NO300850B1 - Surface-modified magnesium hydroxide or aluminum hydroxide particles, their use, and highly combustible thermoplastic polyolefin - Google Patents

Surface-modified magnesium hydroxide or aluminum hydroxide particles, their use, and highly combustible thermoplastic polyolefin Download PDF

Info

Publication number
NO300850B1
NO300850B1 NO904734A NO904734A NO300850B1 NO 300850 B1 NO300850 B1 NO 300850B1 NO 904734 A NO904734 A NO 904734A NO 904734 A NO904734 A NO 904734A NO 300850 B1 NO300850 B1 NO 300850B1
Authority
NO
Norway
Prior art keywords
magnesium hydroxide
aluminum hydroxide
hydroxide
thermoplastic
modified
Prior art date
Application number
NO904734A
Other languages
Norwegian (no)
Other versions
NO904734L (en
NO904734D0 (en
Inventor
Hans-Dieter Metzemacher
Rainer Seeling
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Publication of NO904734D0 publication Critical patent/NO904734D0/en
Publication of NO904734L publication Critical patent/NO904734L/en
Publication of NO300850B1 publication Critical patent/NO300850B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/911Polymer from ethylenic monomers only, having terminal functional group other than unsaturation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

Surface-modified magnesium hydroxides and aluminum hydroxides, which are employed as flame-inhibiting fillers in thermoplastic polyolefins.

Description

Oppfinnelsen angår overflatemodifiserte magnesiumhydroksyd- eller aluminiumhydroksyd-partikler, anvendelse av partiklene i termoplastiske polyolefiner, samt tungt brenn-bare termoplastiske polyolefiner som inneholder overflatemodifisert magnesiumhydroksyd eller alumiumhydroksyd ifølge oppfinnelsen. The invention relates to surface-modified magnesium hydroxide or aluminum hydroxide particles, use of the particles in thermoplastic polyolefins, as well as highly flammable thermoplastic polyolefins containing surface-modified magnesium hydroxide or aluminum hydroxide according to the invention.

Ved innarbeidingen av magnesiumhydroksyd eller aluminiumhydroksyd i plaststoffer oppstår på den ene side problemet med innarbeidbarhet og forenlighet av magnesiumhydroksydet eller aluminiumhydroksydet med plaststoffet, og på den annen side må plaststoffet som er tilsatt magnesiumhydroksyd eller aluminiumhydroksyd oppfylle de nødvendige egenskaper, spesielt når det gjelder brannforhold. When incorporating magnesium hydroxide or aluminum hydroxide into plastics, on the one hand, the problem of workability and compatibility of the magnesium hydroxide or aluminum hydroxide with the plastic material arises, and on the other hand, the plastic material to which magnesium hydroxide or aluminum hydroxide has been added must meet the required properties, especially when it comes to fire conditions.

Det har derfor ikke vært mangel på innsats når det gjelder å modifisere flammehemmende fyllstoffer på en slik måte at de uten vanskeligheter kan innarbeides i plast-stoffene uten at det går ut over plaststoffenes egenskapsprofil, spesielt når det gjelder brannforhold. There has therefore been no lack of effort when it comes to modifying flame retardant fillers in such a way that they can be incorporated into the plastics without difficulty without affecting the properties profile of the plastics, especially when it comes to fire conditions.

Det er således f.eks. kjent fra DE-PS 2 659 933 at magnesiumhydroksyd kan overtrekkes med anioniske overflate-aktive stoffer, som f.eks. alkalisalter av høyere fettsyrer. Det går imidlertid tydelig frem av sammenligningsforsøkene at magnesiumhydroksyder som er modifisert på denne måte ikke tilfredsstiller de krav som stilles. It is thus e.g. known from DE-PS 2 659 933 that magnesium hydroxide can be coated with anionic surfactants, such as e.g. alkali salts of higher fatty acids. However, it is clear from the comparison tests that magnesium hydroxides which have been modified in this way do not satisfy the requirements.

Fra EP-søknad 292 233 er det videre kjent at fyllstoffer som f.eks. magnesiumhydroksyd eller aluminiumhydroksyd kan belegges med en polymer som inneholder umettede syregrupper og innarbeides i en olefin/akrylpolymer. From EP application 292 233 it is further known that fillers such as e.g. magnesium hydroxide or aluminum hydroxide can be coated with a polymer containing unsaturated acid groups and incorporated into an olefin/acrylic polymer.

Eksempelvis blir magnesiumhydroksyd eller aluminiumhydroksyd i en matrikspolymer belagt med en maleinisert poly-butadien. De likeledes som flytende elastomerer betegnede polybutadienbelegg har imidlertid på grunn av de tallrike dobbelbindinger den store ulempe at de er svært følsomme mot UV- og ozoninnflytelse, dvs. at egenskapsprofilen for det på' denne måte behandlede fyllstoff, hhv. fyllstoffet som inneholder forbindelsene, blir dårligere under påvirkning av de nevnte innflytelser. Dessuten er det på grunn av beleggets lave temperaturtoleranse satt grenser når det gjelder valg av compounderingsaggregatet ved compounderingen av et slikt modifisert fyllstoff i et plaststoff. For example, magnesium hydroxide or aluminum hydroxide in a matrix polymer is coated with a maleinized poly-butadiene. However, due to the numerous double bonds, the polybutadiene coatings also referred to as liquid elastomers have the major disadvantage that they are very sensitive to UV and ozone influence, i.e. that the property profile of the filler treated in this way, resp. the filler containing the compounds deteriorates under the influence of the aforementioned influences. Furthermore, due to the coating's low temperature tolerance, limits have been set when it comes to choosing the compounding unit when compounding such a modified filler in a plastic material.

Det oppstod således den oppgave å modifisere magnesiumhydroksyd- eller aluminiumhydroksyd-partikler på en slik måte at de ikke oppviser ulempene ifølge teknikkens stand. Denne oppgave kunne løses med ifølge oppfinnelsen overflatemodifiserte magnesiumhydroksyd- eller aluminiumhydroksyd-partikler ifølge krav 1. The task thus arose of modifying magnesium hydroxide or aluminum hydroxide particles in such a way that they do not exhibit the disadvantages according to the state of the art. This task could be solved with, according to the invention, surface-modified magnesium hydroxide or aluminum hydroxide particles according to claim 1.

Med magnesiumhydroksyd skal det forstås magnesiumhydroksyder av naturlig eller syntetisk opprinnelse. Naturlige magnesiumhydroksyder kan være slike som utvinnes av sjøvann, hhv. av Mg(OH)2-holdige mineraler, som f.eks. brucitt. Magnesium hydroxide is to be understood as magnesium hydroxides of natural or synthetic origin. Natural magnesium hydroxides can be those extracted from seawater, or of Mg(OH)2-containing minerals, such as brucite.

Syntetiske magnesiumhydroksyder kan være slike som f.eks. den type som markedsføres av Martinswerk GmbH i Bergheim med varemerket Magnifin®. Likeledes skal det under begrepet magnesiumhydroksyd forstås magnesiumhydroksyd-karbonater som f.eks. markedsføres av firma Microfine Minerals under varemerket Ultracarb®. Synthetic magnesium hydroxides can be such as e.g. the type marketed by Martinswerk GmbH in Bergheim under the trade mark Magnifin®. Likewise, the term magnesium hydroxide shall be understood as magnesium hydroxide carbonates such as e.g. marketed by the company Microfine Minerals under the trademark Ultracarb®.

Det er hensiktsmessig å anvende magnesiumhydroksyd-partikler som har en spesifikk overflate ifølge BET som er mindre enn 20 m<2>/g og en midlere partikkelstørelse d50 som er mindre enn 2 jum. It is appropriate to use magnesium hydroxide particles which have a specific surface according to BET which is less than 20 m<2>/g and an average particle size d50 which is less than 2 µm.

Med aluminiumhydroksyd forstås aluminiumhydroksyder av naturlig eller syntetisk opprinnelse. Naturlige aluminiumhydroksyder kan være slike som utvinnes av Al (OH) 3-holdige mineraler, som f.eks. hydrargillitt eller gibbsitt. Syntetiske aluminiumhydroksyder kan være slike som f.eks. markeds-føres av Martinswerk GmbH i Bergheim med varemerket Martifin® eller Martinal®. Aluminum hydroxide means aluminum hydroxides of natural or synthetic origin. Natural aluminum hydroxides can be those extracted from Al (OH) 3-containing minerals, such as e.g. hydrargillite or gibbsite. Synthetic aluminum hydroxides can be such as e.g. marketed by Martinswerk GmbH in Bergheim under the brand name Martifin® or Martinal®.

Ifølge oppfinnelsen er magnesiumhydroksyd- eller aluminiumhydroksyd-partiklene overflatebehandlet med en flytende etylen-propylen-kopolymer (EPM) eller en etylen-propylen-terpolymer (EPDM). Disse polymerer er også kjent under samlebegrepet "flytende elastomerer". According to the invention, the magnesium hydroxide or aluminum hydroxide particles are surface treated with a liquid ethylene-propylene copolymer (EPM) or an ethylene-propylene terpolymer (EPDM). These polymers are also known under the collective term "liquid elastomers".

Hensiktsmessige termonomerer i EPDM er diener, som f.eks. dicyklopentadien eller norbornadien. Appropriate termonomers in EPDM are dienes, such as dicyclopentadiene or norbornadiene.

Det er hensiktsmessig at disse EPM- eller EPDM-polymerer oppviser et forhold mellom etylen og propylen på mellom 40 til 60 og 60 til 40, og det er hensiktsmessig at de har en midlere molekylvekt som er lavere enn 20.000, fortrinnsvis mellom 1.000 og 15.000. Det er hensiktsmessig at jodtallet som indikerer antallet av dobbelbindinger i de forskjellige EPM- eller EPDM-polymerer ligger mellom 1 og 25. Det er hensiktsmessig at de flytende EPM- eller EPDM-polymerer anvendes i en mengde på 0,1 til 20 deler, fortrinnsvis 1 til 5 deler, pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd. Suitably these EPM or EPDM polymers have an ethylene to propylene ratio of between 40 to 60 and 60 to 40 and suitably have an average molecular weight of less than 20,000, preferably between 1,000 and 15,000. It is appropriate that the iodine number, which indicates the number of double bonds in the various EPM or EPDM polymers, is between 1 and 25. It is appropriate that the liquid EPM or EPDM polymers are used in an amount of 0.1 to 20 parts, preferably 1 to 5 parts, per 100 parts magnesium hydroxide or aluminum hydroxide.

Magnesiumhydroksyd- eller aluminiumhydroksyd-partiklene kan videre være overflatebehandlet med en trans-polyoktenamer (TOR). Som TOR-polymerer er det hensiktsmessig å anvende slike hvor transinnholdet beveger seg mellom 40 og 90%, fortrinnsvis mellom 60 og 80%, og som har et smelte-, hhv. mykningspunkt, som hensiktsmessig ligger mellom 45 og 90°C. Det er hensiktsmessig å anvende den nevnte trans-polyoktenamer i en mengde på 0,1 til 50 deler, fortrinnsvis fra 0,5 til 5 deler, pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd. The magnesium hydroxide or aluminum hydroxide particles can further be surface-treated with a trans-polyoctenamer (TOR). As TOR polymers, it is appropriate to use those where the trans content ranges between 40 and 90%, preferably between 60 and 80%, and which have a melting, resp. softening point, which conveniently lies between 45 and 90°C. It is appropriate to use the aforementioned trans-polyoctenamer in an amount of 0.1 to 50 parts, preferably from 0.5 to 5 parts, per 100 parts magnesium hydroxide or aluminum hydroxide.

Magnesiumhydroksydet eller aluminiumhydroksydet kan dessuten overflatebehandles med en termoplastisk elastomer (TPE), som beskrevet f.eks. i "Thermoplastische Elastomere im Aufwårtstrend", 2. fagkonferanse 10-11.10.1989, Wiirzburg, prof. dr. Muller, Siiddeutsches Kunststoffzentrum. Det er hensiktsmessig å anvende mengder på 0,1 til 50 deler, fortrinnsvis fra 0,2 til 30 deler, pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd av følgende polymerer: EVA og EVA-kopolymerer The magnesium hydroxide or aluminum hydroxide can also be surface treated with a thermoplastic elastomer (TPE), as described e.g. in "Thermoplastische Elastomere im Aufwårtstrend", 2nd professional conference 10-11.10.1989, Wiirzburg, Prof. Dr. Muller, Siiddeutsches Kunststoffzentrum. It is appropriate to use amounts of 0.1 to 50 parts, preferably from 0.2 to 30 parts, per 100 parts magnesium hydroxide or aluminum hydroxide of the following polymers: EVA and EVA copolymers

Blokk-kopolymerer av harde og myke segmenter, som styrenelastomerer, som f.eks. SBS, SIS, SEBS termoplastiske PUR-elastomerer (TPU) Block copolymers of hard and soft segments, such as styrene elastomers, such as SBS, SIS, SEBS thermoplastic PUR elastomers (TPU)

eter-ester-blokk-kopolymerer (EEBC) ether-ester block copolymers (EEBC)

- polyeter/polyamid-blokk-kopolymerer (PEBA) termoplastiske silikonkautsjuktyper (TPQ) - polyether/polyamide block copolymers (PEBA) thermoplastic silicone rubber types (TPQ)

eller legeringer (polymerblandinger), som or alloys (polymer mixtures), which

termoplastiske polyolefiner, som oftest med polyproylen (PP) som polyolefin og en etylen-propylen-kopolymer (EPM), eller -terpolymer (EPDM) som "mykt" segment. Alternativt til polypropylen som "hard"-segment kan de amorfe til delkrystallinske termoplaster, så som thermoplastic polyolefins, most often with polypropylene (PP) as polyolefin and an ethylene-propylene copolymer (EPM), or -terpolymer (EPDM) as "soft" segment. As an alternative to polypropylene as a "hard" segment, they can be amorphous to semi-crystalline thermoplastics, such as

- polyamid (PA) - polyamide (PA)

polystyren (PS) polystyrene (PS)

styren/akrylnitril-kopolymerer (SAN) styrene/acrylonitrile copolymers (SAN)

anvendes. Som "myk" fase finnes bl.a. etylenvinylacetat (EVA) og kopolymerer av dette. are used. As a "soft" phase there are e.g. ethylene vinyl acetate (EVA) and copolymers thereof.

Foretrukket fra gruppen av termoplastiske polymerer anvendes silikonkautsjuktyper, spesielt slike som f.eks. er beskrevet i DE-OS 2 748 924, eller EVA-polymerer med et VA-innhold mellom 15 og 70%. Silicone rubber types are preferably used from the group of thermoplastic polymers, especially such as e.g. is described in DE-OS 2 748 924, or EVA polymers with a VA content between 15 and 70%.

I en foretrukket utførelsesform kan det i tillegg anvendes koplingsmidler, såkalte "coupling agents". Denne klasse av forbindelser oppviser funksjonelle grupper som sikrer at matriksen som består av (basis-)polymeren og aggregatene av magnesiumhydroksyd- eller aluminiumhydroksyd-partiklene har en best mulig kontakt med hverandre på inter-fasen, og om mulig er kovalent bundet til hverandre. In a preferred embodiment, coupling agents, so-called "coupling agents", can also be used. This class of compounds exhibits functional groups that ensure that the matrix consisting of the (base) polymer and the aggregates of the magnesium hydroxide or aluminum hydroxide particles have the best possible contact with each other at the inter-phase, and if possible are covalently bound to each other.

Egnede forbindelser for en bindingsdannelse til hydrok-sylske overflater er organosilaner, organotitanater, organo-zirko-(alumi)nater eller organoaluminater. Som organosilaner er det hensiktsmessig å anvende slike som f.eks. er beskrevet i DE-PS 2 743 682 eller som det fremgår av firmaprospektet fra Huls AG, Mari, "Anwendung von organofunktionellen Silanen, Dynasilan®, Okt. 1989". Det anvendes fortrinnsvis vinylsilaner, som f.eks. vinyltrietoksysilan eller vinyltri-metoksysilan, aminosilaner, som f.eks. aminopropyltrietoksy-silan eller metakrylsilaner, som f.eks. (metakryloyloksy-propyl)-trimetoksysilan. Som organotitanater, organo-zirko-(alumi-)nater eller organoaluminiater er det hensiktsmessig å anvende slike som er beskrevet i firmaskrivelsen "Ken-react reference manual", Bulletin KR-1084-2 fra Kenrich Petrochemicals Inc. Suitable compounds for a bond formation to hydroxyl surfaces are organosilanes, organotitanates, organo-zirco-(alumina)nates or organoaluminates. As organosilanes, it is appropriate to use such as e.g. is described in DE-PS 2 743 682 or as appears from the company prospectus from Huls AG, Mari, "Anwendung von organofunktionalen Silanen, Dynasilan®, Oct. 1989". Vinyl silanes are preferably used, such as e.g. vinyltriethoxysilane or vinyltrimethoxysilane, aminosilanes, such as e.g. aminopropyltriethoxysilane or methacrylsilanes, such as e.g. (methacryloyloxy-propyl)-trimethoxysilane. As organotitanates, organo-zirco-(aluminates) or organoaluminates, it is appropriate to use those described in the company letter "Ken-react reference manual", Bulletin KR-1084-2 from Kenrich Petrochemicals Inc.

Det er hensiktsmessig å anvende de nevnte koplingsmidler i mengder mellom 0,01 og 10 deler, fortrinnsvis mellom 0,05 og 5 deler, pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd . It is appropriate to use the aforementioned coupling agents in amounts between 0.01 and 10 parts, preferably between 0.05 and 5 parts, per 100 parts magnesium hydroxide or aluminum hydroxide.

I en ytterligere foretrukket utførelsesform kan det i tillegg tilsettes tverrbindemidler, "interpenetrating network"-midler (IPN-midler), som bevirker en gjensidig gjennomtregning av to termodynamisk ikke-forenlige (ikke-blandbare) polyestersystemer, idet det på denne måte tillates en målrettet styring av egenskapsprofilen for forbindelsene som er forsynt med magne siximhy dr oksyd- eller aluminiumhydroksyd-partiklene. For dannelse av det interpenetrerende nettverk har slike polysiloksansystemer, hhv. polysiloksan-kopolymersystemer, fremtrådt som fordelaktige, spesielt slike som f.eks. er beskrevet i DE-OS 2 748 924. Eksempelvis anvendes polysiloksan/polystyren-kopolymerer, polysiloksan/- polykarbonat-kopolymerer, polysiloksan/polyester-kopolymerer, polysilokosan/polyamid-kopolymerer, polysiloksan/polyamid-imid-kopolymerer, polysiloksan/polyimid-kopolymerer og/eller polysiloksan/polysulfon-kopolymerer. In a further preferred embodiment, cross-linking agents, "interpenetrating network" agents (IPN agents), can also be added, which cause a mutual penetration of two thermodynamically incompatible (immiscible) polyester systems, allowing in this way a targeted controlling the property profile of the compounds provided with the magne siximhy dr oxide or aluminum hydroxide particles. For the formation of the interpenetrating network, such polysiloxane systems, or polysiloxane copolymer systems, appeared to be advantageous, especially such as e.g. is described in DE-OS 2 748 924. For example, polysiloxane/polystyrene copolymers, polysiloxane/polycarbonate copolymers, polysiloxane/polyester copolymers, polysiloxane/polyamide copolymers, polysiloxane/polyamide-imide copolymers, polysiloxane/polyimide copolymers are used and/or polysiloxane/polysulfone copolymers.

Polysiloksankomponten kan inneholde reaktive funksjonelle grupper, som f.eks. hydroksysilyl-, vinyl-, allyl-, aryl- eller metakryl-grupper. The polysiloxane component may contain reactive functional groups, such as e.g. hydroxysilyl, vinyl, allyl, aryl or methacryl groups.

Det beskrevne system inneholder i tillegg eventuelt tverrbindere av silantype med funksjonelle grupper som er i stand til å reagere med polysiloksan-komponentens silanol-funksj on. The described system also contains possibly cross-linkers of the silane type with functional groups which are capable of reacting with the silanol function of the polysiloxane component.

Det er hensiktsmessig å katalysere denne tverrbindings-reaksjon ved hjelp av egnede katalysatorer, f.eks. karboksy-later av elementene Sn, Zn, Fe, Ti, Zr eller også ved hjelp av edelmetallkatalysatorer. It is appropriate to catalyze this cross-linking reaction by means of suitable catalysts, e.g. carboxylates of the elements Sn, Zn, Fe, Ti, Zr or also with the help of noble metal catalysts.

Det er hensiktsmessig å anvende IPN-midlene i mengder på 0,1 til 20 deler pr. 100 deler fyllstoff. It is appropriate to use the IPN agents in amounts of 0.1 to 20 parts per 100 parts filler.

Eventuelt kan det tilsettes ytterligere bearbeidings-hjelpemidler, så som fettsyrer og egnede derivater av fettsyrer, eller også stabilisatorer. Optionally, further processing aids can be added, such as fatty acids and suitable derivatives of fatty acids, or also stabilizers.

For overflatemodifisering forsynes magnesiumhydroksyd-eller aluminiumhydroksyd-partiklene med de nevnte koreagenser på hensiktsmessig måte i en egnet blander, fortrinnsvis i en blander som muliggjør høye skjærkrefter. Tilsetningen kan finne sted i den valgte rekkefølge med bestemte tidsinter-valler ved forskjellige temperaturer, og med prosessparametre som er tilpasset koreagensene. Det er likeledes mulig å til-føre blanderen en forblanding av koreagensene sammen med magnesiumhydroksyd- eller aluminiumhydroksyd-partiklene. For surface modification, the magnesium hydroxide or aluminum hydroxide particles are supplied with the aforementioned core reagents in an appropriate manner in a suitable mixer, preferably in a mixer which enables high shear forces. The addition can take place in the selected order with specific time intervals at different temperatures, and with process parameters that are adapted to the core agents. It is also possible to supply the mixer with a premix of the core agents together with the magnesium hydroxide or aluminum hydroxide particles.

Det kan også være en fordel først å fremstille et additiv-konsentrat, en såkalt masterbatch, idet bare en del-mengde av fyllstoffet blandes med de koreagenser som skal anvendes ifølge den nevnte fremgangsmåte i en blander med høye skjærkrefter. Denne såkalte masterbatch kan deretter bearbeides på enkelt vis med et teknisk mindre komplisert blandeapparat, f.eks. hos kunden fortynnes med den passende mengde ytterligere fyllstoff og bearbeides til det overflatemodifiserte fyllstoff som er klart for anvendelse. It can also be advantageous to first prepare an additive concentrate, a so-called masterbatch, with only a partial amount of the filler being mixed with the co-reagents to be used according to the aforementioned method in a mixer with high shear forces. This so-called masterbatch can then be processed easily with a technically less complicated mixing device, e.g. at the customer's place, it is diluted with the appropriate amount of additional filler and processed into the surface-modified filler that is ready for use.

Det på denne måte modifiserte magnesiumhydroksyd eller aluminiumhydroksyd kan deretter bearbeides med den ønskede termoplastiske polyolefin ifølge vanlige fremgangsmåter til en compound. Som compounderingsapparater kommer vanlige blandingsapparater som kan fåes i handelen på tale, som f.eks. én- eller dobbeltskrueelter eller ko-elter. The magnesium hydroxide or aluminum hydroxide modified in this way can then be processed with the desired thermoplastic polyolefin according to usual methods into a compound. Compounding devices are common commercially available mixing devices, such as e.g. single or double screw kneader or co-kneader.

De ifølge oppfinnelsen overflatebehandlede magnesiumhydroksyd- eller aluminiumhydroksyd-partikler er egnet for flammehemmende behandling av termoplastiske polyolefiner, som f.eks. polyetylen og polyetylenkopolymerer, polypropylen eller også EVA og EVA's kopolymerer. The surface-treated magnesium hydroxide or aluminum hydroxide particles according to the invention are suitable for flame retardant treatment of thermoplastic polyolefins, such as e.g. polyethylene and polyethylene copolymers, polypropylene or also EVA and EVA's copolymers.

Vanligvis anvendes det overflatebehandlede aluminiumhydroksyd i termoplastiske polyolefiner som er bearbeidbare inntil ca. 180°C. Egnede representanter for slike termoplastiske olefiner er f.eks. EVA og EVA's kopolymerer eller polyetylen og polyetylens kopolymerer. Det overflatebehandlede magnesiumhydroksyd blir derimot vanligvis anvendt i høytemperaturområdet, dvs. i termoplastiske polymerer som er bearbeidbare fra 180 til over 300"C, fortrinnsvis i polypropylen. Eventult kan også blandinger av overflatebehandlet magnesiumhydroksyd og overflatebehandlet aluminiumhydroksyd anvendes for å gjøre termoplastiske polyolefiner flammemot-standsdyktige. Generally, the surface-treated aluminum hydroxide is used in thermoplastic polyolefins which can be processed up to approx. 180°C. Suitable representatives for such thermoplastic olefins are e.g. EVA and EVA's copolymers or polyethylene and polyethylene's copolymers. The surface-treated magnesium hydroxide, on the other hand, is usually used in the high-temperature range, i.e. in thermoplastic polymers that can be processed from 180 to over 300°C, preferably in polypropylene. Optionally, mixtures of surface-treated magnesium hydroxide and surface-treated aluminum hydroxide can also be used to make thermoplastic polyolefins flame resistant.

I forhold til de ubehandlede magnesiumhydroksyd- eller aluminiumhydroksyd-partikler oppviser de en inntil 50% høyere romvekt. Dessuten er de behandlede magnesiumhydroksyd- eller aluminiumhydroksyd-partikler frittflytende, slik at de lett lar seg dosere og er støvfri. In relation to the untreated magnesium hydroxide or aluminum hydroxide particles, they have a density up to 50% higher. In addition, the treated magnesium hydroxide or aluminum hydroxide particles are free-flowing, so that they can be easily dosed and are dust-free.

Innholdet av overflatebehandlet materiale i den an-gjeldende polymermatriks beveger seg vanligvis mellom 50 og 70%, fortrinnsvis tenderer det mot de lavere prosentinnhold innenfor den nevnte båndbredde, for å minimere påvirkningen av compoundens mekaniske egenskapsbilde. The content of surface-treated material in the relevant polymer matrix usually ranges between 50 and 70%, preferably tending towards the lower percentages within the aforementioned bandwidth, in order to minimize the influence on the compound's mechanical properties.

Compoundene som inneholder magnesiumhydroksyd- eller aluminiumhydroksyd-partiklene kan i tillegg inneholde fiber-formede forsterkningsstoffer. Til fiberstoffene hører eksempelvis glassfibre, steinfibre, metallfibre, poly-krystallinske keramiske fibre, inkludert énkrystallene, de såkalte "whiskers", samt alle fibre som stammer fra syntetiske polymerer, som f.eks. aramid-, karbon-, polyamid-, polyakryl-, polyester- og polyetylenfibre. The compounds containing the magnesium hydroxide or aluminum hydroxide particles may also contain fibre-shaped reinforcing substances. The fibrous materials include, for example, glass fibres, stone fibres, metal fibres, poly-crystalline ceramic fibres, including the single crystals, the so-called "whiskers", as well as all fibers originating from synthetic polymers, such as e.g. aramid, carbon, polyamide, polyacrylic, polyester and polyethylene fibres.

Dersom det er ønsket, kan compoundene tilsettes egnede pigmenter og/eller farvestoffer. If desired, suitable pigments and/or dyes can be added to the compounds.

Det ble oppnådd en fremragende slagseighet ved avveid egenskapsprofil for polymermatriksen når magnesiumhydroksyd-eller aluminiumhydroksyd-partiklene ble overflatebehandlet med en flytende EPM- eller EPDM-polymer og i tillegg med en i det foregående nevnte trans-polyoktenamer (TOR). An outstanding impact resistance was achieved by weighted property profile for the polymer matrix when the magnesium hydroxide or aluminum hydroxide particles were surface treated with a liquid EPM or EPDM polymer and additionally with a previously mentioned trans-polyoctenamer (TOR).

Det oppnås en svært god strekkfasthet ved avveid god egenskapsprofil for polymermatriksen når magnesiumhydroksyd-eller aluminiumhydroksyd-partiklene er overflatebehandlet med en flytende EPM- eller EPDM-polymer, samt i tillegg med en vinylsilan som koplingsmiddel. A very good tensile strength is achieved with a balanced good property profile for the polymer matrix when the magnesium hydroxide or aluminum hydroxide particles are surface treated with a liquid EPM or EPDM polymer, and additionally with a vinyl silane as a coupling agent.

Overraskende avveide gode egenskapsprofiler for polymermatriksen ble oppnådd ved hjelp av følgende kombinasjon: magnesiumhydroksyd- eller aluminiumhydroksyd-partikler/- EPM- eller EPDM-polymer/TOR/vinylsilan som koplingsmidler, Surprisingly balanced good property profiles for the polymer matrix were obtained using the following combination: magnesium hydroxide or aluminum hydroxide particles/- EPM or EPDM polymer/TOR/vinyl silane as coupling agents,

magnesiumhydroksyd- eller aluminiumhydroksyd-partikler/- magnesium hydroxide or aluminum hydroxide particles/-

TOR/IPN-danner, TOR/IPN generator,

magnesiumhydroksyd- eller aluminiumhydroksyd-partikler/- magnesium hydroxide or aluminum hydroxide particles/-

TOR/termoplastisk elastomer. TOR/thermoplastic elastomer.

Sammenligningseksempel 1 Comparative example 1

10 kg magnesiumhydroksyd Kisuma 5A fra Kyowa Chemical Ind., og som er overflatemodifisert ifølge DE-PS 2 659 933, ble bearbeidet til en compound med polypropylen-homopolymer med en midlere molekylvekt på 4,4 "105 (Vestolen PP 8400 fra Huls) på et énskrueapparat, slik at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. 10 kg of magnesium hydroxide Kisuma 5A from Kyowa Chemical Ind., which is surface modified according to DE-PS 2 659 933, was processed into a compound with polypropylene homopolymer with an average molecular weight of 4.4 "105 (Vestolen PP 8400 from Huls) on a single-screw device, so that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Sammenligningseksempel 2 Comparative example 2

I en intensivblander (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 ym. og en midlere spesifikk overflate ifølge BET på 10 m<2>/g fluidisert ved en temperatur på 50°C. I løpet av 60 sekunder ble 0,1 kg av en flytende etylen-propylen-terpolymer (EPDM) med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) tilsatt i en konstant strøm til det agiterte fyllstoff. Etter 5 minutter ble sluttemperaturen på 80 til 100°C oppnådd, og det modifiserte magnesiumhydroksyd ble ført ut i kjøleblanderen. Det oppnådde produkt ble bearbeidet til en compound med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "105 (Vestolen PP 8400 fra Hiils) på et énskrueapparat på en slik måte at compounden inneholdt 3 5% polypropylen og 65% modifisert magnesiumhydroksyd. In an intensive mixer (fluid/refrigerator mixer combination), 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 µm. and an average specific surface according to BET of 10 m<2>/g fluidized at a temperature of 50°C. During 60 seconds, 0.1 kg of a liquid ethylene-propylene terpolymer (EPDM) with dicyclopentadiene as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) was added in a constant stream to the agitated filler. After 5 minutes, the final temperature of 80 to 100°C was reached and the modified magnesium hydroxide was discharged into the cooling mixer. The obtained product was processed into a compound with a polypropylene homopolymer with an average molecular weight of 4.4 "105 (Vestolen PP 8400 from Hiils) on a single-screw apparatus in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel l Example l

15 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 /Ltm og med en midlere spesifikk overflate ifølge BET på 10 m<2>/g, og som var behandlet med 0,15 kg vinylsilan (A 172, Union Carbide), ble fluidisert i intensivblanderen (fluid-/kjøleblander-kombinasjon), til det var oppnådd en temperatur på ca. 50°C. I løpet av 90 sekunder ble en blanding av 0,69 kg av en flytende etylen/propylen-kopolymer (EPM) med en midlere molekylvekt på 7200 (Trilene CP 80, Uniroyal) og 0,3 kg av en styren/- butadienelastomer (Kraton G, Shell) som termoplastisk elastomer tilsatt med konstant hastighet til det agiterte fyllstoff. Da satstemperaturen hadde nådd 100°C, ble produktet ført ut i kjøleblanderen. Det på denne måte modifiserte fyllstoff var karakterisert ved en 50% høyere romvekt, støvfrihet og god doserbarhet. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "IO5 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. 15 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 /Ltm and with an average specific surface according to BET of 10 m<2>/g, and which was treated with 0.15 kg of vinyl silane (A 172, Union Carbide), was fluidized in the intensive mixer (fluid/refrigerator mixer combination), until a temperature of approx. 50°C. During 90 seconds, a mixture of 0.69 kg of a liquid ethylene/propylene copolymer (EPM) with an average molecular weight of 7200 (Trilene CP 80, Uniroyal) and 0.3 kg of a styrene/butadiene elastomer (Kraton G, Shell) as a thermoplastic elastomer added at a constant rate to the agitated filler. When the batch temperature had reached 100°C, the product was fed into the cooling mixer. The filler modified in this way was characterized by a 50% higher bulk density, freedom from dust and good dosing. The obtained product was processed with a polypropylene homopolymer with an average molecular weight of 4.4 "IO5 (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 2 Example 2

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble det anbrakt 15 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 /xm og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, og 1,4 kg av et ifølge sammenligningseksempel 2 fremstilt overflatebehandlet magnesiumhydroksyd i form av en konsentratblanding med 55% Mg(OH)2-innhold ble tilført den stående blander. Etter at satsen var fluidisert i 5 minutter, var blandetemperaturen ca. 80 til 100"C. Produktet ble ført ut i en kjøleblander og så straks tilsatt 0,15 kg vinyltrietoksysilan som koplingsmiddel. Under avkjølingsfasen til 35"C ble vinyltrietoksysilanet innarbeidet på homogent vis. Det på denne måte modifiserte fyllstoff utmerket seg ved en 30% høyere romvekt, høy fluididet og følgelig svært god doseringsevne og støvfrihet. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "IO5 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. 15 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 /xm and an average specific surface according to BET of 10 m<2>/g was placed in the intensive mixer (fluid/refrigerator mixer combination), and 1 .4 kg of a surface-treated magnesium hydroxide produced according to comparative example 2 in the form of a concentrate mixture with 55% Mg(OH)2 content was added to the standing mixer. After the batch had been fluidized for 5 minutes, the mixing temperature was approx. 80 to 100°C. The product was fed into a cooling mixer and then immediately added 0.15 kg of vinyltriethoxysilane as a coupling agent. During the cooling phase to 35°C, the vinyltriethoxysilane was incorporated homogeneously. The filler modified in this way was distinguished by a 30% higher bulk density, high fluidity and consequently very good dosing ability and freedom from dust. The obtained product was processed with a polypropylene homopolymer with an average molecular weight of 4.4 "IO5 (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 3 Example 3

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 //m og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 200 g (2,0 vekt%) vinylsilan (A 172, Union Carbide) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "105 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 //m and an average specific surface according to BET of 10 m<2>/g, was mixed with 200 g (2.0% by weight) vinyl silane (A 172, Union Carbide) and 300 g (3.0% by weight) liquid EPDM with dicyclopentadiene (DCPD) as thermonomizer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) in total 10 minutes with a final temperature of 50 to 70°C. The obtained product was processed with a polypropylene homopolymer with an average molecular weight of 4.4 "105 (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 4Example 4

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 ^m og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 460 g (4,6 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og med 310 g (3,1 vekt%) trans-polyoktenamer (TOR) med 80% trans-innhold (Vestenamer 8012 fra Hiils) og et mykningsområde 55 og 70°C i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4"10<5 >(Vestolen P 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination) 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 µm and an average specific surface according to BET of 10 m<2>/g was mixed with 460 g (4.6% by weight) liquid EPDM with dicyclopentadiene as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and with 310 g (3.1% by weight) trans-polyoctenamer (TOR) with 80% trans content ( Vestenamer 8012 from Hiils) and a softening range of 55 and 70°C for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was processed with a polypropylene homopolymer with an average molecular weight of 4.4"10<5> (Vestolen P 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 5 Example 5

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 /nm og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal), og med 200 g (2,0 vekt%) etylenvinylacetat (Escorene Ultra UL 04028), med 100 g (1,0 vekt%) zirkoniumlaurat med 200 g (2,0 vekt%) tverrbundet polyetylen (Vistaflex, Exxon) som termoplastisk elastomer i 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4"10<5 >(Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 /nm and an average specific surface according to BET of 10 m<2>/g, was mixed with 300 g (3.0 wt%) liquid EPDM with dicyclopentadiene as thermonomizer and with an average molecular weight of 7000 (Trilene 65, Uniroyal), and with 200 g (2.0 wt%) ethylene vinyl acetate (Escorene Ultra UL 04028), with 100 g ( 1.0 wt%) zirconium laurate with 200 g (2.0 wt%) cross-linked polyethylene (Vistaflex, Exxon) as thermoplastic elastomer for 10 minutes with a final temperature of 50 to 70°C. The obtained product was processed with a polypropylene homopolymer with an average molecular weight of 4.4"10<5> (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 6 Example 6

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 ^m og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal), med 200 g (2,0 vekt%) av et etylenvinylacetat (Escorene Ultra UL 04028, Exxon) som termoplastisk elastomer og med 100 g In the intensive mixer (fluid/refrigerator mixer combination) 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 µm and an average specific surface according to BET of 10 m<2>/g was mixed with 300 g (3.0 wt%) liquid EPDM with dicyclopentadiene as thermonomizer and with an average molecular weight of 7000 (Trilene 65, Uniroyal), with 200 g (2.0 wt%) of an ethylene vinyl acetate (Escorene Ultra UL 04028, Exxon) as thermoplastic elastomer and with 100 g

(1,0 vekt%) laurinsyre i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble (1.0 wt%) lauric acid for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was

bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "IO5 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd . processed with a polypropylene homopolymer with an average molecular weight of 4.4 "IO5 (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 7 Example 7

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 ^ ra. og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 50 g (0,5 vekt%) av et kvaternært zirkonat (NZ 38 J, Kenrich) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og 200 g (2,0 vekt%) PEBA (Pebax Atochem) i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "10<5> (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 3 5% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination) 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 ra. and an average specific surface according to BET of 10 m<2>/g, mixed with 50 g (0.5 wt%) of a quaternary zirconate (NZ 38 J, Kenrich) and 300 g (3.0 wt%) of liquid EPDM with dicyclopentadiene (DCPD) as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and 200 g (2.0% by weight) PEBA (Pebax Atochem) for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was processed with a polypropylene homopolymer with an average molecular weight of 4.4 "10<5> (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 8 Example 8

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd Magnifin H 10 (fra Martinswerk GmbH) med en midlere kornstørrelse på 1 jum og en midlere spesifikk overflate ifølge BET på 10 m<2>/g, blandet med 100 g (1,0 vekt%) av et organopolysiloksan (SFR 100, General Electric Silicones) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og 200 g (2,0 vekt%) Aminosilan (A 1100, Union Carbide) i tilsammen 10 minutter med en sluttemperatur på 50 til 70"C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "IO5 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerated mixer combination), 10 kg of magnesium hydroxide Magnifin H 10 (from Martinswerk GmbH) with an average grain size of 1 µm and an average specific surface according to BET of 10 m<2>/g was mixed with 100 g ( 1.0 wt%) of an organopolysiloxane (SFR 100, General Electric Silicones) and 300 g (3.0 wt%) of liquid EPDM with dicyclopentadiene (DCPD) as thermonomizer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and 200 g (2.0% by weight) Aminosilane (A 1100, Union Carbide) for a total of 10 minutes with a final temperature of 50 to 70"C. The product obtained was processed with a polypropylene homopolymer with an average molecular weight of 4.4" IO5 (Vestolen PP 8400 from Hiils) on a single screw device to a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Eksempel 9 Example 9

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg magnesiumhydroksyd-karbonat Ultracarb® (fra Microfine Minerals) med en midlere spesifikk overflate ifølge BET på 15 m<2>/g, blandet med 200 g (2,0 vekt%) vinylsilan (A 172, Union Carbide) og 300 g (3,0 vekt%) flytende EPM med en midlere molekylvekt på 7200 (Trilene CP 80, Uniroyal) i tilsammen 10 minutter med en sluttemperatur på 50 til 70"C. Det oppnådde produkt ble bearbeidet med en polypropylen-homopolymer med en midlere molekylvekt på 4,4 "105 (Vestolen PP 8400 fra Hiils) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% polypropylen og 65% modifisert magnesiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination) 10 kg of magnesium hydroxide carbonate Ultracarb® (from Microfine Minerals) with an average specific surface according to BET of 15 m<2>/g, was mixed with 200 g (2.0 wt%) vinyl silane (A 172, Union Carbide) and 300 g (3.0 wt%) of liquid EPM with an average molecular weight of 7200 (Trilene CP 80, Uniroyal) for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was processed with a polypropylene homopolymer with an average molecular weight of 4.4 "105 (Vestolen PP 8400 from Hiils) on a single-screw apparatus into a compound in such a way that the compound contained 35% polypropylene and 65% modified magnesium hydroxide.

Sammenligningseksempel Comparative example

I intensivblanderen (fluid-/kjøleblander-kombinasjon) ble 10 kg aluminiumhydroksyd Marital OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på 0,9 - 1,3 /im og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g fluidisert ved en temperatur på 50°C. I løpet av 60 sekunder ble 0,1 kg av en flytende etylen-propylen-terpolymer (EPDM) med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) tilsatt med konstant hastighet til det agiterte fyllstoff. Etter 5 minutter var slutt-temperaturen på 80 til 100°C oppnådd, og det modifiserte aluminiumhydroksyd ble tatt ut av kjøleblanderen. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 0202 0, Exxon) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination) 10 kg of aluminum hydroxide Marital OL 107 (from Martinswerk GmbH) with an average grain size of 0.9 - 1.3 µm and an average specific surface according to BET of 6 - 8 m<2 >/g fluidized at a temperature of 50°C. During 60 seconds, 0.1 kg of a liquid ethylene-propylene terpolymer (EPDM) with dicyclopentadiene as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) was added at a constant rate to the agitated filler. After 5 minutes, the final temperature of 80 to 100°C was reached and the modified aluminum hydroxide was removed from the cooling mixer. The product obtained was processed with an EVA polymer (Escorene Ultra UL 0202 0, Exxon) on a single screw apparatus into a compound in such a way that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 10 Example 10

15 kg aluminiumhydroksyd Marital OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på 0,9 - 1,3 nm og med en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g, og som var behandlet med 0,15 kg vinylsilan (A 172, Union Carbide) ble fluidisert i intensivblanderen (fluid-/kjøleblander-kombinasjon) til det var oppnådd en temperatur på ca. 50°C. I løpet av 90 sekunder ble en blanding av 0,69 kg av en flytende etylen-propylen-kopolymer (EPM) med en midlere molekylvekt på 7200 (Trilene CP 80, Uniroyal) og 0,3 kg av en styren-butadienelastomer (Kraton G, Shell) som termoplastisk elastomer tilsatt med konstant hastighet til det agiterte fyllstoff. Da satstemperaturen hadde nådd 100°C, ble produktet ført ut i kjøleblanderen. Det på denne måte modifiserte fyllstoff var karakterisert ved en 50% høyere romvekt, støvfrihet og god doserbarhet. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02 020, Exxon) på et énskrueapparat til en compound på en slik måte at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. 15 kg of aluminum hydroxide Marital OL 107 (from Martinswerk GmbH) with an average grain size of 0.9 - 1.3 nm and with an average specific surface according to BET of 6 - 8 m<2>/g, and which was treated with 0, 15 kg of vinyl silane (A 172, Union Carbide) was fluidized in the intensive mixer (fluid/refrigerator mixer combination) until a temperature of approx. 50°C. During 90 seconds, a mixture of 0.69 kg of a liquid ethylene-propylene copolymer (EPM) with an average molecular weight of 7200 (Trilene CP 80, Uniroyal) and 0.3 kg of a styrene-butadiene elastomer (Kraton G , Shell) as a thermoplastic elastomer added at a constant rate to the agitated filler. When the batch temperature had reached 100°C, the product was fed into the cooling mixer. The filler modified in this way was characterized by a 50% higher bulk density, freedom from dust and good dosing. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02 020, Exxon) on a single-screw apparatus into a compound in such a way that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 11 Example 11

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble det anbraskt 15 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på 0,9 - In the intensive mixer (fluid/refrigerator mixer combination) 15 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of 0.9 -

1,3 nm og en midlere spesifikk overflate ifølge BET på 6 - 1.3 nm and an average specific surface according to BET of 6 -

8 m<2>/g, og i den stående blander ble det tilsatt 1,4 kg av et ifølge sammenligningseksempel 2 fremstilt overflatebehandlet aluminiumhydroksyd i form av en konsentratblanding med 55% Al (OH) 3-innhold. Etter at satsen var fluidisert i 5 minutter, var blandetemperaturen ca. 80 til 100°C. Produktet ble ført ut i en kjøleblander og så straks tilsatt 0,15 kg vinyltrietoksysilan som koplingsmiddel. Under avkjølingsfasen til 35"C ble vinyltrietoksysilanet innarbeidet på homogent vis. Det på denne måte modifiserte fyllstoff utmerket seg ved en 30% høyere romvekt, høy fluiditet og følgelig svært god doseringsevne og støvfrihet. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02020, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd . 8 m<2>/g, and 1.4 kg of a surface-treated aluminum hydroxide prepared according to comparative example 2 was added in the form of a concentrate mixture with 55% Al (OH) 3 content. After the batch had been fluidized for 5 minutes, the mixing temperature was approx. 80 to 100°C. The product was fed into a cooling mixer and then immediately added 0.15 kg of vinyltriethoxysilane as a coupling agent. During the cooling phase to 35"C, the vinyltriethoxysilane was incorporated homogeneously. The filler modified in this way excelled with a 30% higher bulk density, high fluidity and consequently very good dosing ability and freedom from dust. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02020, Exxon), to a compound on a single screw device, so that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 12 Example 12

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 /xm og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 200 g (2,0 vekt%) vinylsilan (A 172, Union Carbide) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02 02 0, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 /xm and an average specific surface according to BET of 6 - 8 m<2>/g mixed with 200 g (2.0% by weight) vinyl silane (A 172, Union Carbide) and 300 g (3 .0 weight%) liquid EPDM with dicyclopentadiene (DCPD) as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was processed with an EVA polymer (Escorene Ultra UL 02 02 0, Exxon) into a compound on a single-screw apparatus, so that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 13 Example 13

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 ^m og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 460 g (4,6 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og med 310 g (3,1 vekt%) trans-poly-oktenamer (TOR) med 80% trans-innhold (Vestenamer 8012 fra Hiils) og et mykningsområde mellom 55 og 70°C i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02020, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 ^m and an average specific surface according to BET of 6 - 8 m<2>/g mixed with 460 g (4.6% by weight) of liquid EPDM with dicyclopentadiene as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and with 310 g (3.1% by weight) trans-poly-octenamer (TOR) with 80% trans content (Vestenamer 8012 from Hiils) and a softening range between 55 and 70°C for a total of 10 minutes with a final temperature of 50 to 70°C. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02020, Exxon) into a compound on a single-screw apparatus, so that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 14 Example 14

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 jum og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal), med 200 g (2,0 vekt%) etylenvinylacetat (Escorene Ultra UL 04028, Exxon), med 100 g (1,0 vekt%) zirkoniumlaurat med 200 g (2,0 vekt%) tverrbundet polyetylen (Vistaflex Exxon) som termoplastisk elastomer i 10 minutter med en sluttemperatur på 50 til 70"C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02020, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 3 5% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 µm and an average specific surface according to BET of 6 - 8 m<2>/g mixed with 300 g (3.0% by weight) liquid EPDM with dicyclopentadiene as thermonomizer and with an average molecular weight of 7000 Trilene 65, Uniroyal), with 200 g (2.0 wt%) ethylene vinyl acetate (Escorene Ultra UL 04028, Exxon), with 100 g (1.0 wt%) zirconium laurate with 200 g (2.0 wt%) crosslinked polyethylene ( Vistaflex Exxon) as thermoplastic elastomer for 10 minutes with a final temperature of 50 to 70"C. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02020, Exxon) into a compound on a single-screw apparatus, so that the compound contained 3 5% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 15 Example 15

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 /im og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal), med 200 g (2,0 vekt%) etylenvinylacetat (Escorene Ultra UL 04028, Exxon) som termoplastisk elastomer og med 100 g (1,0 vekt%) laurinsyre i tilsammen 10 minutter med en slutt-temperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02020, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 /im and an average specific surface area according to BET of 6 - 8 m<2>/g mixed with 300 g (3.0% by weight) liquid EPDM with dicyclopentadiene as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal), with 200 g (2.0 wt%) ethylene vinyl acetate (Escorene Ultra UL 04028, Exxon) as thermoplastic elastomer and with 100 g (1.0 wt%) lauric acid for a total of 10 minutes with a final temperature of 50 to 70°C. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02020, Exxon) into a compound on a single-screw apparatus, so that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Eksempel 16 Example 16

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 /xm og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 50 g (0,5 vekt%) av et kvat. zirkonat (NZ 38 J Kenrich) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og 2 00 g (2,0 vekt%) PEBA (Pebax Atochem) i tilsammen 10 minutter med en sluttemperatur på 50 til 70"C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02020, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 /xm and an average specific surface according to BET of 6 - 8 m<2>/g mixed with 50 g (0.5% by weight) of a quat. zirconate (NZ 38 J Kenrich) and 300 g (3.0 wt%) of liquid EPDM with dicyclopentadiene (DCPD) as thermonomizer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and 200 g (2.0 wt%) PEBA (Pebax Atochem) for a total of 10 minutes with a final temperature of 50 to 70"C. The obtained product was processed with an EVA polymer (Escorene Ultra UL 02020, Exxon) into a compound on a single-screw apparatus, so that the compound contained 35 % EVA polymer and 65% modified aluminum hydroxide.

Eksempel 17 Example 17

I intensivblanderen (fluid-/kjøleblanderkombinasjon) ble 10 kg aluminiumhydroksyd Martinal OL 107 (fra Martinswerk GmbH) med en midlere kornstørrelse på ca. 0,9 - 1,3 jxm og en midlere spesifikk overflate ifølge BET på 6 - 8 m<2>/g blandet med 100 g (1,0 vekt%) av et organopolysiloksan (SFR 100, General Electric Silicones) og 300 g (3,0 vekt%) flytende EPDM med dicyklopentadien (DCPD) som termonomer og med en midlere molekylvekt på 7000 (Trilene 65, Uniroyal) og 200 g (2 vekt%) aminosilan (A 1100, Union Carbide) i tilsammen 10 minutter med en sluttemperatur på 50 til 70°C. Det oppnådde produkt ble bearbeidet med en EVA-polymer (Escorene Ultra UL 02 02 0, Exxon), til en compound på et énskrueapparat, slik at compounden inneholdt 35% EVA-polymer og 65% modifisert aluminiumhydroksyd. In the intensive mixer (fluid/refrigerator mixer combination), 10 kg of aluminum hydroxide Martinal OL 107 (from Martinswerk GmbH) with an average grain size of approx. 0.9 - 1.3 jxm and an average specific surface according to BET of 6 - 8 m<2>/g mixed with 100 g (1.0% by weight) of an organopolysiloxane (SFR 100, General Electric Silicones) and 300 g (3.0 wt%) liquid EPDM with dicyclopentadiene (DCPD) as thermonomer and with an average molecular weight of 7000 (Trilene 65, Uniroyal) and 200 g (2 wt%) aminosilane (A 1100, Union Carbide) for a total of 10 minutes with a final temperature of 50 to 70°C. The product obtained was processed with an EVA polymer (Escorene Ultra UL 02 02 0, Exxon) into a compound on a single-screw apparatus, so that the compound contained 35% EVA polymer and 65% modified aluminum hydroxide.

Claims (8)

1. Overflatemodifiserte magnesiumhydroksyd- eller aluminiumhydroksyd-partikler, karakterisert ved at de er overflatebehandlet med en flytende etylen-propylen-kopolymer (EPM) og/c-eller en flytende etylen-propylen-terpolymer (EPDM), med et forhold mellom etylen og propylen på mellom 40 til 60 og 60 til 40, og som oppviser en midlere molekylvekt på mindre enn 20.000, i en mengde på 0,1 til 20 deler pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd, samt i tillegg med en trans-polyoktenamer (TOR) i en mengde på 0,1 til 50 deler pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd, og/eller en termoplastisk elastomer i en mengde på 0,1 til 50 deler pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd, og/eller et koplingsmiddel i en mengde på 0,01 til 10 deler pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd, og/eller et tverrbindingsmiddel i en mengde på 0,1 til 20 deler pr. 100 deler magnesiumhydroksyd eller aluminiumhydroksyd.1. Surface-modified magnesium hydroxide or aluminum hydroxide particles, characterized in that they are surface-treated with a liquid ethylene-propylene copolymer (EPM) and/or a liquid ethylene-propylene terpolymer (EPDM), with a ratio between ethylene and propylene of between 40 to 60 and 60 to 40, and which exhibits an average molecular weight of less than 20,000, in an amount of 0.1 to 20 parts per 100 parts magnesium hydroxide or aluminum hydroxide, and additionally with a trans-polyoctenamer (TOR) in an amount of 0.1 to 50 parts per 100 parts magnesium hydroxide or aluminum hydroxide, and/or a thermoplastic elastomer in an amount of 0.1 to 50 parts per 100 parts magnesium hydroxide or aluminum hydroxide, and/or a coupling agent in an amount of 0.01 to 10 parts per 100 parts magnesium hydroxide or aluminum hydroxide, and/or a cross-linking agent in an amount of 0.1 to 20 parts per 100 parts magnesium hydroxide or aluminum hydroxide. 2. Magnesiumhydroksyd- eller aluminiumhydroksyd-partikler ifølge krav 1, karakterisert ved at det som trans-poly-oktenamerer (TOR) er anvendt slike som oppviser et trans-innhold på mellom 4 0 og 90%.2. Magnesium hydroxide or aluminum hydroxide particles according to claim 1, characterized in that trans-poly-octenamers (TOR) are used which have a trans content of between 40 and 90%. 3. Magnesiumhydroksyd- eller aluminiumhydroksyd-partikler ifølge ett av kravene 1-2, karakterisert ved at det som termoplastiske elastomerer er anvendt etylen-vinylacetat-kopolymerer, styrenelastomerer, termoplastiske polyuretan (PUR)-elastomerer, eter-ester-blokk-kopolymerer, polyeter/polyamid-blokk-kopolymerer, termoplastiske silikonkautsjuktyper eller termoplastiske polyolefiner.3. Magnesium hydroxide or aluminum hydroxide particles according to one of claims 1-2, characterized in that ethylene-vinyl acetate copolymers, styrene elastomers, thermoplastic polyurethane (PUR) elastomers, ether-ester block copolymers, polyether/polyamide block copolymers, thermoplastic silicone rubber types or thermoplastic polyolefins are used as thermoplastic elastomers. 4. Magnesiumhydroksyd- eller aluminiumhydroksyd-partikler ifølge ett av kravene 1-3, karakterisert ved at det som koplingsmiddel er anvendt et silan, et titanat, et aluminat, et zirkonat eller et zirkonaluminat eller eventuelt kombinasjoner av disse forbindelser.4. Magnesium hydroxide or aluminum hydroxide particles according to one of claims 1-3, characterized in that a silane, a titanate, an aluminate, a zirconate or a zirconaluminate or possibly combinations of these compounds is used as coupling agent. 5. Magnesiumhydroksyd- eller aluminiumhydroksyd-partikler ifølge ett av kravene 1-4, karakterisert ved at det som tverrbindings-midler er anvendt organopolysiloksaner eller organopolysiloksan-kopolymersystemer.5. Magnesium hydroxide or aluminum hydroxide particles according to one of claims 1-4, characterized in that organopolysiloxanes or organopolysiloxane copolymer systems are used as cross-linking agents. 6. Anvendelse av et overflatemodifisert magnesiumhydroksyd og/eller aluminiumhydroksyd ifølge krav 1-5 som flammehemmende fyllstoff i termoplastiske polyolefiner.6. Use of a surface-modified magnesium hydroxide and/or aluminum hydroxide according to claims 1-5 as flame retardant filler in thermoplastic polyolefins. 7. Anvendelse av et overflatemodifisert magnesiumhydroksyd ifølge krav 1-5 som flammehemmende fyllstoff i en mengde på 50 til 70 vekt% i polypropylen.7. Use of a surface-modified magnesium hydroxide according to claims 1-5 as flame retardant filler in an amount of 50 to 70% by weight in polypropylene. 8. Tungt brennbart termoplastisk polyolefin, karakterisert ved at det inneholder et overflatemodifisert magnesiumhydroksyd og/eller aluminiumhydroksyd ifølge krav 1-5.8. Heavy flammable thermoplastic polyolefin, characterized in that it contains a surface-modified magnesium hydroxide and/or aluminum hydroxide according to claims 1-5.
NO904734A 1989-11-01 1990-10-31 Surface-modified magnesium hydroxide or aluminum hydroxide particles, their use, and highly combustible thermoplastic polyolefin NO300850B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH395189 1989-11-01

Publications (3)

Publication Number Publication Date
NO904734D0 NO904734D0 (en) 1990-10-31
NO904734L NO904734L (en) 1991-05-02
NO300850B1 true NO300850B1 (en) 1997-08-04

Family

ID=4266988

Family Applications (1)

Application Number Title Priority Date Filing Date
NO904734A NO300850B1 (en) 1989-11-01 1990-10-31 Surface-modified magnesium hydroxide or aluminum hydroxide particles, their use, and highly combustible thermoplastic polyolefin

Country Status (18)

Country Link
US (1) US5139875A (en)
EP (1) EP0426196B1 (en)
JP (1) JP3023416B2 (en)
KR (1) KR0174268B1 (en)
AT (1) ATE101865T1 (en)
CA (1) CA2028969C (en)
CZ (2) CZ285219B6 (en)
DE (1) DE59004678D1 (en)
DK (1) DK0426196T3 (en)
ES (1) ES2049388T3 (en)
FI (1) FI103345B (en)
HU (1) HU209676B (en)
IE (1) IE64663B1 (en)
IL (1) IL96162A (en)
MX (1) MX172701B (en)
NO (1) NO300850B1 (en)
RU (1) RU2076118C1 (en)
ZA (1) ZA908680B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211746A (en) * 1992-06-22 1993-05-18 Union Carbide Chemicals & Plastics Technology Corporation Flame retardant compositions
US5824390A (en) * 1994-07-22 1998-10-20 Nippon Carbide Kogyo Kabushiki Kaisha Method for producing retroreflective sheeting using a coupling agent
IL117216A (en) * 1995-02-23 2003-10-31 Martinswerk Gmbh Surface-modified filler composition
JP3197458B2 (en) * 1995-03-07 2001-08-13 協和化学工業株式会社 Cold-resistant, halogen-free flame-retardant polyolefin resin composition
JP3358520B2 (en) * 1997-12-09 2002-12-24 住友化学工業株式会社 Fine particles for polyolefin modification
US6348122B1 (en) 1998-01-08 2002-02-19 Compression Polymers Group Fire retarding polypropylene composition
US6360562B1 (en) * 1998-02-24 2002-03-26 Superior Micropowders Llc Methods for producing glass powders
US6102995A (en) * 1998-03-06 2000-08-15 Georgia-Pacific Resins, Inc. High performance intumescent system for imparting heat/flame resistance to thermally unstable substrates
CA2272448A1 (en) * 1998-05-29 1999-11-29 Martinswerk Gmbh Fur Chemische Und Metallurgische Produktion Non-hygroscopic thermally stable aluminium hydroxide
ATE267227T1 (en) * 1998-09-14 2004-06-15 Albemarle Corp SURFACE MODIFIED FILLER COMPOSITION
US6924031B2 (en) * 1998-09-25 2005-08-02 Pirelli Cavi E Sistemi S.P.A. Low-smoke self-extinguishing electrical cable and flame-retardant composition used therein
JP3807587B2 (en) * 1999-07-12 2006-08-09 協和化学工業株式会社 Flame retardant thermoplastic resin composition and molded article thereof
EP1146075A1 (en) * 2000-04-10 2001-10-17 Alusuisse Martinswerk GmbH Process for manufacture of fillers having improved bulk density stability and flowability
KR100379098B1 (en) * 2000-12-13 2003-04-08 삼성종합화학주식회사 Polypropylene-coated magnesium hydroxide, method for preparing thereof and flame retardant composite polypropylene comprising the same
US6452106B1 (en) * 2001-01-29 2002-09-17 Sumitomo Wiring Systems, Ltd. Resin composition, method of making it and electrical wire covered with it
EP1368424A1 (en) * 2001-03-02 2003-12-10 Albemarle Corporation Flame-resistant polypropylene compounds
EP1383838A1 (en) * 2001-04-05 2004-01-28 Albemarle Corporation Surface-coated magnesium hydroxide
US7022404B2 (en) * 2002-11-01 2006-04-04 World Properties, Inc. Circuit substrate material, circuits comprising the same, and method of manufacture thereof
US20060155018A1 (en) * 2003-01-08 2006-07-13 Heinz-Dieter Metzemacher Master batches based on pre-exfoliated nanoclays and the use of the same
PT1560879E (en) * 2003-06-12 2006-09-29 Sued Chemie Ag PROCESS FOR THE PREPARATION OF NANOCOMPOSITE ADDITIVES WITH IMPROVED POLYMER DELAMINATION
JP2005126626A (en) * 2003-10-27 2005-05-19 Fuji Xerox Co Ltd Flame-retardant resin composition and its production process, flame-retardant resin molding
US7326751B2 (en) * 2003-12-01 2008-02-05 Kimberly-Clark Worlwide, Inc. Method of thermally processing elastomeric compositions and elastomeric compositions with improved processability
US20050118435A1 (en) * 2003-12-01 2005-06-02 Kimberly-Clark Worldwide, Inc. Films and methods of forming films having polyorganosiloxane enriched surface layers
WO2005061626A1 (en) * 2003-12-19 2005-07-07 Nec Corporation Flame resistant thermoplastic resin composition
GB0402627D0 (en) * 2004-02-06 2004-03-10 Imerys Minerals Ltd Ultrafine Ground Natural Brucite
JP2006052287A (en) 2004-08-11 2006-02-23 Sunallomer Ltd Flame-retardant polyolefin-based resin composition
GB0622106D0 (en) * 2006-11-06 2006-12-20 Imerys Minerals Ltd Grinding and beneficiation of brucite
WO2008062820A1 (en) * 2006-11-21 2008-05-29 Autonetworks Technologies, Ltd. Flame retardant, flame retardant composition, insulated wire, wiring harness, and method for producing flame retardant composition
JP4197187B2 (en) * 2006-12-12 2008-12-17 株式会社オートネットワーク技術研究所 Flame retardant resin composition and insulated wire and wire harness using the same
JP2007321155A (en) * 2007-07-23 2007-12-13 Riken Technos Corp Flame-retardant resin composition and insulated wire
JP5433993B2 (en) * 2008-06-27 2014-03-05 株式会社オートネットワーク技術研究所 Flame retardant, flame retardant composition, insulated wire and wire harness
DE102008031360A1 (en) * 2008-07-04 2010-01-14 K+S Ag A method for producing curable compositions comprising coarse and / or nanoscale, coated, deagglomerated and preferably functionalized magnesium hydroxide particles, and of cured thermoplastic or thermosetting polymers or composites comprising deagglomerated and homogeneously distributed Magnesiumhydroxidfüllstoffpartikel
JP2010111718A (en) * 2008-11-04 2010-05-20 Autonetworks Technologies Ltd Flame retardant, flame-retardant composition, and insulated electric wire
GB2466921B (en) * 2009-01-07 2013-06-05 Tyco Electronics Ltd Uk Flame retardant material and a cable having a cable sheath composed of the same
JP5761722B2 (en) * 2009-09-24 2015-08-12 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Injection molded multi-component composite system with improved combustion behavior
JP5589414B2 (en) * 2010-02-03 2014-09-17 株式会社オートネットワーク技術研究所 Flame retardant, flame retardant resin composition and insulated wire
JP5589413B2 (en) 2010-02-03 2014-09-17 株式会社オートネットワーク技術研究所 Flame retardant, flame retardant resin composition and insulated wire
DE102013226798A1 (en) * 2013-12-20 2015-06-25 Evonik Industries Ag Surface treatment of particles and their use
KR101579478B1 (en) * 2014-03-20 2015-12-22 한국신발피혁연구원 Manufacturing method of inorganic hydroxidesilica hybrid complex flame retardant for polymer resin having excellent flame radiation efficiency and complex flame retardant by the same
WO2020074629A1 (en) * 2018-10-11 2020-04-16 Basell Polyolefine Gmbh Composition comprising polyolefin and gibbsite
KR20200097366A (en) 2019-02-07 2020-08-19 삼성디스플레이 주식회사 Display device and manufacturing method thereof
CN114736450A (en) * 2022-03-10 2022-07-12 金发科技股份有限公司 High-thermal-shrinkage-resistance and high-toughness thermo-oxidative-aging-resistance polyolefin material and preparation method and application thereof
WO2024029144A1 (en) * 2022-08-05 2024-02-08 Nok株式会社 Flame-retardant rubber composition and gasket

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067053A (en) * 1958-07-10 1962-12-04 American Cyanamid Co Pigment compositions
US3304197A (en) * 1959-12-09 1967-02-14 Johns Manville Composition characterized by uniformly distributed inorganic additives
US3376188A (en) * 1965-01-04 1968-04-02 Exxon Research Engineering Co Terpolymer compositions and process of producing same
US3941610A (en) * 1968-11-04 1976-03-02 The Dow Chemical Company Magnesium hydroxide-containing paper
US3816367A (en) * 1971-06-12 1974-06-11 M & T Chemicals Inc Flame retardant compositions
US3832326A (en) * 1972-06-01 1974-08-27 Nat Distillers Chem Corp Flame retardant compositions
DE2131354B2 (en) * 1971-06-24 1975-10-30 Chemische Werke Huels Ag, 4370 Marl Process for improving the raw strength of rubber compounds
JPS5222650B2 (en) * 1973-11-05 1977-06-18
GB1514081A (en) * 1975-05-30 1978-06-14 Kyowa Chem Ind Co Ltd Particulate magnesium hydroxide
US4145404A (en) * 1975-05-30 1979-03-20 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
SE432435B (en) * 1976-09-29 1984-04-02 Union Carbide Corp COMPOSITION AND USE OF THE COMPOSITION AS FILLING IN A RESIN OR PLASTIC COMPOSITION
GB1604415A (en) * 1977-07-27 1981-12-09 Raychem Ltd Polymeric blends
US4373048A (en) * 1980-04-21 1983-02-08 Amp Incorporated High voltage flame retardant EPOM insulating compositions
DE3321176A1 (en) * 1983-06-11 1984-12-13 Chemische Werke Hüls AG, 4370 Marl COMPOSITE MATERIALS AND COMPOSITE CONSTRUCTION ELEMENTS BASED ON EP (D) M
CA1221186A (en) * 1984-04-04 1987-04-28 University Of Toronto Innovations Foundation (The) Reinforced resin composites
US4732939A (en) * 1986-01-20 1988-03-22 Sumitomo Bakelite Company Limited Flame-retardant olefinic resin compositions
EP0292233A3 (en) * 1987-05-22 1989-01-25 Imperial Chemical Industries Plc Fillers
JPH0823017B2 (en) * 1987-11-20 1996-03-06 古河電気工業株式会社 Flame resistant non-drying putty composition
GB8806497D0 (en) * 1988-03-18 1988-04-20 Mortile Acoustic Ind Ltd Non-toxic fire retardant thermoplastic material

Also Published As

Publication number Publication date
JP3023416B2 (en) 2000-03-21
US5139875A (en) 1992-08-18
IL96162A0 (en) 1991-07-18
CZ285276B6 (en) 1999-06-16
NO904734L (en) 1991-05-02
JPH03263440A (en) 1991-11-22
DE59004678D1 (en) 1994-03-31
HUT55430A (en) 1991-05-28
ES2049388T3 (en) 1994-04-16
EP0426196B1 (en) 1994-02-23
CA2028969A1 (en) 1991-05-02
CZ537690A3 (en) 1999-06-16
IL96162A (en) 1995-01-24
MX172701B (en) 1994-01-07
EP0426196A1 (en) 1991-05-08
CZ259697A3 (en) 1999-06-16
FI103345B1 (en) 1999-06-15
ATE101865T1 (en) 1994-03-15
FI905415A0 (en) 1990-11-01
IE903833A1 (en) 1991-05-08
KR910009807A (en) 1991-06-28
IE64663B1 (en) 1995-08-23
CA2028969C (en) 2002-05-28
CZ285219B6 (en) 1999-06-16
ZA908680B (en) 1991-10-30
HU209676B (en) 1994-10-28
NO904734D0 (en) 1990-10-31
KR0174268B1 (en) 1999-04-01
FI103345B (en) 1999-06-15
RU2076118C1 (en) 1997-03-27
DK0426196T3 (en) 1994-03-28

Similar Documents

Publication Publication Date Title
NO300850B1 (en) Surface-modified magnesium hydroxide or aluminum hydroxide particles, their use, and highly combustible thermoplastic polyolefin
FI115464B (en) Surface modified filler composition
TW579381B (en) Thermoplastic elastomer, hot-melt composition, process for preparing a thermoplastic vulcanizate and composite articles thereof
US20040048952A1 (en) Modified silane treated pigments or fillers and compositions containing the same
CN100384918C (en) Cross-linkable and/or cross-linked nanofiller compositions
JP2001057109A (en) Use of liquid functional organylorganyloxysirane combined with carrying material or use of liquid (copoly) condensation product of compound thereof to manufacture cable compound, and cable compound
KR100287599B1 (en) Glass fiber-reinforced polymer composition
JP2008537971A (en) Method for preparing thermoplastic vulcanized rubber composition
KR20080106229A (en) Resin dispersion, coating materials, laminates, and processes for production of the same
CA2410242A1 (en) Treatment of minerals with alkylsilanes and alkylsilane copolymers
CA1193377A (en) Production of polyolefin copolymer
JPH03137161A (en) Thermoplastic resin composition
CA2003389A1 (en) Polypropylene resin composition
KR19990036239A (en) Process for producing silane crosslinked polyolefin
CN102046722A (en) Flexible polypropylene with high impact strength
Hausmann et al. Polymeric Coupling Agents as Properly Enhancers in Highly Filled Polymer Systems
KR20020036747A (en) Polyolefin-based resin composition and process for production thereof
JP2003516453A (en) Free flowing powder
EP1193290A1 (en) Polyolefin resin composite, thermoplastic resin composite, and process for producing thermoplastic resin composite
US5635567A (en) Propylene polymer, process for obtaining it and use
AU598869B2 (en) Bag containing a powdery or particulate elastomer material
WO1991008257A1 (en) Thermoplastic resin compositions
JPH0288610A (en) Polyolefin-modified polymer and production thereof
JPH06184447A (en) Synthetic resin composition colored in pattern
KR19980032530A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees