Edited by B. Timmermann, C. Steelink and F. Loewus. Plenum Press, USA. "Production of resins by arid adapted Astereae" in Recent Advances in Photochemistry Phytochemical Adaptations to stress. Edited by B. Timmermann, C. Steelink and F. Loewus. Plenum Press, USA.

20. Hsu. H.Y, Wen. M.H. (2002), Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem., 277, 22131-22139. 20. Hsu. H. Y, Wen. M.H. (2002), Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem., 277, 22131-22139.

21. Imajoh M, Hiraya T, Oshima S (2005). Frequent occurrence of apoptosis is not associated with pathogenic infectius pancreatic necrosis virus (IPNV) during persistent infection. Fish Shellfish Immunol. 18, 163-177. 21. Imajoh M, Hiraya T, Oshima S (2005). Frequent occurrence of apoptosis is not associated with pathogenic infectious pancreatic necrosis virus (IPNV) during persistent infection. Fish Shellfish Immunol. 18, 163-177.

22. Jashes. M, González. M, López-Lastra. M, De Clerq. E, Sandino. A. (1996). Inhibitors of infectious pancreatic necrosis virus replication. Antiviral Res., 29, 309-312. 22. Jashes. M, González. M, López-Lastra. M, De Clerq. Hey, Sandino. A. (1996). Inhibitors of infectious pancreatic necrosis virus replication. Antiviral Res., 29, 309-312.

23. Jashes. M, Mlynarz. G, De Clerq. E, Sandino. A. (2000). Inhibitory effects of EICAR on infectious pancreatic necrosis virus replication. Antiviral Res., 45, 9-17. 24. Kibenge, F. S., Garate, O. N., Jonson, G., Arriagada, R., Kibenge, M. J., Wadowska, D. (2001) Isolation and identification of infectius salmon anemia virus (ISAV) from Coho salmon in Chile. Dis. Aquat. Organ.45, 9-18. 23. Jashes. M, Mlynarz. G, De Clerq. Hey, Sandino. A. (2000). Inhibitory effects of EICAR on infectious pancreatic necrosis virus replication. Antiviral Res., 45, 9-17. 24. Kibenge, F. S., Garate, O. N., Jonson, G., Arriagada, R., Kibenge, M. J., Wadowska, D. (2001) Isolation and identification of infectious salmon anemia virus (ISAV) from Coho salmon in Chile. Haze. Aquat. Organ.45, 9-18.

25. Kim. Y., Wang. P., Navarro-Villalobos. M., Rohde. B., Derrybery. J., Gin. D. (2006). Synthetic studies of complex immunostimulants from Quillaja saponaria: synthesis of the potent clinical immonoadjuvant Qs-21Aapi. J. Am. Chem. Soc., 128,11906-11915. 25. Kim. Y., Wang. P., Navarro-Villalobos. M., Rohde. B., Derrybery. J., Gin. D. (2006). Synthetic studies of complex immunostimulants from Quillaja saponaria: synthesis of the potent clinical immunoadjuvant Qs-21Aapi. J. Am. Chem. Soc., 128, 11906-11915.

26. Klesius. P, Shoemaker. C, Evans. J (2000). Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia /Oreochromis niloticus/. Aquaculture 188, 237–246. 26. Clesius. P, Shoemaker. C, Evans. J (2000). Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia /Oreochromis niloticus/. Aquaculture 188, 237–246.

27. Laing KJ, Zou JJ, Purcell MK, Phillips R, Secombes CJ, Hansen JD. (2006). “Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3”. J Immunol.177, 3939-51. 27. Laing KJ, Zou JJ, Purcell MK, Phillips R, Secombes CJ, Hansen JD. (2006). "Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3". J Immunol. 177, 3939-51.

28. Lakhanpal. P, Rai. D., Internet Journal of Medical Update 2007 Jul-Dec;2(2): www.geocities.comm/agnihotrimed/paper05 jul-dec2007.htm, 2007. 28. Lakhanpal. P, Rai. D., Internet Journal of Medical Update 2007 Jul-Dec;2(2): www.geocities.comm/agnihotrimed/paper05 jul-dec2007.htm, 2007.

29. Liu. T, Castro. S, Brasier. A. R, Jamaluddin. M, Garofalo. R. P, Casola, A., (2004). Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem., 279, 2461-2469. 29. Liu. T, Castro. S, Brazier. A. R, Jamaluddin. M, Garofalo. R.P., Casola, A., (2004). Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem., 279, 2461-2469.

30. Loehr. B, Rankin. R, Pontarollo. P, King. T, Wilson. L, Babiuk. L, Van-Drunnen. H (2001). Suppository-mediated DNA immunization induces mucosal immunity against bovine herpes virus-1 in cattle. Virology, 289, 327–333. 30. Loehr. B, Rankin. R, Pontarollo. P, King. T, Wilson. L, Babiuk. L, Van-Drunnen. H (2001). Suppository-mediated DNA immunization induces mucosal immunity against bovine herpes virus-1 in cattle. Virology, 289, 327–333.

31. Lissi. E, Modak. B, Torres. R, Escobar. J, Urzúa, A. (1999). Total antioxidant potential of resinous exudates from Heliotropium species and a comparison of the ABTS and DPPH methods. FreeRad. Res., 30, 471- 477. 31. Lissi. E, Modak. B, Torres. R, Escobar. J, Urzúa, A. (1999). Total antioxidant potential of resinous exudates from Heliotropium species and a comparison of the ABTS and DPPH methods. FreeRad. Res., 30, 471-477.

32. Londoño. J, Sierra. J.(2007). Efecto de la hesperidina sobre la captación de Hdl en células Hepáticas y evaluación de hesperidina liposomal sobre la oxidación de Ldl. Scientia et teccnica, 33, 63-66. 32. Londoño. J, Sierra. J. (2007). Effect of hesperidin on the uptake of Hdl in hepatic cells and evaluation of liposomal hesperidin on the oxidation of Ldl. Scientia et tecnica, 33, 63-66.

33. Middleton E Jr. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol.1998;439:175-82. 33. Middleton E Jr. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol. 1998;439:175-82.

34. Mjaaland, S., Rimstad, E., Falk, K., Dannevig, B. H. (1997). Genomic characterization of the virus causing infectius salmon anemia in Atlantic salmon (Salmo solar L): an orthomyxo-like virus in a teleost. J. Virol.71, 7681-7686. 34. Mjaaland, S., Rimstad, E., Falk, K., Dannevig, B.H. (1997). Genomic characterization of the virus causing infectius salmon anemia in Atlantic salmon (Salmo solar L): an orthomyxo-like virus in a teleost. J. Virol. 71, 7681-7686.

35. Migus. D, Dobos. P. (1980). Effect of ribavirin on the replication of infectious pancreatic necrosis virus in fish cell cultures. J. Gen. Virol., 47, 47-57. 35. Migus. D, Dobos. P. (1980). Effect of ribavirin on the replication of infectious pancreatic necrosis virus in fish cell cultures. J.Gen. Virol., 47, 47-57.

36. Modak. B, Torres. R, Lissi. E, Delle Monache F. (2003) Antioxidant capacity of flavonoids and a new arylphenol of the resinous exudate from Heliotropium sinuatum. Nat. Prod. Res., 17, 403-407. 36. Modak. B, Torres. R, Lissi. E, Delle Monache F. (2003) Antioxidant capacity of flavonoids and a new arylphenol of the resinous exudate from Heliotropium sinuatum. Nat. Prod. Res., 17, 403-407.

37. Modak. B, Torres. R, Wilkens. M, Urzúa. A (2004) Antibacterial activity of compounds isolated of the resinous exudates from Heliotropium sinuatum on phytopathogenic bacteria. J. Chil. Chem. Soc., 49, 1-3. 37. Modak. B, Torres. R, Wilkens. M, Urzúa. A (2004) Antibacterial activity of compounds isolated from the resinous exudates from Heliotropium sinuatum on phytopathogenic bacteria. J. Chil. Chem. Soc., 49, 1-3.

38. Modak. B, Galeno. H, Torres. R (2004) Antiviral activity on Hantavirus and apoptosis of Vero cells of natural and semi-synthetic compounds from Heliotropium filifolium resin. J. Chil. Chem. Soc., 49,143-145. 38. Modak. B, Galeno. H, Torres. R (2004) Antiviral activity on Hantavirus and apoptosis of Vero cells of natural and semi-synthetic compounds from Heliotropium filifolium resin. J. Chil. Chem. Soc., 49,143-145.

39. Modak. B, Rojas. M, Torres. R, Rodilla. J, Luebert. F. (2007). Antioxidant activity of a new aromatic geranyl derivative of the resinous exudates from Heliotropium glutinosum Phil. Molecules, 12, 1057-1063. 39. Modak. B, Rojas. M, Torres. R, Rodilla. J, Luebert. F. (2007). Antioxidant activity of a new aromatic geranyl derivative of the resinous exudates from Heliotropium glutinosum Phil. Molecules, 12, 1057-1063.

40. Modak. B, Rojas. M, Torres. R. (2009). Chemical analysis of the resinous exudate isolated from Heliotropium taltalense and evaluation of the antioxidant activity of the phenolics components and the resin in homogeneous and heterogeneous systems. Molecules, 14, 1980-1989. 40. Modak. B, Rojas. M, Torres. R. (2009). Chemical analysis of the resinous exudate isolated from Heliotropium taltalense and evaluation of the antioxidant activity of the phenolic components and the resin in homogeneous and heterogeneous systems. Molecules, 14, 1980-1989.

41. Modak. B, Salinas. M, Rodilla. J, Torres. R (2009) Study of the chemical composition of the resinous exudates isolated from Heliotropium sclerocarpum and evaluation of the antioxidant properties of the phenolic compounds and the resin. 41. Modak. B, Salinas. M, Rodilla. J, Torres. R (2009) Study of the chemical composition of the resinous exudates isolated from Heliotropium sclerocarpum and evaluation of the antioxidant properties of the phenolic compounds and the resin.

Molecules, 14, 4625-4633. Molecules, 14, 4625-4633.

42. Modak. B, Sandino. A, Torres. R. (2009). Composición veterinaria que comprende un éster senecionílico derivado de un alcohol espiránico aromático geranilado; y su uso para inhibir el desarrollo de los virus de la necrosis pancreática infecciosa y de la anemia infecciosa. Oppfinnelsespatent. Søknadsnummer 200900714. Oficina de Patentes Chilena, INAPI (CLPTO, det chilenske patentstyret). 42. Modak. B, Sandino. A, Torres. R. (2009). Composición veterinaria que comprende un ester senecionílico derivado de un alcohol espiránico aromatico geranilado; y su uso para inhibitir el desarrollo de los viruses de la necrosis pancreática infecciosa y de la anemia infecciosa. Invention patent. Application number 200900714. Oficina de Patentes Chilena, INAPI (CLPTO, the Chilean Patent Office).

43. Modak. B, Sandino. A, Arata. L, Cárdenas-Jirón. G, Torres. R (2010). Inhibitory effect of aromatic geranyl derivatives isolated from heliotropium filifolium on infectious pancreatic necrosis virus replication. Vet. Mic., 12, 53-58. 43. Modak. B, Sandino. Ah, Arata. L, Cárdenas-Jirón. G, Torres. R (2010). Inhibitory effect of aromatic geranyl derivatives isolated from heliotropium filifolium on infectious pancreatic necrosis virus replication. Know. Mic., 12, 53-58.

44. Moon, Y. J.; Wang, X.; Morris, M. E.(2006). Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology in Vitro, 20, 187-210 44. Moon, Y.J.; Wang, X.; Morris, M.E. (2006). Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology in Vitro, 20, 187-210

45. Morris. J, Martínez, C, Abdala. R, Campos. D, (1999). Adyuvantes Inmunológicos. Rev Cubana Invest Biomed.18, 130-7. 45. Morris. J, Martínez, C, Abdala. R, Campos. D, (1999). Adjuvantes Immunologicos. Rev Cubana Invest Biomed.18, 130-7.

46. Moya. J, Pizarro. H, Jashes. M, De Clerq. E, Sandino. A. (2000). In vivo effect of EICAR (5-ethylnyl-1-β-D-ribofuranosylimidazole-carboxamide) on experimental infected rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) fry with infectious necrosis virus. Antiviral Res., 48, 125-130. 46. Moya. J, Pizarro. H, Jashes. M, De Clerq. Hey, Sandino. A. (2000). In vivo effect of EICAR (5-ethylnyl-1-β-D-ribofuranosylimidazole-carboxamide) on experimentally infected rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) fry with infectious necrosis virus. Antiviral Res., 48, 125-130.

47. Nakanishi, T., Toda, H., Shibasaki, Y. y Somamoto, T., (2011). Cytotoxic T cells in teleost fish. Dev. Comp. Immunol. 35, 1317-1323. 47. Nakanishi, T., Toda, H., Shibasaki, Y. y Somamoto, T., (2011). Cytotoxic T cells in teleost fish. Dev. Comp. Immunol. 35, 1317-1323.

48. Nicklas, W. (1992). Aluminium salts. Research in Immunology. 143, 489. 48. Nicklas, W. (1992). Aluminum salts. Research in Immunology. 143, 489.

49. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr.74,418-25. 49. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr.74,418-25.

50. Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, (2004). 50. Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, (2004).

“Homologs of CD83 from elasmobranch and teleost fish”. J Immunol.173, 4553-60. 51. Paone S. (2001). Farmed and Dangerous. Human Health Risks Associated with Salmon Farming. Friends of Clayoquot Sound, Tofino, British Columbia. "Homologs of CD83 from elasmobranch and teleost fish". J Immunol. 173, 4553-60. 51. Paone S. (2001). Farmed and Dangerous. Human Health Risks Associated with Salmon Farming. Friends of Clayoquot Sound, Tofino, British Columbia.

52. Penagos. G, Barato. P, Iregui. C (2009) Sistema immune y vacunación de peces. Acta Biol. Colomb., 14, 3-24. 52. Penagos. G, Barato. P, Iregui. C (2009) Sistema immune y vacunación de peces. Acta Biol. Colomb., 14, 3-24.

53. Pinto. J. (2003). Proyecto FIP 2001-2008 “Riesgos de introducción de enfermedades infectocontagiosas en salmonidos”. Informe de Resultados. 53. Pinto. J. (2003). Proyecto FIP 2001-2008 "Riesgos de introducción de enfermedades infectocontagiosas en salmonidos". Informe de Resultados.

54. Press CM, Evensen O, Reitan LJ, Landsverk T. (1996). “Retention of furunculosis vaccine components in Atlantic salmon, Salmo salar L, following different routes of vaccine administration”. Journal of Fish Diseases. 19, 215-24. 54. Press CM, Evensen O, Reitan LJ, Landsverk T. (1996). "Retention of furunculosis vaccine components in Atlantic salmon, Salmo salar L, following different routes of vaccine administration". Journal of Fish Diseases. 19, 215-24.

55. Ramon. G. (1924). Sur la toxine et surranatoxine diphtheriques. Ann. Inst. 55. Ramon. G. (1924). Sur la toxine et surranatoxine diphtheriques. Ann. Inst.

Pasteur, 38, 1. Pasteur, 38, 1.

56. Rankin. R, Pontarollo. R, Gomis. S, Karvonen. B, Willson. P, Loehr. B, Godson. D, Babiuk. L, Hecker. R, Van Drunen Littel-van den Hurk. (2002). CpG-containing oligodeoxynucleotides augment and switch the immune responses of cattle to bovine herpesvirus-1 glycoprotein D. Vaccine, 20 ,3014–3022. 56. Rankin. R, Pontarollo. R, Gomis. S, Karvonen. B, Wilson. P, Loehr. B, Godson. D, Babiuk. L, Hecker. R, Van Drunen Littel-van den Hurk. (2002). CpG-containing oligodeoxynucleotides augment and switch the immune responses of cattle to bovine herpesvirus-1 glycoprotein D. Vaccine, 20 ,3014–3022.

57. Romalde J, Luzardo-Alvárez A, Ravelo C, Toranzo A, Blancoméndez J. (2004). Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture.236:119-129. 57. Romalde J, Luzardo-Alvárez A, Ravelo C, Toranzo A, Blancoméndez J. (2004). Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture.236:119-129.

58. Rombout JH, Huttenhuis HB, Picchietti S, Scapigliati G. (2005).” Phylogeny and ontogeny of fish leucocytes”. Fish Shellfish Immunol.19, 441-55. 58. Rombout JH, Huttenhuis HB, Picchietti S, Scapigliati G. (2005).” Phylogeny and ontogeny of fish leucocytes”. Fish Shellfish Immunol. 19, 441-55.

59. Sadasaiv, E. (1995) Immunological and pathological responses of salmonids to infectius pancreatic necrosis virus (IPNV). Annu.Rev. Fish Dis. 5, 209-223 59. Sadasaiv, E. (1995) Immunological and pathological responses of salmonids to infectious pancreatic necrosis virus (IPNV). Annu.Rev. Fish Dis. 5, 209-223

60. Saint-Jean. S, Borrego. J, Pérez-Prieto, S. (2003) Infectious pancreatic necrosis virus : biology, phatogenesis and diagnostic methods. Adv. Virus Res.62, 113-165. 61. Salgado-Miranda. C. (2006). Infectious pancreatic necrosis: an emerging disease in the Mexican trout culture. Vet. Mex.37, 467-477. 60. Saint-Jean. S, Borrego. J, Pérez-Prieto, S. (2003) Infectious pancreatic necrosis virus : biology, phatogenesis and diagnostic methods. Adv. Virus Res. 62, 113-165. 61. Salgado-Miranda. C. (2006). Infectious pancreatic necrosis: an emerging disease in the Mexican trout culture. Know. Mex. 37, 467-477.

62. Salmón Chile (2010) www.salmonchile.cl 62. Salmon Chile (2010) www.salmonchile.cl

63. Sandoval. F. (2004). “Estatus ambiental y sanitario de la acuicultura chilena”. Presentation of the Undersecretary of Fishing, Chile. Aquavision, Noruega. 63. Sand oval. F. (2004). "Estatus ambiental y sanitario de la acuicultura chilena". Presentation of the Undersecretary of Fishing, Chile. Aquavision, Norway.

64. Sato A, Okamoto N. (2008). “Characterization of the cell-mediated cytotoxic responses of isogeneic ginbuna crucian carp induced by oral immunisation with haptenmodified cellular antigens”. Fish Shellfish Immunol. 24, 684-92. 64. Sato A, Okamoto N. (2008). "Characterization of the cell-mediated cytotoxic responses of isogeneic ginbuna crucian carp induced by oral immunization with haptenmodified cellular antigens". Fish Shellfish Immunol. 24, 684-92.

65. Singh. M, O'Hagan. T (2003). Vaccines in the 21st Century: Expanding the Boundaries of Human and Veterinary Medicine. International Journal for Parasitology. 65. Singh. M, O'Hagan. T (2003). Vaccines in the 21st Century: Expanding the Boundaries of Human and Veterinary Medicine. International Journal of Parasitology.

33, 469–478. 33, 469–478.

66. Somogyi. P, Dobos. P (1980). Virus-specific RNA synthesis in cells infected by infectious pancreatic necrosis virus. J. Virol., 33, 129-139. 66. Somogyi. P, Dobos. P (1980). Virus-specific RNA synthesis in cells infected by infectious pancreatic necrosis virus. J. Virol., 33, 129-139.

67. Suetake H, Araki K, Suzuki Y. (2004). “Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4”. Immunogenetics. 56,368-74. 67. Suetake H, Araki K, Suzuki Y. (2004). "Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4". Immunogenetics. 56,368-74.

68. Thorud, K. and Djupvik H. (1988). Infectius anemia in Atlantic salmon (salmo solar L).. Bull. Eur. Assoc. Fish Pathol.8, 109-111. 68. Thorud, K. and Djupvik H. (1988). Infectious anemia in Atlantic salmon (salmo solar L).. Bull. Eur. Assoc. Fish Pathol. 8, 109-111.

69. Torres. R, Villarroel. L, Urzúa. A, Delle Monache. F, Delle Monache. G, Gacsbaitz. E., (1994), Filifolinol a rearranged geranyl aromatic derivative from the resinous exudates of Heliotropium filifolium. Phytochem., 36, 249-256. 69. Torres. R, Villarroel. L, Urzúa. A, Delle Monache. F, Delle Monache. G, Gacsbaitz. E., (1994), Filifolinol a rearranged geranyl aromatic derivative from the resinous exudates of Heliotropium filifolium. Phytochem., 36, 249-256.

70. Torres. R, Modak. B, Urzúa. A, Villarroel. L, Delle Monache. F, Sánchez-Ferrando. F. (1996), Flavonoides del exudado resinoso de Heliotropium sinuatum. Bol. Soc. Chil. Quim., 41, 195-197. 70. Torres. R, Modak. B, Urzúa. A, Villarroel. L, Delle Monache. F, Sánchez-Ferrando. F. (1996), Flavonoides del exudado resinoso de Heliotropium sinuatum. Bol. Soc. Chile. Chem., 41, 195-197.

71. Torre. R, Galeno. H, Modak. B. (2007). Effect on Hantavirus replication of resins from Heliotropium species and other selected compounds. Natural Product Communications, 3, 525-528. 71. Tower. R, Galeno. H, Modak. B. (2007). Effect on Hantavirus replication of resins from Heliotropium species and other selected compounds. Natural Product Communications, 3, 525-528.

72. Torres. P, Aedo. E, Figueroa. L, Siegmund. I, Silva. R, Navarrete. N, Puga. S, Marín. F y Aedo. E (2000). “Infección por helmintos parásitos en salmón coho, Oncorhynchus kisutch, durante su retorno al río Simpson, Chile”. Bol. Chil. Parasitol., 55, Nº 1-2. 72. Torres. P, Aedo. E, Figueroa. L, Siegmund. I, Silva. R, Navarrete. N, Puga. S, Marin. F y Aedo. E (2000). "Infection by helminth parasites in coho salmon, Oncorhynchus kisutch, during its return to the Simpson river, Chile". Bol. Chile. Parasitol., 55, Nº 1-2.

73. Urzúa. A, Mendoza. L (1993), Composición química del exudado resinoso de Haplopappus velutinus. Bol. Soc. Chil. Quim., 38, 89-93. 73. Urzúa. A, Mendoza. L (1993), Composición química del exudado resinoso de Haplopappus velutinus. Bol. Soc. Chile. Chem., 38, 89-93.

74. Urzúa. A, Villarroel. L, Torres. R, Teillier. S. (1993), Flavonoids of the resinous exudate of chilean Heliotropium species from Cochranea section. Bioch. Sist. Ecol., 21, 744-749. 74. Urzúa. A, Villarroel. L, Torres. R, Teillier. S. (1993), Flavonoids of the resinous exudate of chilean Heliotropium species from Cochranea section. Bioch. Last. Ecol., 21, 744-749.

75. Urzúa. A, Modak. B, Villarroel. L Torres. R, Andrade. L (1998), Comparative flavanoid composition of the resinous exudates from Heliotropium chenopodiaceum var. chenopodiaceum and H. chenopodiaceum var. ericoideum. Bioch. Sist. Ecol.,26, 127-130. 75. Urzúa. Ah, Modak. B, Villarroel. L Torres. R, Andrade. L (1998), Comparative flavanoid composition of the resinous exudates from Heliotropium chenopodiaceum var. chenopodiaceum and H. chenopodiaceum var. ericoideum. Bioch. Last. Ecol., 26, 127-130.

76. Urzúa. A, Modak. B, Villarroel. L, Torres. R, Andrade. L, Mendza. L, Wilkens. M (2000), External flavonoids from Heliotropium megalanthum and H. Huascoense (Boraginaceae). Chemotaxonomic considerations. Bol. Soc. Chil. Quim., 45, 23-29. 77. Urzúa. A, Modak. B, Torres. R (2001). Identification of a new aromatic geranyl derivative in the resinous exudates of Heliotropium filifolium (Boraginaceae). Bol. Soc. Chil. Quim., 46, 175-178. 76. Urzúa. Ah, Modak. B, Villarroel. L, Torres. R, Andrade. L, Mendza. L, Wilkens. M (2000), External flavonoids from Heliotropium megalanthum and H. Huascoense (Boraginaceae). Chemotaxonomic considerations. Bol. Soc. Chile. Chem., 45, 23-29. 77. Urzúa. Ah, Modak. B, Torres. R (2001). Identification of a new aromatic geranyl derivative in the resinous exudates of Heliotropium filifolium (Boraginaceae). Bol. Soc. Chile. Quim., 46, 175-178.

78. Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K. (2008). “Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus”. Dev Comp Immunol.32,239-52. 78. Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K. (2008). "Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus". Dev Comp Immunol.32,239-52.

79. Vandenberg. G (2004). Oral vaccine for finfish: academic theory or commercial reality?. Anim Health Res Rev.5,301-304. 79. Vandenberg. G (2004). Oral vaccine for finfish: academic theory or commercial reality?. Anim Health Res Rev.5,301-304.

80. Villarroel. L, Torres. R, Urzúa. A, Reina. M, Cabrera. R, González-Coloma. A (2001). Heliotropium huascoense resin exudate: Chemical Constituents and Defensive Properties, 64, 1123-1126. 80. Villarroel. L, Torres. R, Urzúa. Ah, Reina. M, Cabrera. R, González-Coloma. A (2001). Heliotropium huascoense resin exudate: Chemical Constituents and Defensive Properties, 64, 1123-1126.

81. Wolf, K. (1988) Infectius pancreatic necrosis. En Comstock Publishing Associate (ed) Fish Viruses and Fish Diseases, Cornell University Press.115-157. 82. Yoder, J, Litman G. (2000). The zebrafish fth1, slc3a2, men1, pc, fgf3, andcycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Gene, 261,235-242. 81. Wolf, K. (1988) Infectious pancreatic necrosis. A Comstock Publishing Associate (ed) Fish Viruses and Fish Diseases, Cornell University Press.115-157. 82. Yoder, J, Litman G. (2000). The zebrafish fth1, slc3a2, men1, pc, fgf3, andcycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Genes, 261,235-242.

83. Yoshida. Y, Maruyama. M, Fujita. T, Arai. N, Hayashi. R, Araya. J, Matsui. S, Yamashita. N, Sugiyama. E, Kobayashi. M. (1999). Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells. Am J Physiol., 276, L900-908. 83. Yoshida. Y, Maruyama. M, Fujita. T, Arai. N, Hayashi. R, Araya. J, Matsui. S, Yamashita. N, Sugiyama. Er, Kobayashi. M. (1999). Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells. Am J Physiol., 276, L900-908.

84. Zhang. B, Hirahashi. J, Cullere. X, Mayadas. T. (2003). Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem., 278, 28443-28454. 84. Zhang. B, Hirahashi. J Culler. X, Mayadas. T. (2003). Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem., 278, 28443-28454.

Claims (4)

P a t e n t k r a v 1. Formulering med immunstimulerende/adjuvant aktivitet, der den omfatter: a) (-)-alpinone, hvis strukturelle formel er: P a t e n t requirement 1. Formulation with immunostimulating/adjuvant activity, where it comprises: a) (-)-alpinone, whose structural formula is: der R1er OH, og R2er OCH3, med en optisk aktivitet på [ α]25ºD= -28,1 (c.0.215,CHCl3), og en S-konfigurasjon av karbon 2 og 3; b) dimetylsulfoksid; og c) saltløsning. where R1 is OH, and R2 is OCH3, with an optical activity of [ α]25ºD= -28.1 (c.0.215,CHCl3), and an S configuration of carbons 2 and 3; b) dimethyl sulfoxide; and c) salt solution. 2. Formulering ifølge krav 1, der den omfatter: a) (-)-alpinone: 0,05 % vekt/volum til 0,5 % vekt/volum b) DMSO: 0,8 til 8,0 % vekt/volum, og c) Saltløsning: Nødvendig mengde for å fullføre 100 % volum. 2. Formulation according to claim 1, where it comprises: a) (-)-alpinone: 0.05% w/v to 0.5% w/v b) DMSO: 0.8 to 8.0% w/v, and c) Saline: Amount required to complete 100% volume. 3. Formulering med immunstimulerende/adjuvant aktivitet ifølge krav 1 eller 2, for anvendelse som en vaksine for virveldyr. 3. Formulation with immunostimulatory/adjuvant activity according to claim 1 or 2, for use as a vaccine for vertebrates. 4. Formulering ifølge krav 3, der nevnte virveldyre er en salmonid art.4. Formulation according to claim 3, wherein said vertebrate is a salmonid species.
NO20140763A 2013-06-18 2014-06-18 Formulation with immunostimulant / adjuvant activity and use as vaccines for vertebrates NO343949B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CL2013001774A CL2013001774A1 (en) 2013-06-18 2013-06-18 Formulation with immunostimulant / adjuvant activity comprising alpinone, dimethyl sulfoxide and physiological serum; use of said formulation to prepare vaccines for vertebrates.

Publications (2)

Publication Number Publication Date
NO20140763A1 NO20140763A1 (en) 2014-12-19
NO343949B1 true NO343949B1 (en) 2019-07-22

Family

ID=51266802

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20140763A NO343949B1 (en) 2013-06-18 2014-06-18 Formulation with immunostimulant / adjuvant activity and use as vaccines for vertebrates

Country Status (4)

Country Link
CA (1) CA2854513A1 (en)
CL (1) CL2013001774A1 (en)
GB (1) GB2519828B (en)
NO (1) NO343949B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2013001774A1 (en) * 2013-06-18 2014-08-01 Univ Santiago Chile Formulation with immunostimulant / adjuvant activity comprising alpinone, dimethyl sulfoxide and physiological serum; use of said formulation to prepare vaccines for vertebrates.
CN114748617B (en) * 2022-03-24 2024-04-16 华南农业大学 Subunit vaccine of largemouth black bass iridovirus, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010600A2 (en) * 1998-08-24 2000-03-02 Maxim Pharmaceuticals, Inc. Activation and protection of t-cells (cd4+ and cd8+) using an h¿2? receptor agonist and other t-cell activating agents
WO2010078556A1 (en) * 2009-01-05 2010-07-08 Epitogenesis Inc. Adjuvant compositions and methods of use
WO2012178118A1 (en) * 2011-06-24 2012-12-27 Epitogenesis Inc. Pharmaceutical compositions, comprising a combination of select carriers, vitamins, tannins and flavonoids as antigen-specific immuno-modulators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2013001774A1 (en) * 2013-06-18 2014-08-01 Univ Santiago Chile Formulation with immunostimulant / adjuvant activity comprising alpinone, dimethyl sulfoxide and physiological serum; use of said formulation to prepare vaccines for vertebrates.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010600A2 (en) * 1998-08-24 2000-03-02 Maxim Pharmaceuticals, Inc. Activation and protection of t-cells (cd4+ and cd8+) using an h¿2? receptor agonist and other t-cell activating agents
WO2010078556A1 (en) * 2009-01-05 2010-07-08 Epitogenesis Inc. Adjuvant compositions and methods of use
WO2012178118A1 (en) * 2011-06-24 2012-12-27 Epitogenesis Inc. Pharmaceutical compositions, comprising a combination of select carriers, vitamins, tannins and flavonoids as antigen-specific immuno-modulators

Also Published As

Publication number Publication date
CL2013001774A1 (en) 2014-08-01
GB2519828A (en) 2015-05-06
CA2854513A1 (en) 2014-12-18
GB2519828B (en) 2018-06-20
NO20140763A1 (en) 2014-12-19
GB201410879D0 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Novriadi Vibriosis in aquaculture
Zhu et al. Astragalus polysaccharides, chitosan and poly (I: C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco
Harikrishnan et al. Fish health aspects in grouper aquaculture
Hoare et al. Efficacy and safety of a non-mineral oil adjuvanted injectable vaccine for the protection of Atlantic salmon (Salmo salar L.) against Flavobacterium psychrophilum
Takano et al. The efficacy of five avirulent Edwardsiella tarda strains in a live vaccine against Edwardsiellosis in Japanese flounder, Paralichthys olivaceus
Yang et al. Compound Chinese herbal medicinal ingredients can enhance immune response and efficacy of RHD vaccine in rabbit
DK179845B1 (en) Veterinary composition of marine algae and andrographis sp extracts, which can be used to treat infections in fish
Zhai et al. Evaluation of combination effects of Astragalus polysaccharides and florfenicol against acute hepatopancreatic necrosis disease-causing strain of Vibrio parahaemolyticus in Litopenaeus vannamei
Liu et al. Immunological responses and protection in Chinese giant salamander Andrias davidianus immunized with inactivated iridovirus
Subramani et al. Prophylactic and prevention methods against diseases in aquaculture
Zhou et al. C7: A CpG oligodeoxynucleotide that induces protective immune response against megalocytivirus in Japanese flounder (Paralichthys olivaceus) via toll-like receptor 9-mediated signaling pathway
Porter et al. In-vivo analysis of Protec™ and β-glucan supplementation on innate immune performance and intestinal health of rainbow trout
Wei et al. Protective effects of β-glucan as adjuvant combined inactivated Vibrio harveyi vaccine in pearl gentian grouper
NO343949B1 (en) Formulation with immunostimulant / adjuvant activity and use as vaccines for vertebrates
Kordon et al. Adaptive immune responses in channel catfish exposed to Edwardsiella ictaluri live attenuated vaccine and wild type strains through the specific gene expression profiles
US10987393B2 (en) Method for preventing and controlling bacterial infections in salmonid fish using Quillaja saponaria extracts
Jung et al. Efficacy of saponin-based inactivated rock bream iridovirus (RBIV) vaccine in rock bream (Oplegnathus fasciatus)
Fan et al. Development of an inactivated iridovirus vaccine against turbot viral reddish body syndrome
Liu et al. Effects of propolis on the immune enhancement of the formalin‐inactivated Aeromonas salmonicida vaccine
Balasubramanian et al. Immunostimulatory effects of N‐Oxide–Quaternary alkaloid fraction of a marine C hlorophycean macroalga in the striped murrel, C hanna striata (B loch)
Yu et al. The immune enhancement effect of CpG-ODNs on the vaccine of inactivated Vibrio harveyi in tiger puffer (Takifugu rubripes)
Zhao et al. The immunosuppressive effects of continuous CpG ODNs stimulation in chinese mitten crab, Eriocheir sinensis
US10987392B2 (en) Method for preventing and controlling viral infections in salmonid fish using Quillaja saponaria extracts
Abotaleb et al. Efficacy of combined inactivated vaccines against Vibrio alginolyticus and Streptococcus agalactiae infections in Nile tilapia in Egypt
Abdy et al. Comparative effect of Freund's adjuvant and Aloe vera L. gel on the expression of TNF‐α and IL‐1β in vaccinated Cyprinus carpio L. with Aeromonas hydrophila C. bacterin

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees