NO337441B1 - Beamed beams of solid cross-section and method of making such beam. - Google Patents

Beamed beams of solid cross-section and method of making such beam. Download PDF

Info

Publication number
NO337441B1
NO337441B1 NO20101351A NO20101351A NO337441B1 NO 337441 B1 NO337441 B1 NO 337441B1 NO 20101351 A NO20101351 A NO 20101351A NO 20101351 A NO20101351 A NO 20101351A NO 337441 B1 NO337441 B1 NO 337441B1
Authority
NO
Norway
Prior art keywords
elements
prestressed
middle element
shear
outer elements
Prior art date
Application number
NO20101351A
Other languages
Norwegian (no)
Other versions
NO20101351A1 (en
Inventor
Arne Vaslag
Original Assignee
Arne Vaslag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arne Vaslag filed Critical Arne Vaslag
Priority to NO20101351A priority Critical patent/NO337441B1/en
Priority to CA2812497A priority patent/CA2812497C/en
Priority to PCT/NO2011/000262 priority patent/WO2012044173A1/en
Priority to EP11829648.2A priority patent/EP2622147B1/en
Publication of NO20101351A1 publication Critical patent/NO20101351A1/en
Publication of NO337441B1 publication Critical patent/NO337441B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/122Laminated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members
    • E04C3/185Synthetic reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures

Description

Oppfinnelsen gjelder forspente bjelker av massive tverrsnitt hvor bærende elementer består av to bøye-forspente, symmetriske eller tilnærmet symmetriske ytre elementer som er sammenføyd i forhøyet tilstand. The invention relates to prestressed beams of massive cross-section where the load-bearing elements consist of two bending-prestressed, symmetrical or nearly symmetrical outer elements which are joined in an elevated state.

Oppfinnelsen gjelder dessuten framgangsmåte for tilvirkning av slike forspente bjelker. The invention also applies to a method for the production of such prestressed beams.

Med "ytre elementer" menes i denne sammenheng langstrakte massive elementer av elastisk materiale, f.eks. treverk eller kompositter, som har form og egenskaper som gjør det egnet til bruk i bærebjelker. In this context, "external elements" means elongated massive elements of elastic material, e.g. wood or composites, which have a form and properties that make it suitable for use in support beams.

Bakgrunn Background

Det er vanlig å utforme bjelker og dekker med tverrsnittsformer som gir god material-utnyttelse, It is common to design beams and decks with cross-sectional shapes that provide good material utilization,

f. eks. H-form og l-form. Det er også vanlig å utføre bjelker med overhøyde for å oppnå reduksjon i resulterende nedbøyning hvor deformasjonskravene er avgjørende for dimensjoneringen. e.g. H-shape and l-shape. It is also common to make beams with an overhang to achieve a reduction in the resulting deflection, where the deformation requirements are decisive for the dimensioning.

Fra produksjon av betong er det kjent å utføre støpte bjelker og dekke-elementer med forspent armering for å oppnå overhøyde ogøket bæreevne, f.eks. hulldekke From the production of concrete, it is known to carry out cast beams and cover elements with prestressed reinforcement to achieve extra height and increased load-bearing capacity, e.g. hole cover

Fra tidligere patenterte løsninger vises til US patent nr.4 754 718, US patent nr. 2 039 398, DE 2 335 998, GB patent nr. 1 305 645, CH patent nr. 663 980 og norsk patent nr. 162124. From previously patented solutions, reference is made to US patent no. 4 754 718, US patent no. 2 039 398, DE 2 335 998, GB patent no. 1 305 645, CH patent no. 663 980 and Norwegian patent no. 162124.

GB patent nr. 1 305 645 omhandler en tresjikts struktur for en bjelke hvor to ytre sjikt i forhøyet tilstand blir låst sammen av et midtre sjikt bestående av en form for spikermatte som har spiker ragende ut på begge sider, som tvinges inn i de respektive ytre sjikt og derved låser disse i denønskede krumning. GB Patent No. 1 305 645 deals with a three-layer structure for a beam where two outer layers in an elevated state are locked together by a middle layer consisting of a form of nail mat having nails protruding on both sides, which are forced into the respective outer layer and thereby locks these in the desired curvature.

US 4 745 718 beskriver en tosjikts bjelke som limes sammen med ønsket krumning. US 4 745 718 describes a two-layer beam which is glued together with the desired curvature.

CH patent nr. 663 980 beskriver en flersjikts (tresjikts) bjelke som settes sammen av et antall sjikt (lameller) og gis en ønsket forhøyning eller krumning som i likhet med ovenfor nevnte løsning låses ved bruk av lim mellom sjiktene. CH patent no. 663 980 describes a multi-layer (three-layer) beam which is assembled from a number of layers (slats) and given a desired elevation or curvature which, like the solution mentioned above, is locked using glue between the layers.

Formål Purpose

Hovedformålet med oppfinnelsen er å utvikle en metode for forspenning og sammenføyning av massive bjelker for bruk i bygningsmessige konstruksjoner og anlegg som gir optimal materialutnyttelse samt fleksibilitet i valg av tverrsnittsform, slik at tilgjengelige råvarer kan utnyttes bedre. The main purpose of the invention is to develop a method for prestressing and joining massive beams for use in building constructions and facilities that provides optimal material utilization as well as flexibility in the choice of cross-sectional shape, so that available raw materials can be used better.

Det er videre et vesentlig formål er å kunne proporsjonere forspenningen slik at initialdeformasjonen (dvs. overhøyden) tilpasses aktuelle funksjonskrav m.h.t. brukerbehov, spennvidde, belastning, offentlige krav, etc. It is also an essential purpose to be able to proportion the preload so that the initial deformation (i.e. the overhang) is adapted to current functional requirements in terms of user needs, bandwidth, load, public requirements, etc.

Oppfinnelsen The invention

I følge oppfinnelsen kan dette oppnås med en løsning som i prinsipp framgår av patentkrav 1, hvor to ytre bjelkeelementer sammenføyes med hjelp av et midtre element etter forhøyning og innbyrdes glidning mellom elementene. According to the invention, this can be achieved with a solution which in principle appears from patent claim 1, where two outer beam elements are joined with the help of a middle element after elevation and mutual sliding between the elements.

I henhold til et annet aspekt angår foreliggende oppfinnelse tilvirkning av en slik bjelke som nærmere angitt i patentkrav 5. According to another aspect, the present invention relates to the manufacture of such a beam as specified in patent claim 5.

Med "midtre element" menes i denne sammenheng et skjæroverførende element som har form og egenskaper som gjør det egnet til å holde de ytre elementene sammen til en forspent, stiv struktur. In this context, "middle element" means a shear-transmitting element that has a shape and properties that make it suitable for holding the outer elements together into a prestressed, rigid structure.

Den omsøkte løsning skiller seg fra tidligere kjente teknikker og patenter ved at den gir muligheter for nye tverrsnittsformer, høyere lastkapasitet, uten økning i materialforbruket. The requested solution differs from previously known techniques and patents in that it provides opportunities for new cross-sectional shapes, higher load capacity, without an increase in material consumption.

Midtre element kan produseres av samme materiale som de ytre elementene eller av et materiale med høyere skjærkapasitet. Sammenføyningen kan utføres mekanisk ved at ytre elementer og midtre element "går i lås" ved gitt forhøyning. The middle element can be produced from the same material as the outer elements or from a material with a higher shear capacity. The joining can be carried out mechanically by the outer elements and middle element "locking" at a given elevation.

Den ferdige, skjærforspente bjelken har i ubelastet tilstand spenningsreserve og overhøyde som kan proporsjoneres i forhold til på forhånd gitte funksjonskrav. F.eks. kan forspenningen dimensjoneres slik at resulterende nedbøyning for normalt opptredende belastning på bjelken blir minimal eller tilnærmet null. For bjelker hvor deformasjonskravene er avgjørende for dimensjoneringen, f.eks. bjelker i dekkeelementer av tre, gir metoden mulighet for vesentlig større spennvidder enn tradisjonelle løsninger. The finished, shear-prestressed beam has, in an unloaded state, a tension reserve and overhang that can be proportioned in relation to pre-given functional requirements. E.g. the prestress can be dimensioned so that the resulting deflection for normally occurring load on the beam is minimal or almost zero. For beams where the deformation requirements are decisive for the dimensioning, e.g. beams in wooden covering elements, the method allows for significantly larger spans than traditional solutions.

Eksempelbeskrivelse Example description

Oppfinnelsen er illustrert i de medfølgende tegninger, hvor: The invention is illustrated in the accompanying drawings, where:

Figur IA viser skjematisk sideriss av sammenstilte bjelkeelementer i ubelastet tilstand. Figure IA shows a schematic side view of assembled beam elements in an unloaded state.

Figur IB viser elementene i figur IA etter forhøyning, innbyrdes glidning, sammenføyning og avlastning. Figur 1C viser prinsipp-detalj av midtre element utført av samme materiale som de ytre elementene og produsert med form som gir mekanisk kraftoverføring. Figur ID viser prinsipp-detalj av midtre element utført av et materiale med høyere skjærkapasitet enn de ytre elementene, produsert med form som gir mekanisk kraftoverføring. Figure IB shows the elements in Figure IA after elevation, mutual sliding, joining and relief. Figure 1C shows the principle detail of the middle element made of the same material as the outer elements and produced with a shape that provides mechanical power transmission. Figure ID shows the principle detail of the middle element made of a material with a higher shear capacity than the outer elements, produced with a shape that provides mechanical power transmission.

Figur 1E viser den ferdige bjelken fra figur IB påført jevnt fordelt ytre belastning. Figure 1E shows the finished beam from Figure IB applied to a uniformly distributed external load.

Figur 1F viser prinsipp-diagrammer for bøye- og normal-spenninger i den ferdige bjelken fra figur 1 E. Figure 1F shows principle diagrams for bending and normal stresses in the finished beam from Figure 1 E.

Figur 1G viser prinsipp-diagrammer for skjær-spenninger i den ferdige bjelken fra figur 1 E. Figure 1G shows principle diagrams for shear stresses in the finished beam from Figure 1E.

Figur 2A-B viser eksempler på aktuelle tverrsnitt for forspente bærebjelker av massive tverrsnitt. Figure 2A-B shows examples of current cross-sections for prestressed support beams of solid cross-section.

Figur 3A-B viser perspektivskisser av aktuelle bærebjelker av massive tverrsnitt. Figure 3A-B shows perspective sketches of relevant support beams of solid cross-section.

Figur 4A-C viser eksempler på dekke-elementer hvor bærebjelken i figur 2A er benyttet. Figure 4A-C shows examples of covering elements where the support beam in Figure 2A is used.

Tegnforklaringer Symbol explanations

Zi = nøytralakse nedre element, Z2= nøytralakse øvre element, Z0= nøytralakse ferdig bjelke, Zi = neutral axis lower element, Z2= neutral axis upper element, Z0= neutral axis finished beam,

a = avstand mellom Zaog Z2, t = netto tykkelse midtre element, f = bøye- og normal-spenning og t= skjærspenning. a = distance between Za and Z2, t = net thickness middle element, f = bending and normal stress and t = shear stress.

Med nøytralakse menes den posisjon i en bjelke som får null lengdeendring når bjelken utsettes for et elastisk bøyemoment. By neutral axis is meant the position in a beam that gets zero change in length when the beam is subjected to an elastic bending moment.

Figur 1 Prinsippskisser Figure 1 Principle sketches

Figur IA viser skjematisk sideriss av bjelkeelementene 10,11 og 12 i ubelastet tilstand. Figure IA shows a schematic side view of the beam elements 10, 11 and 12 in an unloaded state.

Ytre elementer 10 og 12 er symmetriske eller tilnærmet symmetriske om akse Z0. Dette gir gunstig spenningsfordeling over tverrsnittet og dermed god materialutnyttelse. Elementene kan f.eks. være utført av trevirke, kompositt, eller annet elastisk materiale. Midtre element 11 kan utføres av samme materialtype som de ytre elementene (figur 1C) eller av et materiale med større skjærkapasitet (figur ID). Figur IB viser elementene i figur IA etter forhøyning, sammenføyning og avlastning. Forhøyningen, som utføres med en hydraulisk presse eller liknende kjent utstyr, medfører glidning i kontaktflatene mellom elementene. Ved sammenføyning og avlastning oppstår en skjær-strøm mellom midtre element 11 og de ytre elementene 10 og 12, angitt med piler i figur IB. Skjæroverføringen skjer mekanisk med en tilpasset overflatestruktur. Figur 1C-D viser prinsippdetaljer av midtre element, utformet med overflatestruktur som medfører at elementene 10,11 og 12 låses sammen til en forspent, stiv struktur ved gitt forhøyning. Outer elements 10 and 12 are symmetrical or approximately symmetrical about axis Z0. This provides favorable stress distribution over the cross-section and thus good material utilization. The elements can e.g. be made of wood, composite or other elastic material. Middle element 11 can be made of the same type of material as the outer elements (figure 1C) or of a material with greater shear capacity (figure ID). Figure IB shows the elements in Figure IA after elevation, joining and relief. The elevation, which is carried out with a hydraulic press or similar known equipment, causes sliding in the contact surfaces between the elements. During joining and unloading, a shear flow occurs between the middle element 11 and the outer elements 10 and 12, indicated by arrows in figure IB. The shear transfer occurs mechanically with an adapted surface structure. Figure 1C-D shows principle details of the middle element, designed with a surface structure which means that the elements 10, 11 and 12 are locked together into a pre-stressed, rigid structure at a given elevation.

I tillegg til skjæroverførende funksjon (forspenning) gir midtre element enøkning av bjelkens lastkapasitet ved at avstanden mellom nøytralaksene Zaog Z2blir større. For noen bjelketyper og dimensjoner utgjør denne kapasitetsøkningen over 50 %, se vedlagte regne-eksempel. In addition to the shear-transmitting function (prestressing), the middle element increases the beam's load capacity by increasing the distance between the neutral axes Za and Z2. For some beam types and dimensions, this increase in capacity amounts to over 50%, see the attached calculation example.

Dersom midtre element utføres av et tilstrekkelig hardt materiale, kan skjæroverføring (forspenning) oppnås ved at elementene presses sammen i forhøyet tilstand. Bjelken kan dermed produseres uten fresing. If the middle element is made of a sufficiently hard material, shear transfer (prestressing) can be achieved by pressing the elements together in an elevated state. The beam can thus be produced without milling.

Midtre element kan framstilles i korte lengder og f. eks. støpes i form. Det forutsettes at utformingen tillater glidning mellom elementene når forhøyningen pågår. Middle element can be produced in short lengths and e.g. cast into shape. It is assumed that the design allows sliding between the elements when the elevation is in progress.

Figur 1E viser den ferdige bjelken etter at ytre last er påført. Figure 1E shows the finished beam after the external load has been applied.

Figur 1F viser prinsipp-diagrammer for bøye- og normal-spenninger fra: Figure 1F shows principle diagrams for bending and normal stresses from:

(1) forhøyning/ avlastning, (2) spenninger fra ytre last og (3) resulterende spenning. (1) elevation/relief, (2) stresses from external load and (3) resultant stress.

Ved høy forspenning kan symmetriske tverrsnitt oppnå tilnærmet plastisk spenningsfordeling etter at jevnt fordelt ytre last er påført - uten plastisering av materialet. Dette gir maksimal utnyttelse av bjelketverrsnittet med hensyn til lastkapasitet. I praksis vil en redusert overhøyde være mest aktuelt, og deformasjonskrav avgjørende for valg av forspenningen. At high prestress, symmetrical cross-sections can achieve an approximately plastic stress distribution after an evenly distributed external load has been applied - without plasticizing the material. This provides maximum utilization of the beam cross-section with regard to load capacity. In practice, a reduced overhang will be most relevant, and deformation requirements are decisive for the choice of prestressing.

Figur 1G viser prinsipp-diagrammer for skjær-spenninger fra: Figure 1G shows principle diagrams for shear stresses from:

(1) forhøyning/ avlastning, (2) spenninger fra ytre last og (3) resulterende spenning. (1) elevation/relief, (2) stresses from external load and (3) resultant stress.

Av prinsippdiagrammene 1F framgår at bjelkens bøyespenningsreserve tilsvarer spenningsnivået etter forhøyning og avlastning. From the principle diagrams 1F it appears that the beam's bending stress reserve corresponds to the stress level after elevation and relief.

Av prinsippdiagrammene 1G framgår at skjær-kapasiteten reduseres tilsvarende resulterende skjær-strøm etter forhøyning og avlastning. Bjelken må derfor dimensjoneres for summen av skjær-påkjenning fra forhøyning/avlastning og fra ytre last. For aktuelle bjelketyper og spennvidder har denne reduksjon liten praktisk betydning. From the principle diagrams 1G it appears that the shear capacity is reduced correspondingly to the resulting shear flow after elevation and relief. The beam must therefore be dimensioned for the sum of shear stress from elevation/relief and from external load. For relevant beam types and spans, this reduction has little practical significance.

Figur 2 Eksempler på bjelketverrsnitt Figure 2 Examples of beam cross-sections

I figur 2A er vist en massiv firkantbjelke som består av de ytre elementene 21 og 23, og midtre element 22. Bjelken er sammenføyd under forspenning med hjelp av tilpasset overflatestruktur/ pressing. Figure 2A shows a massive square beam consisting of the outer elements 21 and 23, and middle element 22. The beam is joined under prestressing with the help of adapted surface structure/pressing.

I figur 2B er vist en massiv bjelke med tilnærmet sirkulært tverrsnitt (f. eks. rundtømmer) Figure 2B shows a massive beam with an approximately circular cross-section (e.g. round timber)

som består av de ytre elementene 24 og 26, og delt midtre element 25. which consists of the outer elements 24 and 26, and split middle element 25.

Bjelken er sammenføyd under forspenning med hjelp av tilpasset overflatestruktur/ pressing. The beam is joined under prestressing with the help of adapted surface structure/pressing.

Figur 3 Perspektivskisser bjelker Figure 3 Perspective sketches of beams

Figurene 3A til 3B viser alle eksempler på massive bjelker av tre. Figures 3A to 3B show all examples of solid wooden beams.

Figur 4 Bærebjelke i dekkeelementer Figure 4 Supporting beam in cover elements

Eksempler på dekkeelementer basert på bærende prinsipp tilsvarende figur 2A. Examples of cover elements based on a supporting principle corresponding to Figure 2A.

Figur 4A viser et eksempel på "ribbedekke", figur 4B viser et eksempel på "bjelkedekke" mens figur 4C viser et eksempel på "massivdekke". Figure 4A shows an example of "rib deck", Figure 4B shows an example of "beam deck" while Figure 4C shows an example of "solid deck".

Regneeksempel Calculation example

Fritt opplagt bjelke med jevnt fordelt last og spennvidde L = 6m. Freely laid beam with evenly distributed load and span L = 6m.

Råmaterial: Rundtømmer (d.v.s. begrenset tilgang vedøkende dimensjoner). Raw material: Round timber (i.e. limited access to increasing dimensions).

Ytre elementer: Delt rundtømmer med diameter 250 mm. External elements: Split round timber with a diameter of 250 mm.

Midtre element: Rektangulær, netto tykkelse = t Middle element: Rectangular, net thickness = t

Tverrsnitt: Se fig. 2B. Cross section: See fig. 2B.

Basisverdi: Lastkapasitet beregnet for midtre element t=0 og forspenning Base value: Load capacity calculated for middle element t=0 and prestress

som tilsvarer en overhøyde på L/100, dvs. 6 cm etter avlastning. which corresponds to an overhead height of L/100, i.e. 6 cm after unloading.

Kapasitetsøkninger for ulike tykkelser midtre element: Capacity increases for different thicknesses of middle element:

Tykkelse t=30 mm: ca.40 %økning Thickness t=30 mm: approx. 40% increase

Tykkelse t=40 mm: ca.55 %økning Thickness t=40 mm: approx.55% increase

Tykkelse t=50mm: ca.70 %økning Thickness t=50mm: approx. 70% increase

Fordeler ved foreliggende oppfinnelse Advantages of the present invention

Bjelken som foran beskrevet skiller seg fra tidligere kjente teknikker og patenterte løsninger ved at: The beam as described above differs from previously known techniques and patented solutions in that:

1. Massive bjelker kan produseres med ønsket forspenning uten klebing/ liming, se fig. 2A-B. 1. Massive beams can be produced with the desired prestressing without gluing, see fig. 2A-B.

2. Metoden er velegnet for bjelker i dekkeelementer med større spennvidder, se fig. 4A-C. 2. The method is suitable for beams in cover elements with larger spans, see fig. 4A-C.

3. Metoden gir mulighet for bedre utnyttelse av basismaterialet, se regne-eksempel. 3. The method allows for better utilization of the base material, see calculation example.

Claims (6)

1. Forspent, massiv bjelke av elastisk materiale hvor to ytre elementer (10,12), som er symmetriske eller tilnærmet symmetriske om det samlede tverrsnitts nøytralakse, er sammenføyd i forhøyet tilstand med hjelp av et skjæroverførende midtre element (11), utført for mekanisk kraftoverføring,karakterisert vedat de ytre elementene (10,12) er holdt sammen etter innbyrdes glidning mellom elementene(10-12).1. Prestressed, massive beam of elastic material where two outer elements (10,12), which are symmetrical or nearly symmetrical about the neutral axis of the overall cross-section, are joined in an elevated position with the help of a shear-transmitting middle element (11), made for mechanical power transmission, characterized in that the outer elements (10,12) are held together after mutual sliding between the elements (10-12). 2. Forspent, massiv bjelke i samsvar med patentkrav 1,karakterisert vedat midtre element (11) er utført i samme materiale som de ytre elementene (10,12) eller av et materiale med høyere skjærkapasitet.2. Prestressed, massive beam in accordance with patent claim 1, characterized in that the middle element (11) is made of the same material as the outer elements (10,12) or of a material with a higher shear capacity. 3. Forspent, massiv bjelke i samsvar med patentkrav 1,karakterisert vedat det ved full forspenning kan oppnås en tilnærmet plastisk spenningsfordeling over tverrsnittet, uten plastisering av materialet.3. Prestressed, massive beam in accordance with patent claim 1, characterized in that with full prestressing, an approximately plastic stress distribution over the cross-section can be achieved, without plasticization of the material. 4. Forspent, massiv bjelke i samsvar med patentkrav 1,karakterisert vedat mekanisk kraftoverføring blir besørget ved at tilstøtende overflater i midtre element (11) og de ytre elementer (10,12) er gitt en tredimensjonal struktur som er innrettet til å gå i tettsluttende gjensidig inngripen bare når elementene (10-12) er påført en gitt forhøyning og derved gjensidig låse hverandre i bøyd stilling.4. Prestressed, massive beam in accordance with patent claim 1, characterized in that mechanical power transmission is ensured by the fact that adjacent surfaces in the middle element (11) and the outer elements (10,12) are given a three-dimensional structure that is arranged to go in tight mutual engagement only when the elements (10-12) are applied to a given elevation and thereby mutually lock each other in a bent position. 5. Framgangsmåte for tilvirkning av forspent, massiv bjelke av elastisk materiale som omfatter to ytre elementer (10, 12) som er symmetriske eller tilnærmet symmetriske om deres nøytrale akse og som sammenføyes i forhøyet tilstand ved at et skjæroverførende, midtre element (11) plasseres mellom de to ytre elementer (10,12) hvorpå elementene påføres en elastisk bøyedeformasjon,karakterisert vedat en innbyrdes glidning utøves mellom elementene (10-12) før de mekanisk sammenføyes og deretter avlastes.5. Method for the production of a prestressed, massive beam of elastic material comprising two outer elements (10, 12) which are symmetrical or nearly symmetrical about their neutral axis and which are joined in an elevated state by placing a shear-transmitting, middle element (11) between the two outer elements (10,12) whereupon the elements are subjected to an elastic bending deformation, characterized by mutual sliding being exerted between the elements (10-12) before they are mechanically joined and then relieved. 6. Framgangsmåte i samsvar med patentkrav 5,karakterisert vedat elementenes (10-12) kontaktflater låses mekanisk ved gitt forhøyning.6. Method in accordance with patent claim 5, characterized in that the contact surfaces of the elements (10-12) are locked mechanically at a given elevation.
NO20101351A 2010-09-29 2010-09-29 Beamed beams of solid cross-section and method of making such beam. NO337441B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO20101351A NO337441B1 (en) 2010-09-29 2010-09-29 Beamed beams of solid cross-section and method of making such beam.
CA2812497A CA2812497C (en) 2010-09-29 2011-09-20 Pre-stressed compact beam and method for its manufacture
PCT/NO2011/000262 WO2012044173A1 (en) 2010-09-29 2011-09-20 Pre-stressed compact beam and method for its manufacture
EP11829648.2A EP2622147B1 (en) 2010-09-29 2011-09-20 Pre-stressed compact beam and method for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20101351A NO337441B1 (en) 2010-09-29 2010-09-29 Beamed beams of solid cross-section and method of making such beam.

Publications (2)

Publication Number Publication Date
NO20101351A1 NO20101351A1 (en) 2012-03-30
NO337441B1 true NO337441B1 (en) 2016-04-11

Family

ID=45893403

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20101351A NO337441B1 (en) 2010-09-29 2010-09-29 Beamed beams of solid cross-section and method of making such beam.

Country Status (4)

Country Link
EP (1) EP2622147B1 (en)
CA (1) CA2812497C (en)
NO (1) NO337441B1 (en)
WO (1) WO2012044173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20181121A1 (en) * 2018-08-27 2020-02-28 Arne Vaslag Composite, cooperating building element and method for manufacturing such a building element.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820033B2 (en) * 2010-03-19 2014-09-02 Weihong Yang Steel and wood composite structure with metal jacket wood studs and rods
EP2960391A1 (en) * 2014-06-27 2015-12-30 Servizi Generali S.r.l. A prefabricated modular unit for the construction of buildings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD26379A1 (en) * 1959-02-20 1964-04-15 Bending stressed prestressed solid wall beams for building materials with the same tensile and compressive strength
GB1305645A (en) * 1969-04-24 1973-02-07
CH663980A5 (en) * 1987-03-25 1988-01-29 Naef Ag Geb Wooden plank to form member of load-bearing floor - consists of superimposed boards, rigidly connected by adhesive, pref. with convex set against load
US4745718A (en) * 1986-05-30 1988-05-24 Trus Joist Corporation Prestressed structural support and method for making same
WO2000009830A1 (en) * 1998-08-13 2000-02-24 Markus Lehmann Method for producing a fibre-reinforced laminate, especially a wood laminate, and said wood laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2039398A (en) 1934-10-11 1936-05-05 Edward R Dye Prestressed beam and method of manufacture
FR2192229A1 (en) 1972-07-17 1974-02-08 Wendel Sidelor
NL8401393A (en) * 1984-05-02 1985-12-02 Houthandel V H T C Groot B V METHOD AND APPARATUS FOR MANUFACTURING A COMPOSITE PRESELVED WOODEN BEAM
NO162124C (en) 1984-06-22 1989-11-08 Arne Engebretsen TREATED BENCH OF WOODWOOD.
US4754718A (en) 1987-06-16 1988-07-05 Tuftco Corporation Double needle bar tufting apparatus for the formation of loop pile and cut pile
WO1998040192A1 (en) * 1997-03-07 1998-09-17 Breuning Joergen Ebbe Illner An elongated structural wooden member
CH699945A2 (en) * 2008-11-17 2010-05-31 Josef Scherer Preloaded Schichtbrettholz- or finger-jointed timber carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD26379A1 (en) * 1959-02-20 1964-04-15 Bending stressed prestressed solid wall beams for building materials with the same tensile and compressive strength
GB1305645A (en) * 1969-04-24 1973-02-07
US4745718A (en) * 1986-05-30 1988-05-24 Trus Joist Corporation Prestressed structural support and method for making same
CH663980A5 (en) * 1987-03-25 1988-01-29 Naef Ag Geb Wooden plank to form member of load-bearing floor - consists of superimposed boards, rigidly connected by adhesive, pref. with convex set against load
WO2000009830A1 (en) * 1998-08-13 2000-02-24 Markus Lehmann Method for producing a fibre-reinforced laminate, especially a wood laminate, and said wood laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20181121A1 (en) * 2018-08-27 2020-02-28 Arne Vaslag Composite, cooperating building element and method for manufacturing such a building element.
NO345479B1 (en) * 2018-08-27 2021-02-22 Arne Vaslag Composite, cooperating and elongated building element, and method for manufacturing such a building element.

Also Published As

Publication number Publication date
CA2812497A1 (en) 2012-04-05
CA2812497C (en) 2018-06-19
EP2622147A1 (en) 2013-08-07
EP2622147A4 (en) 2014-10-22
WO2012044173A1 (en) 2012-04-05
EP2622147B1 (en) 2016-07-13
NO20101351A1 (en) 2012-03-30

Similar Documents

Publication Publication Date Title
US10876282B1 (en) Fabricated limiting-reinforced steel-wood frosted sleeve composite joint
KR100993880B1 (en) Deck plate with raised bottom materal
CA2764233A1 (en) Mould system and method for operating said system
NO337441B1 (en) Beamed beams of solid cross-section and method of making such beam.
US20190119913A1 (en) Prefabricated structural bamboo system for slabs and roofs
US20110036042A1 (en) Bamboo open web joist
US20240052632A1 (en) Bamboo construction element
WO2020107129A1 (en) Semi-prefabricated timber-concrete composite slab
JP2013163954A (en) Construction method of hollow concrete base
KR101701416B1 (en) Precast Concrete Deck for Long-Span Slab and the Slab using it
CN214884858U (en) Large span beam with one beam string type prestressed wood structure
JP5439016B2 (en) Buried formwork
CN108748456B (en) Wood-based structural board with hidden reinforcing strips, preparation method thereof and combined wall
US10132079B2 (en) Storey ceiling construction and building made of wood
CN102979222B (en) There is the concrete shear force wall of continuous annular bar construction
WO2020046136A1 (en) Assembled, synergetic building element and method for its manufacture
JP2016020076A (en) Prestress introduced accumulation plate
CN114250694B (en) UHPC permanent template and preparation method thereof
EP3230533B1 (en) Coupling element for a timber-concrete ceiling composite construction
US20230256720A1 (en) Sandwich element and method for producing a sandwich element
CN219342892U (en) Reinforcing structure for continuous beam bridge
CN213267473U (en) Combined beam structure
CN108385883B (en) Combined balance structure of prestressed floor slab
CN210596979U (en) Multilayer steel plate-concrete combined beam
CN212478281U (en) Prefabricated assembly type rubbing bending member

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: RENNEBU BJELKEN AS, NO