NO300223B1 - Thermally expandable fire protection compound, fire protection laminate and method of manufacture thereof - Google Patents

Thermally expandable fire protection compound, fire protection laminate and method of manufacture thereof Download PDF

Info

Publication number
NO300223B1
NO300223B1 NO904231A NO904231A NO300223B1 NO 300223 B1 NO300223 B1 NO 300223B1 NO 904231 A NO904231 A NO 904231A NO 904231 A NO904231 A NO 904231A NO 300223 B1 NO300223 B1 NO 300223B1
Authority
NO
Norway
Prior art keywords
fire protection
fire
laminate
latex
protection compound
Prior art date
Application number
NO904231A
Other languages
Norwegian (no)
Other versions
NO904231L (en
NO904231D0 (en
Inventor
Heinz Horacek
Hermann Wudy
Original Assignee
Chemie Linz Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemie Linz Gmbh filed Critical Chemie Linz Gmbh
Publication of NO904231L publication Critical patent/NO904231L/en
Publication of NO904231D0 publication Critical patent/NO904231D0/en
Publication of NO300223B1 publication Critical patent/NO300223B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fireproofing Substances (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Products (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Thermally-expandable fireproofing material containing expanded graphite, an aqueous chloroprenlatex containing carboxyl groups and substances which form a paracrystalline carbon network in the event of fire.

Description

Foreliggende oppfinnelse vedrører termisk ekspanderbare brannbeskyttelsesmasser henholdsvis brannbeskyttelses-laminater, som inneholder blæregrafitt, en kloroprenlateks inneholdende karboksylgrupper og stoffer som ved brann danner et parakrystallinsk karbongitter, samt en fremgangsmåte for fremstilling derav. The present invention relates to thermally expandable fire protection compounds or fire protection laminates, which contain blister graphite, a chloroprene latex containing carboxyl groups and substances which in case of fire form a paracrystalline carbon lattice, as well as a method for their production.

Termisk ekspanderbare brannbeskyttelsesmasser som består av blæregrafitt, kloroprengummi, en fenolharpiks, et organisk oppløsningsmiddel, samt eventuelt i tillegg av aluminiumhydroksyd og uorganiske fibrer, er eksempelvis beskrevet i AT-PS 360 130. Disse har vist seg spesielt virkningsfulle ved forebyggende brannbeskyttelse, fremfor alt på grunn av deres utmerkede bestandighet mot fuktighet, frost, varme, lys og industriklima, samt på grunn av deres høye esetrykk. Ved innvirkning av varme og ild ekspanderer de i tilfelle brann i åpningen som skal beskyttes ved forholdsvis lav flyteevne. Den ekspanderende massen unnviker derved ikke hindringer, heller ikke i en ikke fullstendig avlukket åpning, og danner på grunn av det høye ese- eller ekspansjonstrykket, som vanligvis ligger over 2 bar, et fast avtetteade sperresjikt, hvorved en videre utbredelse av varme,' riti og røkgasser reduseres eller forsinkes, henholdsvis forhindres helt. Dette tetningsmaterialet har også i ekspandert tilstand en høy mekanisk fasthet. En ulempe ved fremstillingen, bearbeidelsen og anvendelsen av slike masser, er imidlertid sprøheten og den dårlige fleksibiliteten. En ytterligere ulempe består i at det ved fremstillingen anvendes organiske oppløsnings-midler, som krever mer komplisert apparatur og forøket arbeidsinnsats for tilbakevinning av oppløsningsmidler og for å minimalisere en eventuell miljøbelastning forårsaket av oppløsningsmiddel og videre helsefarer. Thermally expandable fire protection compounds consisting of blister graphite, chloroprene rubber, a phenolic resin, an organic solvent, and possibly in addition aluminum hydroxide and inorganic fibres, are for example described in AT-PS 360 130. These have proven to be particularly effective in preventive fire protection, above all on because of their excellent resistance to moisture, frost, heat, light and industrial climate, as well as because of their high pressure. When exposed to heat and fire, they expand in the event of a fire in the opening which must be protected by relatively low buoyancy. The expanding mass thereby does not avoid obstacles, not even in an opening that is not completely sealed off, and due to the high ese or expansion pressure, which is usually above 2 bar, forms a firmly sealed barrier layer, whereby a further spread of heat,' riti and flue gases are reduced or delayed or prevented altogether. This sealing material also has a high mechanical strength in the expanded state. A disadvantage of the production, processing and application of such masses, however, is their brittleness and poor flexibility. A further disadvantage is that organic solvents are used in the production, which require more complicated equipment and increased work effort for the recovery of solvents and to minimize any environmental impact caused by the solvent and further health hazards.

Anvendelsen av oppløsningsmiddelfrie brannbeskyttelsesmasser av blæregrafitt og et polymert bindemiddel, er beskrevet i WO 88/02019. Som polymert bindemiddel er enten et fleksibelt bindemiddel, f.eks. polyvinylacetat, et elastomert bindemiddel, f.eks. en kloroprenpolymer, et duromert bindemiddel, f.eks. en formaldehydharpiks eller et duromert bindemiddel med en tilsats av et fleksibelt bindemiddel mulig. Ulempen ved disse brannbeskyttelsesmassene består imidlertid i at de ved anvendelsen av fleksible eller elastomere bindemidler riktignok har en tilstrekkelig fleksibilitet som er nød-vendig for en enkelt håndtering, men at imidlertid det etter oppesing i branntilfelle dannede sperresjiktet oppviser en for lav stabilitet og hårdhet, som er nødvendig for en optimal avtetting mot en ytterligere brannutbredelse. Brannbeskyttelsesmasser på basis av duromere bindemidler kan bare vanskelig bearbeides grunnet deres høye hårdhet, den i tilfelle brann etter oppesing dannede skorpen er riktignok hard, imidlertid også oppsprukket og sprø og danner ikke noe tilstrekkelig stabilt og tett sperresjikt. The use of solvent-free fire protection compounds of blister graphite and a polymeric binder is described in WO 88/02019. As polymeric binder is either a flexible binder, e.g. polyvinyl acetate, an elastomeric binder, e.g. a chloroprene polymer, a duromeric binder, e.g. a formaldehyde resin or a duromeric binder with an addition of a flexible binder possible. The disadvantage of these fire protection compounds, however, consists in the fact that when flexible or elastomeric binders are used, they do indeed have sufficient flexibility which is necessary for a single handling, but that the barrier layer formed in the event of a fire, however, has too little stability and hardness, which is necessary for optimal sealing against further fire spread. Fire protection compounds based on duromeric binders can only be processed with difficulty due to their high hardness, the crust formed in the event of a fire after burning is indeed hard, but also cracked and brittle and does not form a sufficiently stable and dense barrier layer.

Oppgaven ved foreliggende oppfinnelse består i å overvinne de ved de kjente brannbeskyttelsesmassene opptredende ulemper, og fremfor alt å oppnå mindre sprø masser som i branntilfelle danner et tilstrekkelig stabilt og hardt sperresjikt, og ved hvis fremstilling ingen organiske oppløs*iingsmidler er påkrevd. Denne oppgaven kunne løses med en bfannbeskyttelses-masse som ble oppnådd ved kombinasjon av tre bestemte komponenter. The task of the present invention is to overcome the disadvantages of the known fire protection compounds, and above all to achieve less brittle compounds which in the event of a fire form a sufficiently stable and hard barrier layer, and for the production of which no organic solvents are required. This task could be solved with a waterproofing compound which was achieved by combining three specific components.

Gjenstanden for foreliggende oppfinnelse er følgelig en termisk ekspanderbar brannbeskyttelsesmasse som er kjennetegnet ved at den inneholder 25 til 60 vekt-$ blæregrafitt, 5 til 25 vekt-#, beregnet som faststoff, av en kloroprenlateks med minst 0,3 mol karboksylgrupper pr. 1 kg lateksfaststoff, 3 til 25 vekt-# av stoffer fra gruppen polyakrylnitril, cellulose eller derivater derav, fenolformaldehydharpikser, polyfurfurylalkohol, polyimid, samt eventuelt ytterligere tilsatsstoffer. The object of the present invention is therefore a thermally expandable fire protection compound which is characterized in that it contains 25 to 60 weight-$ of bladder graphite, 5 to 25 weight-#, calculated as solids, of a chloroprene latex with at least 0.3 mol of carboxyl groups per 1 kg latex solid, 3 to 25 weight-# of substances from the group polyacrylonitrile, cellulose or derivatives thereof, phenol formaldehyde resins, polyfurfuryl alcohol, polyimide, as well as any further additives.

Det har derved vist seg spesielt fordelaktig når brannbeskyttelsesmassene ikke inneholder organiske oppløsnings-midler, men at det derimot ved fremstillingen anvendes lateksdispersjoner på utlukkende vandig basis. På grunn av det tilstedeværende restvanninnholdet viser disse brannbeskyttelsesmassene en gunstigere brannoppførsel enn ved anvendelse av organiske oppløsningsmidler. På grunn av fraværet av organiske oppløsningsmidler kan de fremstilles og bearbeides vesentlig enklere og vesentlig mer miljøvennlig. Brannbeskyttelsesmassene ifølge oppfinnelsen viser fremfor alt grunnet innholdet av elastomer kloroprenpolymer, god elastisitet og fleksibilitet, slik at de, henholdsvis derav fremstilte laminater eller plater, er lett anvendbare, bearbeidbare og håndterbare. Avhengig av den aktuelle sammensetningen for brannbeskyttelsesmassen, kan det i branntilfelle oppnås meget høye esetrykk, fortrinnsvis over 5 bar, og dermed en spesielt virkningsfull avtetning. Det etter oppesing dannede sperresjiktet utmerker seg ved sin fasthet, hårdhet og stabilitet, slik at det ikke danner riss og ødelegges ved termiske, mekaniske og aerodynamiske belastninger, samt brannturbulenser i tilfelle brann. It has thereby proven particularly advantageous when the fire protection compounds do not contain organic solvents, but that, on the other hand, latex dispersions on an exclusively aqueous basis are used during production. Due to the residual water content present, these fire protection compounds show a more favorable fire behavior than when organic solvents are used. Due to the absence of organic solvents, they can be manufactured and processed significantly easier and significantly more environmentally friendly. The fire protection compounds according to the invention show, above all due to the content of elastomeric chloroprene polymer, good elasticity and flexibility, so that the laminates or plates produced therefrom are easy to use, process and handle. Depending on the actual composition of the fire protection mass, in the event of a fire very high pressures can be achieved, preferably over 5 bar, and thus a particularly effective seal. The barrier layer formed after raising is distinguished by its firmness, hardness and stability, so that it does not form cracks and is destroyed by thermal, mechanical and aerodynamic loads, as well as fire turbulence in the event of a fire.

Den anvendte blæregrafitten kan eksempelvis -fremstilles ved syrebehandling av en naturgrafitt med rykende salpetersyre, som beskrevet i US-patent nr. 3 574 644 eller av H. Spatzek, Carbon 86 (1986). The bladder graphite used can, for example, be produced by acid treatment of a natural graphite with fuming nitric acid, as described in US patent no. 3 574 644 or by H. Spatzek, Carbon 86 (1986).

Kloroprenlateksen fremstilles vanligvis ved kopolymerisasjon av kloropren med akrylsyre eller metakrylsyre. Slike latekser er eksempelvis i handelen som "Skyprene" (Toyo Soda), "Bayprene" (Bayer), "Butaclor" (Distugil), "Denka Chloro-prene" (Druki Kagaku Kogyo), "Nairit" (UdSSR) eller "Neoprene" (Du Pont). The chloroprene latex is usually produced by copolymerization of chloroprene with acrylic acid or methacrylic acid. Such latexes are for example commercially available as "Skyprene" (Toyo Soda), "Bayprene" (Bayer), "Butaclor" (Distugil), "Denka Chloroprene" (Druki Kagaku Kogyo), "Nairit" (UdSSR) or "Neoprene " (Du Pont).

Polyakrylnitril, cellulose eller derivater derav, fenolformaldehydharpikser, polyfurfurylalkohol eller polyimider danner i tilfelle brann et parakrystallinsk karbongitter. Ved oppvarmingen i tilfelle brann, tverrbindes disse stoffene først, hvorved de sterke intermolekylære bindingene også opprettholdes ved den ytterligere termiske belastningen, som fører til pyrolytisk dekomponering og endelig til dannelse av det parakrystallinske karbongitteret. (Chemie-Ing.-Techn. 42 Nr. 9/10 (1970), s. 659-669.) Tredimensjonale tverrbundne duromerer, som eksempelvis fenolharpikser, viser seg derved som spesielt egnede. Fenolharpikser med tertiære butyl-grupper, som f.eks. p-tert-butylfenolformaldehydharpiks 7520E eller 7522E fra firma Rousselot, viser spesielt gode resultater. Polyacrylonitrile, cellulose or derivatives thereof, phenol formaldehyde resins, polyfurfuryl alcohol or polyimides form a paracrystalline carbon lattice in the event of fire. During the heating in the event of a fire, these substances are first cross-linked, whereby the strong intermolecular bonds are also maintained by the additional thermal load, which leads to pyrolytic decomposition and finally to the formation of the paracrystalline carbon lattice. (Chemie-Ing.-Techn. 42 No. 9/10 (1970), pp. 659-669.) Three-dimensional cross-linked duromers, such as, for example, phenolic resins, thereby prove to be particularly suitable. Phenolic resins with tertiary butyl groups, such as e.g. p-tert-butylphenol formaldehyde resin 7520E or 7522E from the company Rousselot, shows particularly good results.

Tilsatsstoffer som modifiserer brannoppførselen er eksempelvis melamin og dets derivater, forskjellige grafittsalter, cyanursyrederivater, dicyandiamid, halogenhydrokarboner, polyammoniumfosfater og guanidinsalter. Disse stoffene eser ved varmeinnvirkning også under dekomponering. Idet de oppviser en dekomponeringstemperatur som er forskjellig fra blæregrafitt, forhøyes i tilfelle brann også esetrykket med økende temperatur, hvorved en fastere avtetning av åpningen foregår. Additives that modify the fire behavior are, for example, melamine and its derivatives, various graphite salts, cyanuric acid derivatives, dicyandiamide, halogenated hydrocarbons, polyammonium phosphates and guanidine salts. These substances are also exposed to heat during decomposition. As they exhibit a decomposition temperature that is different from blister graphite, in the event of a fire the pore pressure also increases with increasing temperature, whereby a firmer sealing of the opening takes place.

Videre kan det også anvendes ytterligere tilsatsstoffer, som fremfor alt forbedrer fastheten av tetningsmassen i ekspandert tilstand, gjør skorpen fastere og forhøyer vedhenget, som f.eks. uorganiske fibrer, eksempelvis mineral- eller glassfibrer, glasspulver, vermiculitt, bentonitt, kiselsyre, silikater, boraks, stivelse, sukker, klorparafiner, alu-miniumsulfat, aluminiumhydroksyd eller magnesiumhydroksyd. Videre kan det tilsettes flammebeskyttelsesmiddel, eksempelvis halogenerte eller fosforholdige hydrokarboner, som f.eks. tris-klorpropylfosfat, dibromneopentylglykol eller anti-montrioksyd. Videre kommer også slike tilsatsstoffer i betraktning som bevirker økning av skumdannelsen i tilfelle flammedannelse. Slike er eksempelvis salisylsyre, p-hydroksy-benzosyre, PVC, samt nitrogen- eller sulfohydrazider, triazoler, ureadikarboksylsyreanhydrid og ammoniumkarbonat. Gjenstand for oppfinnelsen er videre også et brannbeskyttelseslaminat, kjennetegnet ved at en brannbeskyttelsesmasse som omtalt ovenfor er påført på en bærerbane. Furthermore, further additives can also be used, which above all improve the firmness of the sealing compound in the expanded state, make the crust firmer and increase the attachment, such as e.g. inorganic fibres, for example mineral or glass fibres, glass powder, vermiculite, bentonite, silicic acid, silicates, borax, starch, sugar, chlorinated paraffins, aluminum sulphate, aluminum hydroxide or magnesium hydroxide. Furthermore, flame retardants can be added, for example halogenated or phosphorus-containing hydrocarbons, such as e.g. tris-chloropropyl phosphate, dibromopentyl glycol or antimony trioxide. Furthermore, such additives are also taken into account which cause an increase in foam formation in the event of flame formation. Such are, for example, salicylic acid, p-hydroxy-benzoic acid, PVC, as well as nitrogen or sulphohydrazides, triazoles, ureadicarboxylic anhydride and ammonium carbonate. The object of the invention is also a fire protection laminate, characterized by the fact that a fire protection compound as mentioned above is applied to a carrier web.

Brannbeskyttelsesmassen ifølge oppfinnelsen kan både finne anvendelse som pasta og også i form av plater, lister, bånd eller formgitte gjenstander. Spesielt fordelaktige og enkle ved anvendelse er de ovenfor nevnte brannbeskyttelseslaminatene, hvor brannbeskyttelsesmassen er påkasjert på en bærerbane, eksempelvis en glassfibervlies. Av dekorative grunner og eksempelvis for beskyttelse av brannbeskyttelsesmassen, kan laminatene eller platene være avtettet på en eller begge sider med et dekksjikt, eksempelvis en plast-folie, f.eks. en PVC-folie, papir eller aluminiumblikk. Det er også mulig å utruste brannbeskyttelseslaminatene eller-platene med et klebesjikt, som fordelaktig avdekkes med en slippfolie. The fire protection compound according to the invention can be used both as a paste and also in the form of plates, strips, bands or shaped objects. Particularly advantageous and easy to use are the above-mentioned fire protection laminates, where the fire protection mass is coated on a carrier web, for example a glass fiber fleece. For decorative reasons and for example to protect the fire protection compound, the laminates or plates can be sealed on one or both sides with a covering layer, for example a plastic foil, e.g. a PVC foil, paper or aluminum tin. It is also possible to equip the fire protection laminates or boards with an adhesive layer, which is advantageously uncovered with a release foil.

Ved foreliggende oppfinnelse tilveiebringes videre en fremgangsmåte for fremstilling av en brannbeskyttelsesmasse henholdsvis et brannbeskyttelseslaminat som -omtalt ovenfor, kjennetegnet ved at man blander blæregraf i tir, en karboksylgruppeholdig, fortrinnsvis vandig lateksdispersjon, stoffer fra gruppen polyakrylnitril, cellulose eller derivater derav, fenolformaldehydharpikser, polyfurfurylalkohol, polyimider, samt eventuelt ytterligere tilsatsstoffer under god homogenisering med hverandre, den oppnådde massen påføres eventuelt på en bærerbane og det derved dannede laminatet kasjeres eventuelt med et dekksjikt. The present invention further provides a method for the production of a fire protection compound or a fire protection laminate as - mentioned above, characterized by mixing blister graph in tir, a carboxyl group-containing, preferably aqueous latex dispersion, substances from the group polyacrylonitrile, cellulose or derivatives thereof, phenol formaldehyde resins, polyfurfuryl alcohol, polyimides, as well as possibly further additives under good homogenization with each other, the resulting mass is optionally applied to a carrier web and the resulting laminate is optionally coated with a cover layer.

Brannbeskyttelsesmassen ifølge oppfinnelsen anvendes for brannbeskyttende avtetning henholdsvis fylling av åpninger i bygningsdeler som utgjør et brannavsnitt, som f.eks. fuger mellom murer, hul- henholdsvis mellomrom, murgjennombrudd, kabelgjennomføringer og lignende. Videre kan det fremstilles dørtetninger, vindustetninger eller andre tetninger som i branntilfelle skummer opp og tetter av den på forhånd tilstedeværende spalten eller åpningen. Forbindelsen mellom glass og ramme ved brannbeskyttelsesforglassing ved hjelp av brannbeskyttelsesmassen eller -laminatene ifølge oppfinnelsen, gir også en optimal brannbeskyttelse. Også fremstillingen av hele teglstein er mulig, hvorved gjennombrudd for kabel og rør kles og som ved branninnvirkning danner en sperre. I tilfelle brann skummer denne massen opp ved varmeinnvirkningen og avtetter åpningen slik at en ytterligere gjennomgang av ild og røk, og følgelig en ytterligere utbredelse av brannen, forhindres. The fire protection mass according to the invention is used for fire protective sealing or filling of openings in building parts that constitute a fire section, such as e.g. joints between walls, cavities or spaces, wall penetrations, cable entries and the like. Furthermore, door seals, window seals or other seals can be produced which, in the event of a fire, foam up and seal off the pre-existing gap or opening. The connection between glass and frame during fire protection glazing using the fire protection compound or laminates according to the invention also provides optimal fire protection. The manufacture of whole bricks is also possible, whereby breakthroughs for cables and pipes are covered and which, in the event of a fire, form a barrier. In the event of a fire, this mass foams up due to the heat and seals the opening so that a further passage of fire and smoke, and consequently a further spread of the fire, is prevented.

Eksempler 1- 15 og sammenligningseksempel 16 Examples 1-15 and comparative example 16

I en rørerbeholder ble de i tabellene 1 og 2 angitte stoffene (angitt i vektdeler) tilsatt i følgende rekkefølge: tilsatsstoffer, A1(0E)3, fenolharpiks, 50 % vandig kloro-prenlateksdispersjon, blæregrafitt, mineralfibrer ("Inorphil" 061-60, firma G. M. Langer, BRD). Massen ble homogenisert i 1 time ved hjelp av dissolver med tannskive ved 30°C og en pH-verdi på 10 (innstilt ved hjelp av K0H). Viskositeten lå på ca. 4 Pas, målt ved 30°C i Brookfieldviskosimeter (Spindel 7, 20 opm). Den oppnådde brannbeskyttelsesmassen ble deretter sjabret ut på en glassvlies med en flateveKt på 50 g/m<2> og tørket ved 190°C. In a mixing vessel, the substances indicated in Tables 1 and 2 (indicated in parts by weight) were added in the following order: additives, A1(0E)3, phenolic resin, 50% aqueous chloroprene latex dispersion, bladder graphite, mineral fibers ("Inorphil" 061-60, company G. M. Langer, BRD). The mass was homogenized for 1 hour using a dissolver with a toothed disk at 30°C and a pH value of 10 (adjusted using K0H). The viscosity was approx. 4 Pas, measured at 30°C in a Brookfield viscometer (Spindel 7, 20 rpm). The obtained fire protection mass was then drawn onto a glass fleece with a surface weight of 50 g/m<2> and dried at 190°C.

Blæregrafitten ble oppnådd ved syrebehandling av en naturgrafitt med rykende salpetersyre. Som fenolharpiks ble det anvendt en tert-butylfenol-formaldehydharpiks, type 7520E fra firma Rousselot, Frankrike. The blister graphite was obtained by acid treatment of a natural graphite with fuming nitric acid. A tert-butylphenol-formaldehyde resin, type 7520E from the company Rousselot, France, was used as phenolic resin.

Det ble anvendt kommersielt tilgjengelige lateksdispersjoner på basis av et kopolymerisat av kloropren og metakrylsyre. Det i tabell 1 og 2 angitte innhold av karboksylgrupper ble innstilt ved blanding av de følgende lateksene med forskjellig karboksylgruppeinnhold: "Neoprene 115" (Du Pont): 0,33 mol COOH pr. kg. lateksf ast stoff, "Neoprene 750" og "Neoprene 824A": intet COOH-innhold, "Bayprene 4R" (Bayer): 0,23 mol C00H pr. kg. lateksf aststof f. I sammenligningseksempel V 16 ble det ved ellers like betingelser istedenfor den vandige lateksdispersjonen anvendt en 10 % kloropren-oppløsning i toluen. Commercially available latex dispersions based on a copolymer of chloroprene and methacrylic acid were used. The content of carboxyl groups stated in Tables 1 and 2 was set by mixing the following latexes with different carboxyl group content: "Neoprene 115" (Du Pont): 0.33 mol COOH per kg. latex solids, "Neoprene 750" and "Neoprene 824A": no COOH content, "Bayprene 4R" (Bayer): 0.23 mol C00H per kg. latex solid f. In comparative example V 16, under otherwise identical conditions, a 10% chloroprene solution in toluene was used instead of the aqueous latex dispersion.

Egenskapene for brannbeskyttelseslaminatene er også oppført i The properties of the fire protection laminates are also listed in

tabellene 1 og 2. Esetrykket ble målt på prøver med en diameter på 113 mm, som var lagt inn mellom to oppvarmbare metallplater, ved 250°C. Det ved esing dannede trykket ble overført til den nedre platen på en kraftopptaker med trykkanvisning. Det esende materialet var derved ikke avgrenset mot siden og kunne uhindret bre seg ut i planet. Esehøyden ble målt på prøver med en diameter på 50 mm som var lagt inn i en metallsylinder av 100 mm høyde og en inner-diameter på 50 mm. Sylinderen med prøven, som var forbelastet med et stempel på 100 g, ble oppvarmet i 10 minutter i en ovn ved 300°C. tables 1 and 2. The pressure was measured on samples with a diameter of 113 mm, which were inserted between two heatable metal plates, at 250°C. The pressure created by esing was transferred to the lower plate of a force recorder with a pressure indication. The spreading material was thus not bounded to the side and could spread unhindered in the plane. The ass height was measured on samples with a diameter of 50 mm which were placed in a metal cylinder of 100 mm height and an inner diameter of 50 mm. The cylinder with the sample, which was preloaded with a 100 g piston, was heated for 10 minutes in an oven at 300°C.

Eksempel 17: Example 17:

Småbrannforsøk med laminater ifølge eksempel 13 og V 16 Small fire test with laminates according to example 13 and V 16

For å påvise den i tilfelle brann virksomme avtetningen av en åpning med brannbeskyttelsesmassen ifølge oppfinnelsen, ble to 20 cm lange PVC-rør med en ytre diameter på 16 cm og en veggtykkelse på 3,5 mm omviklet med 230 g av et 15 cm bredt brannbeskyttelseslaminat ifølge eksempel 13, som på vlies-siden i tillegg var kasjert med en 0,05 mm tykk aluminium-folie, hvorved blæregrafitten kom til å ligge mot røret. De omviklede rørene ble pakket inn i en mansjett av sinkblikk og skjøvet inn i en boring (22 cm diameter) i en 10 cm tykk lettbetongplate ("Ytong"). Rørene raget på begge sider av platen 5 cm ut av boringen. To demonstrate the effective sealing of an opening in the event of a fire with the fire protection compound according to the invention, two 20 cm long PVC pipes with an outer diameter of 16 cm and a wall thickness of 3.5 mm were wrapped with 230 g of a 15 cm wide fire protection laminate according to example 13, which on the fleece side was additionally lined with a 0.05 mm thick aluminum foil, whereby the blister graphite came to lie against the tube. The coiled pipes were wrapped in a sleeve of zinc tin and pushed into a bore (22 cm diameter) in a 10 cm thick lightweight concrete slab ("Ytong"). The pipes protruded 5 cm from the bore on both sides of the plate.

I to ytterligere, likeartede boringer i lettbetongplaten ble det skjøvet inn to analogt omviklede rør, hvor det imidlertid i stedet for brannbeskyttelseslaminatet ifølge oppfinnelsen, ble anvendt et brannbeskyttelseslaminat ifølge sammenligningseksempel V 16. Det noe mindre fleksible laminatet viste ved vikling småriss og lette bruddstedet-. In two further, similar bores in the lightweight concrete slab, two analogously wrapped pipes were pushed in, where, however, instead of the fire protection laminate according to the invention, a fire protection laminate according to comparative example V 16 was used. The somewhat less flexible laminate showed small cracks when winding and lightened the fracture site.

Deretter ble lettbetongplatene bygd inn i et småbrannkammer ifølge DIN 4102, og etter enhetstemperaturkurven fra den ene siden flammebehandlet til en temperatur på ca. 1 000"C. Brannbeskyttelsesmassene begynte å ese på grunn av varmen etter ca. 4 min, hvorved alle fire PVC-rørene myknet og ble trykket sammen. Tetningene med laminatene ifølge eksempel 13, var fullstendig lukket etter 13 henholdsvis 14 min, de med laminatene ifølge sammenligningseksempel V 16, etter 13 henholdsvis 17 min, slik at ingen røkgasser, brann eller sot lengre trengte ut. Etter 40 min begynte de utoverragende rørstumpene ved tetningene ifølge oppfinnelsen å brytes fra hverandre, mens rørstumpene med avtetningene ifølge sammen-ligningseksemplet begynte å smelte av. Etter 60 min var rørstumpene brukket helt av henholdsvis smeltet, temperaturen for eseskummet ifølge eksempel 13 lå ved 290°C, de for eseskummet ifølge sammenligningseksempel V 16 på 310 henholdsvis 370°C. The lightweight concrete slabs were then built into a small fire chamber according to DIN 4102, and according to the unit temperature curve from one side flame treated to a temperature of approx. 1000"C. The fire protection compounds started to ooze due to the heat after about 4 min, whereby all four PVC pipes softened and were compressed. The seals with the laminates according to example 13 were completely closed after 13 and 14 min respectively, those with the laminates according to comparative example V 16, after 13 and 17 min respectively, so that no smoke gases, fire or soot penetrated anymore. After 40 min, the projecting pipe stubs at the seals according to the invention began to break apart, while the pipe stubs with the seals according to the comparative example began to melt After 60 min, the pipe stumps were completely broken off or melted, the temperature for the foam according to example 13 was 290°C, those for the foam according to comparative example V 16 at 310 and 370°C respectively.

Etter 80 min ble forsøket avbrutt, uten at det kunne fastslås flamme- eller røkgassgjennombrudd. Det viste seg videre at ved anvendelse av brannbeskyttelsesmassene ifølge eksempel 13, hersket det på den siden som vendte fra ilden under forløpet av brannforsøket, en temperatur som var 20-80°C lavere enn ved anvendelse av den vanlige brannbeskyttelsesmassen ifølge sammenligningseksempel V 16. After 80 min, the experiment was interrupted, without any flame or smoke gas breakthrough being determined. It was also found that when using the fire protection compounds according to example 13, a temperature prevailed on the side facing away from the fire during the course of the fire test, which was 20-80°C lower than when using the usual fire protection compound according to comparative example V 16.

Hårdheten av eseskummet ifølge eksempel 13 ble etter av-kjøling målt ved hjelp av en trykkfasthetsprøving på et Zwick-instrument 4045 ifølge DIN 53421, og lå på 0,2 N/mm<2 >(60 1o stuing). The hardness of the foam according to example 13 was measured after cooling by means of a compressive strength test on a Zwick instrument 4045 according to DIN 53421, and was 0.2 N/mm<2> (60 1o stewing).

Claims (7)

1. Termisk ekspanderbar brannbeskyttelsesmasse, karakterisert ved at den inneholder 25 til 60 vekt-# blæregrafitt, 5 til 25 vekt-#, beregnet som faststoff, av en kloroprenlateks med minst 0,3 mol karboksylgrupper pr. 1 kg lateksfaststoff, 3 til 25 vekt-# av stoffer fra gruppen polyakrylnitril, cellulose eller derivater derav, fenolformaldehydharpikser, polyfurfurylalkohol, polyimid, samt eventuelt ytterligere tilsatsstoffer.1. Thermally expandable fire protection compound, characterized in that it contains 25 to 60 weight-# of blister graphite, 5 to 25 weight-#, calculated as solid, of a chloroprene latex with at least 0.3 mol of carboxyl groups per 1 kg latex solid, 3 to 25 weight-# of substances from the group polyacrylonitrile, cellulose or derivatives thereof, phenol formaldehyde resins, polyfurfuryl alcohol, polyimide, as well as any further additives. 2. Brannbeskyttelsesmasse ifølge krav 1, karakterisert ved at det for dens fremstilling er anvendt en lateksdispersjon på utelukkende vandig basis.2. Fire protection compound according to claim 1, characterized in that a latex dispersion on an exclusively aqueous basis has been used for its production. 3. Brannbeskyttelsesmasse ifølge krav 1 eller 2, karakterisert ved at kloro^renlateksen er oppbygd av et kopolymerisat av i det vesentlTge kloropren og akrylsyre eller metakrylsyre.3. Fire protection compound according to claim 1 or 2, characterized in that the chloroprene latex is made up of a copolymer of essentially chloroprene and acrylic acid or methacrylic acid. 4 . Brannbeskyttelsesmasse ifølge et av kravene 1 til 3, karakterisert ved at den inneholder en fenolformaldehydharpiks.4. Fire protection compound according to one of claims 1 to 3, characterized in that it contains a phenol formaldehyde resin. 5 . Brannbeskyttelseslaminat, karakterisert ved at en brannbeskyttelsesmasse ifølge et av kravene 1 til 4 er påført på en bærerbane. 5 . Fire protection laminate, characterized in that a fire protection compound according to one of claims 1 to 4 is applied to a carrier web. 6. Brannbeskyttelseslaminat ifølge krav 5, karakterisert ved at brannbeskyttelsesmassen er dekket med et dekksjikt. 6. Fire protection laminate according to claim 5, characterized in that the fire protection compound is covered with a covering layer. 7. Fremgangsmåte for fremstilling av en brannbeskyttelsesmasse henholdsvis et brannbeskyttelseslaminat ifølge et av kravene 1-6, karakterisert ved at man blander blæregrafitt, en karboksylgruppeholdig, fortrinnsvis vandig lateksdispersjon, stoffer fra gruppen polyakrylnitril, cellulose eller derivater derav, fenolformaldehydharpikser, polyfurfurylalkohol, polyimider, samt eventuelt ytterligere tilsatsstoffer under god homogenisering med hverandre, den oppnådde massen påføres eventuelt på en bærerbane og det derved dannede laminatet kasjeres eventuelt med et dekksjikt.7. Process for the production of a fire protection mass or a fire protection laminate according to one of claims 1-6, characterized by mixing blister graphite, a carboxyl group-containing, preferably aqueous latex dispersion, substances from the group polyacrylonitrile, cellulose or derivatives thereof, phenol formaldehyde resins, polyfurfuryl alcohol, polyimides, and possibly further additives under good homogenization with each other, the resulting mass is optionally applied to a carrier web and the resulting laminate is optionally coated with a cover layer.
NO904231A 1988-04-07 1990-09-28 Thermally expandable fire protection compound, fire protection laminate and method of manufacture thereof NO300223B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0088988A AT392078B (en) 1988-04-07 1988-04-07 LATEX-BASED FIRE PROTECTION
PCT/EP1989/000371 WO1989009808A1 (en) 1988-04-07 1989-04-07 Latex-bound fireproofing material

Publications (3)

Publication Number Publication Date
NO904231L NO904231L (en) 1990-09-28
NO904231D0 NO904231D0 (en) 1990-09-28
NO300223B1 true NO300223B1 (en) 1997-04-28

Family

ID=3502167

Family Applications (1)

Application Number Title Priority Date Filing Date
NO904231A NO300223B1 (en) 1988-04-07 1990-09-28 Thermally expandable fire protection compound, fire protection laminate and method of manufacture thereof

Country Status (14)

Country Link
EP (2) EP0338347B1 (en)
JP (1) JP2775184B2 (en)
KR (1) KR0139292B1 (en)
AT (2) AT392078B (en)
AU (1) AU615293B2 (en)
DE (2) DE3813252A1 (en)
DK (1) DK241890D0 (en)
ES (1) ES2038361T3 (en)
FI (1) FI99021C (en)
GR (1) GR3003890T3 (en)
HU (1) HU206739B (en)
NO (1) NO300223B1 (en)
RU (1) RU1838372C (en)
WO (1) WO1989009808A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438906B1 (en) * 1990-01-10 1995-09-20 Minnesota Mining And Manufacturing Company Water-based intumescent fire barrier caulk
JPH0465443A (en) * 1990-07-06 1992-03-02 Sanwa Kako Kk Flame-retardant cross-linked polyolefin open-cell foam and its production
DE4135678A1 (en) * 1991-10-30 1993-05-06 Chemie Linz (Deutschland) Gmbh, 6200 Wiesbaden, De Thermally expandable fire protection materials - contain expanded graphite, polymeric binders, substances which form carbon skeleton when exposed to fire, and hollow microspheres, etc.
AT403885B (en) * 1993-07-20 1998-06-25 Chemie Linz Gmbh Method and device for closing wall or ceiling apertures in the event of a fire
DE19524373A1 (en) * 1995-07-04 1997-01-09 Schill & Seilacher Process for flame-retardant finishing of fiber mats and fiber mat finished according to this process
FR2736919A1 (en) * 1995-07-04 1997-01-24 Lande Claude De Fireproof composite material - is mfd. from thermosetting organic polymer or mineral
DE19653503A1 (en) * 1996-12-20 1998-06-25 Hilti Ag Intumescent material
DE19705736C1 (en) * 1997-02-14 1998-10-01 Kuhn Ag Dr Combined fireproof-sealing profile, e.g. for fireproof doors
DE19718876A1 (en) * 1997-05-03 1998-11-05 Kapp Chemie Gmbh Flame and heat resistant barrier consisting of flame resistant cellulosic
DE29905167U1 (en) * 1999-03-20 1999-06-02 Trox Gmbh Geb Fire damper
US6747074B1 (en) * 1999-03-26 2004-06-08 3M Innovative Properties Company Intumescent fire sealing composition
DE10009914A1 (en) * 2000-03-01 2001-09-06 Niemann Hans Dieter Joint seal for buildings consists of a sealing material which remains pre-compressed and dry in the joint but expands in the joint when liquid is applied
DE102005003295A1 (en) * 2005-01-24 2006-07-27 Henkel Kgaa Sealing film for protecting the roof region of a building comprises a single carrier layer made from a tear-resistant flexible material and a coating applied on one side or on both sides as an aqueous dispersion and dried
DE102011105304B4 (en) * 2011-06-22 2017-09-28 Diehl Defence Gmbh & Co. Kg Locking element for closing an opening
EP2885362B1 (en) 2012-08-16 2016-10-26 Clariant International Ltd Flame-resistant coating for the rear side of a carpet
US9228093B2 (en) 2013-10-18 2016-01-05 Weyerhaeuser Nr Company Colored water-repellant and crocking-resistant compositions
WO2016013951A1 (en) * 2014-07-21 2016-01-28 Общество С Ограниченной Ответственностью "Делси" Fire-extinguishing product for preventive fire protection
EP3228366A4 (en) * 2014-12-04 2018-03-07 Limited Liability Company "Rusintech" Microcapsules, method for producing thereof and flame retardant agents, materials, coatings and products based thereon
EP4023307A4 (en) * 2019-08-26 2023-08-30 Sekisui Chemical Co., Ltd. Heat-expanding fire retardant

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574644A (en) * 1965-03-22 1971-04-13 Dow Chemical Co Method of rendering normally flamable materials flame resistant
US3639298A (en) * 1968-02-29 1972-02-01 Standard Brands Chem Ind Inc Flame resistant latex compositions articles made therefrom and processes for producing same
JPS5437624B2 (en) * 1974-03-28 1979-11-16
AT330320B (en) * 1974-03-29 1976-06-25 Chemie Linz Ag FIRE PROTECTIVE PAINTING SYSTEM
DE2755871C3 (en) * 1977-12-15 1981-09-17 Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München Fire protection paint system
AT360130B (en) * 1978-10-02 1980-05-15 Chemie Linz Ag THERMALLY EXPANDABLE SEALING MATERIAL FOR JOINTS, CAVITY OD. DGL. AND METHOD FOR SEALING WALLS OR DOORS IN THE EVENT OF FIRE
DE2856081A1 (en) * 1978-12-23 1980-07-10 Bayer Ag FLAME-RETARDANT LAMINATES
US4255318A (en) * 1979-07-17 1981-03-10 Dainichi-Nippon Cables, Ltd. Fire-retardant putty-like compositions
JPS5911435B2 (en) * 1980-12-11 1984-03-15 ファナック株式会社 Industrial robot safety mechanism
DE3515097C1 (en) * 1985-04-26 1986-09-18 Fa. Carl Freudenberg, 6940 Weinheim Self-adhesive coating for polypropylene foams
DE3536371C1 (en) * 1985-10-11 1987-05-07 Metzeler Schaum Gmbh Flame retardant polyurethane foam
EP0315649B1 (en) * 1986-09-17 1993-03-10 Dixon International Limited Intumescent material

Also Published As

Publication number Publication date
FI904906A0 (en) 1990-10-05
NO904231L (en) 1990-09-28
JPH03503654A (en) 1991-08-15
DK241890A (en) 1990-10-05
EP0338347B1 (en) 1992-02-26
DE58900844D1 (en) 1992-04-02
ATE72824T1 (en) 1992-03-15
HU892232D0 (en) 1991-03-28
EP0408627A1 (en) 1991-01-23
JP2775184B2 (en) 1998-07-16
WO1989009808A1 (en) 1989-10-19
RU1838372C (en) 1993-08-30
KR0139292B1 (en) 1998-04-28
EP0338347A1 (en) 1989-10-25
KR900700578A (en) 1990-08-16
FI99021B (en) 1997-06-13
AU3411989A (en) 1989-11-03
HUT55823A (en) 1991-06-28
DK241890D0 (en) 1990-10-05
AU615293B2 (en) 1991-09-26
FI99021C (en) 1997-09-25
HU206739B (en) 1992-12-28
GR3003890T3 (en) 1993-03-16
ES2038361T3 (en) 1993-07-16
AT392078B (en) 1991-01-25
DE3813252A1 (en) 1989-11-09
ATA88988A (en) 1990-07-15
NO904231D0 (en) 1990-09-28

Similar Documents

Publication Publication Date Title
NO300223B1 (en) Thermally expandable fire protection compound, fire protection laminate and method of manufacture thereof
US5232976A (en) Thermally expandable fire-protection composition comprising expandable graphite, chloroprene latex and compounds forming a paracrystalline carbon skeleton
US4992481A (en) Fire retardant elements
US10487218B2 (en) Fire retardant coating composition
CA1236656A (en) Fire barrier i. coatings
CA1340944C (en) Compressible fireproof seal
US20040121152A1 (en) Flame-resistant insulation
US5034056A (en) Fire protectants
US3090764A (en) Intumescent mastic coating
US20060273290A1 (en) Fire retardant composition
US4795776A (en) Fire-resistant composition
NO148225B (en) THERMAL EXPANDABLE SEALING MATERIAL FOR JOINTS, SPACES AND SIMILAR AND USE THEREOF
US4851044A (en) Fire proofing composition
JP2003192840A (en) Adhesive fireproof rubber composition and sheet
CN109098302B (en) Expansion type metal fireproof plugging plate
JP2003064261A (en) Foamable fireproof composition excellent in fire resistance, foamable fireproof sheet-form molding, and foamable fireproof sheet laminate
KR20140035949A (en) Laminate
CN206205203U (en) A kind of heat preservation and soundproof fire-proof wall structure
CA1171776A (en) Composite insulating article for thermal and/or acoustic insulation
JP2021017754A (en) Liquid composition, fireproof layer, laminate structure including fireproof layer, and fireproofing method
JPS6334919B2 (en)
EP0543349A1 (en) Intumescent composite material
JP2016124285A (en) Laminate
JPH0331379A (en) Fire resistant sealant composition
JPH10102629A (en) Fire preventive and resisting construction filler of block penetration section and fire preventive and resisting construction thereof

Legal Events

Date Code Title Description
MK1K Patent expired