NO325093B1 - Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant - Google Patents

Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant Download PDF

Info

Publication number
NO325093B1
NO325093B1 NO20060530A NO20060530A NO325093B1 NO 325093 B1 NO325093 B1 NO 325093B1 NO 20060530 A NO20060530 A NO 20060530A NO 20060530 A NO20060530 A NO 20060530A NO 325093 B1 NO325093 B1 NO 325093B1
Authority
NO
Norway
Prior art keywords
oil
ftir
condensate
solvent
water
Prior art date
Application number
NO20060530A
Other languages
Norwegian (no)
Other versions
NO20060530L (en
Inventor
Frode Brakstad
Terje Vegar Karstang
Original Assignee
Must As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Must As filed Critical Must As
Priority to NO20060530A priority Critical patent/NO325093B1/en
Priority to PCT/NO2007/000029 priority patent/WO2007089154A1/en
Publication of NO20060530L publication Critical patent/NO20060530L/en
Publication of NO325093B1 publication Critical patent/NO325093B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Water organic contamination in water
    • G01N33/1833Oil in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Abstract

Foreliggende oppfinnelse vedrører en metode for å benytte FTIR og et hydrokarbonbasert løsemiddel til å ekstrahere olje-/kondensatkomponenter fra vann eller en vandige prøve, oppkonsentrere ekstraktet, og deretter analysere dirkekte på FTIR. Oppfinnelsen har vist at det overraskende nok eksisterer ett eller flere selektive spektrale områder innen området 400-4000 cm-1 som er egnet for å kvantifisere mengde olje- /kondensat komponenter. Når disse er funnet, kan det utvikles kvantitative rutine metoder. Kalibrering kan skje enten ved å spike olje/kondensatfrie vannprøver, eller ved hjelp av nesten tilsvarende standard addisjon på reelle prosessprøver, eller ved å kalibrere opp mot standardmetoder.The present invention relates to a method of using FTIR and a hydrocarbon-based solvent to extract oil / condensate components from water or an aqueous sample, concentrate the extract, and then analyze direct on FTIR. The invention has shown that, surprisingly, one or more selective spectral ranges exist in the range of 400-4000 cm -1 which are suitable for quantifying the amount of oil / condensate components. Once these are found, quantitative routine methods can be developed. Calibration can be done either by spiking oil / condensate-free water samples, or by using almost equivalent standard addition to real process samples, or by calibrating against standard methods.

Description

Bestemmelse av olje i vann ved hjelp av spektroskopiske målemetoder krever først en ekstraksjon av oljekomponenter fra vannfase. Det stilles derfor krav til ekstraksjonsmiddelet at det skal være uløselig i vann, samtidig som det skal være egnet til å ekstrahere ut oljeløselige komponenter fra vannfasen. Dernest kreves en påfølgende toppkonsentrasjon vha f.eks inndampning. Ekstraksjonsmiddelet må derfor være relativt flyktig for at ekstraktet skal kunne dampes inn uten at for mye av oljekomponentene går tapt som følge av flyktighet. Etter oppkonsentrasjon av ekstraksjonsmiddelet er prøven klar for kvantitativ analyse vha vibrasjonsspektroskopi. Determination of oil in water using spectroscopic measurement methods first requires an extraction of oil components from the water phase. The extraction agent is therefore required to be insoluble in water, while at the same time being suitable for extracting oil-soluble components from the water phase. Next, a subsequent peak concentration is required using, for example, evaporation. The extractant must therefore be relatively volatile so that the extract can be evaporated without too much of the oil components being lost as a result of volatility. After concentration of the extractant, the sample is ready for quantitative analysis using vibrational spectroscopy.

Kombinasjon av freon (diklordifluorometan) som ekstraksjonsmiddel og såkalt Fourier ►Transformert Infra Rød spektroskopi (FTIR) er lenge vært en populær metode for kvantitativ analyse av olje i vann. Freon løser oljekomponentene svært bra, og gir ingen interferens på FTIR signalet i det interessante spektrale området. Dette muliggjør kvantitativ analyse av olje på FTIR selv om freon er tilstede i relativt store mengder. Problemet er at freon er ødeleggende for miljøet (ozonnedbrytende effekt), og er i dag •enten tatt ut av bruk eller under utfasing (Se f.eks, The Vienna convention for the protection of the ozone layer (2001), ISDN 92-807-2121-6). Combination of freon (dichlorodifluoromethane) as extraction agent and so-called Fourier Transformed Infrared spectroscopy (FTIR) has long been a popular method for quantitative analysis of oil in water. Freon dissolves the oil components very well, and does not interfere with the FTIR signal in the interesting spectral range. This enables quantitative analysis of oil on FTIR even if freon is present in relatively large quantities. The problem is that freon is destructive to the environment (ozone-depleting effect), and is today either taken out of use or being phased out (See, for example, The Vienna convention for the protection of the ozone layer (2001), ISDN 92-807 -2121-6).

Utfasing av freon og andre halogenholdige hydrokarboner som ekstraksjonsmiddel for olje-i-vann analyser har skapt et problem for bruk av vibrasjonsspektroskopisk kvantitativ (analyse. Det viser seg at gode og egnede ekstraksjonsmidler for å få oljekomponenter ut av vannfasen, også har kraftig interferens med oljekomponentene i den påfølgende vibrasjonsspektroskopiske analysen. Som eksempel; særlig egnet til ekstraksjon er lite eller mindre vannløselige oljekomponenter med kokepunkt over ca. 0°C og under ca. 170°C. Eksempler er butan, pentan, heksan, isooktan, sykloheksan og toluene. Et ekstrakt i med f.eks en av disse oljekomponenter vil imidlertid gi et så kraftig signal i en vibrasjonsspektroskopisk analyse, at den vil kamuflere helt de oljeholdige komponentene som er ekstrahert ut av vannfasen. Spesielt vil interferens inntreffe der løsningsmiddelets molekylære struktur inneholder en eller flere karbon-hydrogen bindinger, såkalte hydrokarboner. En kvantitativ analyse av oljeholdige komponenter i et slikt løsningsmiddel Ibasert på selektive spektrale områder er derfor, ut i fra lærebøker i spektroskopi og den generelle oppfatning i fagmiljøer, å anse som umulig. Av denne grunn tilrådes bestandig 100% inndampning av hydrokarbonløsemidler, før den spektroskopiske analysen. Et eksempel på en slik analysator er beskrevet av Wilks Enterprise for deres TOG/TPH analysator (www.wilksir.com). The phasing out of freon and other halogen-containing hydrocarbons as extractants for oil-in-water analyzes has created a problem for the use of vibrational spectroscopic quantitative (analysis. It turns out that good and suitable extractants for getting oil components out of the water phase also have strong interference with the oil components in the subsequent vibrational spectroscopic analysis. As an example, particularly suitable for extraction are little or less water-soluble oil components with a boiling point above about 0°C and below about 170°C. Examples are butane, pentane, hexane, isooctane, cyclohexane and toluene. A extract with, for example, one of these oil components will, however, give such a strong signal in a vibrational spectroscopic analysis that it will completely camouflage the oily components that have been extracted from the water phase. In particular, interference will occur where the molecular structure of the solvent contains one or more carbons -hydrogen bonds, so-called hydrocarbons A quantitative analysis of oily components of such a solvent based on selective spectral ranges is therefore, based on textbooks in spectroscopy and the general opinion in professional circles, to be considered impossible. For this reason, 100% evaporation of hydrocarbon solvents is always recommended before the spectroscopic analysis. An example of such an analyzer is described by Wilks Enterprise for their TOG/TPH analyzer (www.wilksir.com).

Hovedformålet med foreliggende oppfinnelse er todelt; 1) å undersøke om det eksisterer spektrale områder hvor det kan finnes selektiv innformasjon om andre oljekomponenter enn det hydrokarbonbaserte løsningsmiddelet, 2) dernest eventuelt å undersøke om det selektive området kan brukes til å kvantifisere oljekomponenter vha FTIR spektroskopi i selv om det hydrokarbonholdige ekstraksjonsmiddelet er tilstede i prøvecellen. The main purpose of the present invention is twofold; 1) to investigate whether there exist spectral areas where selective information can be found about oil components other than the hydrocarbon-based solvent, 2) next, possibly to investigate whether the selective area can be used to quantify oil components using FTIR spectroscopy even if the hydrocarbon-containing extractant is present in the sample cell.

For å undersøke om det fantes selektiv spektral informasjon ble en råolje fra Nordsjøen løst i destillert vann, tilnærmet (men nøyaktig) 10,20,30, 50,70, og 90 mg råolje per liter vann. Deretter ble 30 ml isooktan tilsatt hver vannprøve, blandingen ble ristet og lisooktanfasen ble separert fra vannfasen. Isooktanfasen ble dampet inn til nøyaktig 2 ml, og analysert på et FTIR instrument. De spektrale data ble importert til programvaren MUST Analyze! (www.must.as). De ble benyttet i en tradisjonell multivariatstatistisk metode som prinsipal komponent analyse for å lete etter selektive spektrale områder. Foruten å gjenta forsøkene og på forskjellige konsentrasjonsnivå, ble forsøkene også i verifisert ved å gjenta eksperimentene med et lyst og lett kondensat fra Nordsjøen. To investigate whether there was selective spectral information, a crude oil from the North Sea was dissolved in distilled water, approximately (but exactly) 10, 20, 30, 50, 70, and 90 mg of crude oil per liter of water. Then 30 ml of isooctane was added to each water sample, the mixture was shaken and the isooctane phase was separated from the water phase. The isooctane phase was evaporated to exactly 2 ml, and analyzed on an FTIR instrument. The spectral data were imported into the software MUST Analyze! (www.must.as). They were used in a traditional multivariate statistical method as principal component analysis to look for selective spectral areas. Besides repeating the experiments and at different concentration levels, the experiments were also verified by repeating the experiments with a bright and light condensate from the North Sea.

Begge serier av eksperimenter gav meget overraskende og gode resultater, ved at vi påviste et spektral selektivt område for oljekomponenter. Noe slikt som et selektivt spektralt område i FTIR for oljekomponenter med et hydrokarbonbasert løsningsmiddel tilstede i prøvecellen, er hittil ikke omtalt i litteraturen. Vi fant i tillegg meget gode kvantitative Both series of experiments gave very surprising and good results, in that we demonstrated a spectrally selective area for oil components. Something like a selective spectral range in FTIR for oil components with a hydrocarbon-based solvent present in the sample cell has not yet been discussed in the literature. We also found very good quantitative ones

•sammenhenger mellom størrelsen på signalet i disse spektrale områdene og mengde av oljekomponenter (råolje eller kondensat) som ble tilsatt vannprøvene. De to eksemplene beskrevet under forteller konkret hva som ble gjort, og hvordan dette løste problemene med kvantifisering av oljekomponenter vha FTIR spektroskopi, når •oljekomponentene er løst i et karbon-hydrogen holdig løsningsmiddel. Beskyttelsesomfanget og de spesielle trekk ved oppfinnelsen er som definert i de tilknyttede patentkrav. •correlation between the size of the signal in these spectral areas and the amount of oil components (crude oil or condensate) that were added to the water samples. The two examples described below tell concretely what was done, and how this solved the problems with quantification of oil components using FTIR spectroscopy, when • the oil components are dissolved in a carbon-hydrogen containing solvent. The scope of protection and the special features of the invention are as defined in the associated patent claims.

Hovedtrekket ifølge oppfinnelsen er kvantitativ bestemmelse av oljekomponenter vha IFTIR, når oljekomponentene er tilstede i et løsningsmiddel som inkluderer en eller flere hydrokarboner. The main feature according to the invention is the quantitative determination of oil components using IFTIR, when the oil components are present in a solvent that includes one or more hydrocarbons.

Et spesielt trekk ved oppfinnelsen er at den inkluderer kvantifisering av så vel lyse lette kondensat til tyngre mørke oljer. Oppfinnelsen er ytterligere forklart i forbindelse med i følgende eksempler, ett for olje og ett for kondensat. Begge prøvetyper ble opparbeidet som beskrevet over, og analysert på FTIR (0,1 med mer NaCl celle) i isooktan ekstrakt nøyaktig inndampet til 2ml. Alle spektrale data med intensiteter fra alle bølgelengder i området 400 - 4000 cm"' ble analysert. A special feature of the invention is that it includes quantification of light light condensates as well as heavier dark oils. The invention is further explained in connection with in the following examples, one for oil and one for condensate. Both sample types were processed as described above, and analyzed on FTIR (0.1 with more NaCl cell) in isooctane extract precisely evaporated to 2ml. All spectral data with intensities from all wavelengths in the range 400 - 4000 cm"' were analyzed.

Eksempel 1 Example 1

Figur 1 viser spektra fra analyser av de åtte prøvene med oljekomponenter, samt de to rene (spektra av isooktan. Som vi ser fra Figur 1, synes det ikke som om det er forskjeller mellom prøvene. Med andre ord synes det som om den kvantitative informasjonen om oljekomponentene drukner i signalet fra løsemiddelet isooktan i hele det undersøkte spektrale området, som forventet fra lærebøker i spektroskopi. Figure 1 shows spectra from analyzes of the eight samples with oil components, as well as the two pure (spectra of isooctane. As we can see from Figure 1, it does not seem as if there are differences between the samples. In other words, it seems that the quantitative information whether the oil components drown in the signal from the solvent iso-octane in the entire investigated spectral range, as expected from textbooks in spectroscopy.

Overraskende nok, fant vi ved hjelp av prinsipal komponent analyse at det likevel var •systematiske forkjeller mellom prøvene i det spektrale området som svarer til f.eks ca. 650 -1120 cm"'. Dette er vist i Figur 2. En av isooktan-spekterene (oljekomponenter = 0 ppm) er markert med sort stiplet linje, sammen med spekteret av mengde oljekomponenter svarende til 92 ppm olje. Som vi ser faller alle de øvrige prøvene innefor disse to, samtidig som det er en tendens til at jo mer olje i vann i prøven, jo høyere signal. Surprisingly enough, we found with the help of principal component analysis that there were still •systematic differences between the samples in the spectral range which corresponds to, for example, approx. 650 -1120 cm"'. This is shown in Figure 2. One of the iso-octane spectra (oil components = 0 ppm) is marked with a black dotted line, together with the spectrum of the amount of oil components corresponding to 92 ppm oil. As we can see, all the other samples within these two, while there is a tendency for the more oil in water in the sample, the higher the signal.

( (

Ved å plotte signalet mot konsentrasjon, får vi en kalibreringslinje som vist i Figur 3. En R<2>på hele 0,996 tilsier en meget god og lineær modell. By plotting the signal against concentration, we get a calibration line as shown in Figure 3. An R<2> of a whopping 0.996 indicates a very good and linear model.

Overraskende nok var det flere lokale områder innenfor det spektrale området 400-4000 •cm"<1>, som viste selektivitet på lik linje som det som her er vist for det spektrale området på ca. 650 - 1120 cm*<1>. Vi viser ikke alle områdene her, men konkluderer med at det er fullt mulig å finne kvantitativ informasjon på oljekomponenter fra FTIR spektra, selv om det brukes hydrokarboner som løsningsmiddel. Surprisingly, there were several local areas within the spectral range 400-4000 •cm"<1>, which showed selectivity similar to that shown here for the spectral range of approximately 650 - 1120 cm*<1>. We does not show all the areas here, but concludes that it is entirely possible to find quantitative information on oil components from FTIR spectra, even if hydrocarbons are used as solvent.

Eksempel 2 Example 2

Forsøket som beskrevet for Nordsjøoljen, ble gjentatt på et lyst kondensat fra Nordsjøen. Spektra som viser hele prøvene er identisk med det som er vist for isooktan og olje i Figur il, og vises ikke her. På samme måte som for spektrene fra oljeeksperimentene, ble disse analysert vha ordinær prinsipal komponent analyse. Igjen ble oppfinner overrasket over den gode selektiviteten i området svarende til ca. 650 - 1120 cm'<1>. Som for spektra fra oljekomponenter i isooktan, ble det også påvist andre selektive områder mellom 400-4000 cm'<1>helt i strid med hva som står beskrevet i lærebøker. Figur 4 viser den kvantitative (informasjonen fra det selektive området svarende til ca. 650 - 1120 cm<1>. Figur 5 viser at ved å plotte signalet mot konsentrasjon, får vi en meget god og lineær modell (R<2>på hele 0,967). The experiment as described for North Sea oil was repeated on a light condensate from the North Sea. Spectra showing the entire samples are identical to that shown for isooctane and oil in Figure 11, and are not shown here. In the same way as for the spectra from the oil experiments, these were analyzed using ordinary principal component analysis. Again, the inventor was surprised by the good selectivity in the area corresponding to approx. 650 - 1120 cm'<1>. As for spectra from oil components in isooctane, other selective areas between 400-4000 cm'<1> were also detected, completely contrary to what is described in textbooks. Figure 4 shows the quantitative information from the selective range corresponding to approx. 650 - 1120 cm<1>. Figure 5 shows that by plotting the signal against concentration, we get a very good and linear model (R<2> of a whopping 0.967 ).

De to eksemplene viser overraskende nok at det er fullt ut mulig å identifisere selektive iområder for olje- og kondensatområder i FTIR spektra, selv om det benyttes hydrokarboner som ekstraksjonsmiddel og løsemiddel for FTIR instrumentet. The two examples surprisingly show that it is entirely possible to identify selective areas for oil and condensate areas in the FTIR spectra, even if hydrocarbons are used as extraction agent and solvent for the FTIR instrument.

Videre viser beskrivelsen i dette patentet at det er relativt enkelt å utvikle kvantitative modeller når de selektive områdene først er bestemt. Vi har vist slike modeller i en enkelt (form, ved å velge snitt signal ved 727 cm"<1>±10 bølgelengder uten noen form for forbehandling av spektra. Forsøk viser at det kan oppnås langt mer robuste og presise metoder vha egnede forbehandlingsmetoder av spektra i kombinasjon med mulitvariate regresjonsmetoder. Dog er dette ikke vist her, da poenget med denne oppfinnelsen er å vise at det overraskende nok finnes selektivitet ved olje-/kondensat analyser på FTIR selv om idet benyttes hydrokarboner som ekstraksjons og løsningsmiddel. Videre viser oppfinnelsen at disse selektive områdene er egnet til å hente ut kvantitativ informasjon om olje-/ kondensatkomponenter i området 0-100 ppm. Furthermore, the description in this patent shows that it is relatively easy to develop quantitative models once the selective areas have been determined. We have shown such models in a single (form, by choosing the average signal at 727 cm"<1>±10 wavelengths without any form of pre-processing of the spectra. Experiments show that far more robust and precise methods can be achieved using suitable pre-processing methods of spectra in combination with multivariate regression methods. However, this is not shown here, as the point of this invention is to show that, surprisingly enough, there is selectivity in oil/condensate analyzes on FTIR even though hydrocarbons are used as extraction and solvent. Furthermore, the invention shows that these selective areas are suitable for extracting quantitative information about oil/condensate components in the range 0-100 ppm.

I praktisk bruk bør først olje/kondensat prøver først analyseres på et FTIR instrument med den beskrevne metode, for å bestemme optimalt område for kvantifisering. Det kan da ►velges et eller flere områder mellom 400 - 4000 cm-1, og gjerne en multivariat metode for å optimal presisjon og mest mulig robusthet. Deretter bør det lages en kalibreringsmodell hvor metoden videremodifiseres og kalibreres mot en godkjent/validert metode som f.eks In practical use, oil/condensate samples should first be analyzed on an FTIR instrument with the described method, in order to determine the optimal range for quantification. ►One or more areas between 400 - 4000 cm-1 can then be selected, and preferably a multivariate method for optimal precision and the greatest possible robustness. A calibration model should then be created where the method is further modified and calibrated against an approved/validated method such as

GC-FID. GC-FID.

Vi har vist oppfinnelsens muligheter til kvantitativ bestemmelse ved å bruke isooktan som iekstraksjons- og løsningsmiddel for FTIR. Isookan er en 100% forgrenet parafin (dvs molekylet innholder ikke noen rettkjedete -CH2-CH2- fragment), så de overraskende selektive signalene vi observerer i de spektrale områder kommer mest sannsynlig fra komponenter i olje-kondensat som ikke er 100% forgrenete parafiner. Tilsvarende vil vi nok få andre selektive områder om det benyttes heksan, sykloheksan eller toluen som løsningsmiddel. Dog har vi vist, at selv om det benyttes hydrokarboner som løsningsmiddel, så er det likevel overraskende nok mulig å identifisere selektive spektrale områder i et FTIR spekter. We have shown the possibilities of the invention for quantitative determination by using isooctane as extraction and solvent for FTIR. Isookan is a 100% branched paraffin (ie the molecule does not contain any straight-chain -CH2-CH2- fragment), so the surprisingly selective signals we observe in the spectral ranges most likely come from components in oil condensate that are not 100% branched paraffins. Correspondingly, we will probably get other selective areas if hexane, cyclohexane or toluene are used as solvent. However, we have shown that even if hydrocarbons are used as solvent, it is still surprisingly possible to identify selective spectral areas in an FTIR spectrum.

Claims (9)

1. Metode for bestemmelse av olje-/kondensat komponenter i vann eller i vandige prøver ved bruk av et hydrokarbonløsemiddel, karakterisert vedat hydrokarbonløsemiddel anvendes for ekstraksjon av olje-/kondensat komponenter fra vannfasen og over i hydrokarbonfasen og at dette ekstraktet kjøres direkte på et Fourier Transformert Infra Rød spektroskopi (FTIR) instrumentet etter oppkonsentrering.1. Method for determining oil/condensate components in water or in aqueous samples using a hydrocarbon solvent, characterized by hydrocarbon solvent is used for the extraction of oil/condensate components from the water phase into the hydrocarbon phase and that this extract is run directly on a Fourier Transformed Infra Red spectroscopy (FTIR) instrument after concentration. 2. Metode ifølge krav 1, karakterisertvedat hydrokarbonløsemiddelet har et kokepunkt i området 0-170 °C.2. Method according to claim 1, characteristically the hydrocarbon solvent has a boiling point in the range 0-170 °C. 3. Metode ifølge krav 1, karakterisert vedat metoden bruker ett eller flere selektive spektrale områder innen 400 - 4000 cm-1.3. Method according to claim 1, characterized by the method uses one or more selective spectral ranges within 400 - 4000 cm-1. 4. Metode ifølge krav 1, karakterisert veda t det som løsningsmiddel/ekstraksjonsmiddel anvendes minst ett av hydrokarbonene butan, pentan, heksan, iso-oktan, sykloheksan og toluen.4. Method according to claim 1, characterized by t at least one of the hydrocarbons butane, pentane, hexane, iso-octane, cyclohexane and toluene is used as solvent/extraction agent. 5. Metode ifølge krav 1, karakterisert vedat det anvendes det spektrale området mellom 650-1120 cm-1 dersom iso-oktan brukes som ekstraksjons- og løsningsmiddel..5. Method according to claim 1, characterized by the spectral range between 650-1120 cm-1 is used if iso-octane is used as extraction and solvent.. 6. Metode ifølge krav 1, karakterisert vedat FTIR målingene kjøres opp mot utviklede standard kalibreringsmodeller fra det de påviste spektrale områder med selektivitet.6. Method according to claim 1, characterized by The FTIR measurements are run against developed standard calibration models from the detected spectral ranges with selectivity. 7. Metode ifølge krav 1, karakterisert vedat anvendes på prøver hvor mengden av oljekomponenter i vannfase er i området 0-100 ppm.7. Method according to claim 1, characterized by used on samples where the amount of oil components in the water phase is in the range 0-100 ppm. 8. Metode ifølge krav 1, karakterisert vedat FTIR målingene kalibreres opp mot en ekstern alternativ metode som kromatografi.8. Method according to claim 1, characterized by The FTIR measurements are calibrated against an external alternative method such as chromatography. 9. Anvendelse av metoder ifølge krav 1-8 i for å bestemme og kvantifisere olje i vandig løsninger eller i vandige prøver ved hjelp av minst ett hydrokarbonbasert ekstraksjonsmiddel, som inndampes og kjøres oppkonsentrert direkte på FTIR..9. Application of methods according to claims 1-8 in order to determine and quantify oil in aqueous solutions or in aqueous samples using at least one hydrocarbon-based extraction agent, which is evaporated and concentrated directly on the FTIR.
NO20060530A 2006-02-01 2006-02-01 Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant NO325093B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20060530A NO325093B1 (en) 2006-02-01 2006-02-01 Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant
PCT/NO2007/000029 WO2007089154A1 (en) 2006-02-01 2007-01-29 Method and application to determine the amount of oil or condensate in water or in water-based samples with the help of an extractive agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20060530A NO325093B1 (en) 2006-02-01 2006-02-01 Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant

Publications (2)

Publication Number Publication Date
NO20060530L NO20060530L (en) 2007-08-02
NO325093B1 true NO325093B1 (en) 2008-02-04

Family

ID=38024328

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20060530A NO325093B1 (en) 2006-02-01 2006-02-01 Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant

Country Status (2)

Country Link
NO (1) NO325093B1 (en)
WO (1) WO2007089154A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503665B1 (en) * 2007-01-31 2007-12-15 Jordan Philipp Mag Determination of the concentration of hydrocarbons in samples e.g. water, comprises extracting the hydrocarbons from the sample with a solvent, and quantitatively measuring the hydrocarbons by infrared or near-infrared absorption
US7703527B2 (en) 2007-11-26 2010-04-27 Schlumberger Technology Corporation Aqueous two-phase emulsion gel systems for zone isolation
GB2467124B (en) * 2009-01-21 2011-04-27 Schlumberger Holdings Concentration of minor constituent of wellbore fluid
US9297747B2 (en) 2013-07-18 2016-03-29 Saudi Arabian Oil Company Method to determine trace amounts of crude oil by spectroscopic absorption
CN104502301A (en) * 2014-12-26 2015-04-08 北京伊普国际水务有限公司 Method for determining oil in coal chemical engineering wastewater
DE102015104531A1 (en) * 2015-03-25 2016-09-29 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG analyzer
JP2019143971A (en) * 2016-05-18 2019-08-29 株式会社堀場製作所 Oil content measuring method and oil content measuring apparatus
US10324077B2 (en) 2017-03-09 2019-06-18 Saudi Arabian Oil Company Systems and methods for real-time spectrophotometric quantification of crude oil
AR116162A1 (en) * 2019-04-17 2021-04-07 Ypf Sa METHOD FOR THE DETERMINATION OF THE CONCENTRATION OF OIL IN WATER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118299A (en) * 1964-01-21 J-dimethylbutane
US2854396A (en) * 1954-11-24 1958-09-30 Jersey Prod Res Co Petroleum prospecting
US3496350A (en) * 1966-07-18 1970-02-17 Mobil Oil Corp Method of geochemical exploration by the infrared analysis of selected atoms of isolated aromatic hydrocarbons

Also Published As

Publication number Publication date
NO20060530L (en) 2007-08-02
WO2007089154A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
NO325093B1 (en) Method and use in determining the amount of oil or condensate in water or in aqueous samples by means of an extractant
Christensen et al. Practical aspects of chemometrics for oil spill fingerprinting
Stout et al. A strategy and methodology for defensibly correlating spilled oil to source candidates
Ni et al. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches
Pena-Pereira et al. Colorimetric assay for determination of trimethylamine-nitrogen (TMA-N) in fish by combining headspace-single-drop microextraction and microvolume UV–vis spectrophotometry
Matheson et al. Presumptive blood test using Hemastix® with EDTA in archaeology
Mirnaghi et al. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis
Kumar et al. Simultaneous quantification of dilute aqueous solutions of certain polycyclic aromatic hydrocarbons (PAHs) with significant fluorescent spectral overlap using total synchronous fluorescence spectroscopy (TSFS) and N-PLS, unfolded-PLS and MCR-ALS analysis
Griffiths et al. Self-weighted correlation coefficients and their application to measure spectral similarity
US11719684B2 (en) Elemental sulfur analysis in fluids
Xue et al. Size and optical properties of dissolved organic matter in large boreal rivers during mixing: Implications for carbon transport and source discrimination
NO20050819L (en) Spectroscopic pH paints using optimized reagent mixtures to extend the paint range
Goslan et al. A model for predicting dissolved organic carbon distribution in a reservoir water using fluorescence spectroscopy
Li et al. Comparison of dimensionality reduction techniques for cross-source transfer of fluorescence contaminant detection models
Favot et al. Using visible near-infrared reflectance spectroscopy (VNIRS) of lake sediments to estimate historical changes in cyanobacterial production: potential and challenges
Mecozzi et al. Uncommon multivariate statistical methods for environmental studies: a review
McClymont et al. Benefits of freeze-drying sediments for the analysis of total chlorins and alkenone concentrations in marine sediments
Kalivas Evaluation of volume and matrix effects for the generalized standard addition method
McKee et al. A new approach for molecular characterisation of sediments with Fourier transform ion cyclotron resonance mass spectrometry: Extraction optimisation
Bravo et al. A novel application of nylon membranes for tributyltin determination in complex environmental samples by fluorescence spectroscopy and multivariate calibration
Bartolomé et al. Determination of trace levels of dinitrophenolic compounds by microporous membrane liquid–liquid extraction in environmental water samples
Aebig et al. Quantification of low molecular weight n-alkanes in lake sediment cores for paleoclimate studies
Amador-Hernández et al. Simultaneous spectrophotometric determination of atrazine and dicamba in water by partial least squares regression
Gallotta et al. Comparison of Quantitative and Semiquantitative Methods in Source Identification Following the OSPAR Oil Spill, in Paraná, Brazil
Minty et al. Development of an automated method for determining oil in water by direct aqueous supercritical fluid extraction coupled on-line with infrared spectroscopy

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees