NO20111214A1 - Process for making a hydrocarbon-rich stream liquid - Google Patents

Process for making a hydrocarbon-rich stream liquid Download PDF

Info

Publication number
NO20111214A1
NO20111214A1 NO20111214A NO20111214A NO20111214A1 NO 20111214 A1 NO20111214 A1 NO 20111214A1 NO 20111214 A NO20111214 A NO 20111214A NO 20111214 A NO20111214 A NO 20111214A NO 20111214 A1 NO20111214 A1 NO 20111214A1
Authority
NO
Norway
Prior art keywords
fraction
rich fraction
hydrocarbon
liquefied
separation
Prior art date
Application number
NO20111214A
Other languages
Norwegian (no)
Inventor
Heinz Bauer
Rainer Sapper
Daniel Garthe
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Publication of NO20111214A1 publication Critical patent/NO20111214A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/18External refrigeration with incorporated cascade loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/902Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

En fremgangsmåte for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon, hvor avkjølingen og flytendegjøringen av den hydrokarbonrike fraksjon skjer i indirekte varmeveksling med kjølemiddelblandingen i et kjølemiddelblandingskretsløp, hvor kjølemiddelblandingen komprimeres i minst to trinn, og utskillelsen av den C2+-rike fraksjon skjer på et innstillbart temperaturnivå, hvor kjølemiddelblandingen oppdeles i en gassformig og en flytende fraksjon, begge fraksjoner underkjøles, ekspanderes i det vesentlige til sugetrykket for det første kompressortrinn og blir i det minste delvis fordampet. Ifølge oppfinnelsen ekspanderes ekspanderes (j, h) minst en delstrøm (19, 24) av den flytendegjorte tidligere gassformige fraksjon av kjølemiddelblandingen (15) i det minste midlertidig og innblandes inn i kjølemiddelblandingens (21) ekspanderte flytende fraksjon.A process for liquefying a hydrocarbon-rich fraction by simultaneously separating a C 2 rich fraction occurs at an adjustable temperature level, where the refrigerant mixture is divided into a gaseous and a liquid fraction, both fractions are subcooled, expanded substantially to the suction pressure of the first compressor stage and at least partially evaporated. According to the invention, at least a partial stream (19, 24) of the liquefied former gaseous fraction of the refrigerant mixture (15) is expanded at least temporarily and mixed into the expanded liquid fraction of the refrigerant mixture (21).

Description

Oppfinnelse angår en fremgangsmåte for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon, hvor avkjølingen og flytendegjøringen av den hydrokarbonrike fraksjon skjer i indirekte varmeveksling med kjølemiddelblandingen i et kjølemiddelblandingskretsløp, hvor kjølemiddelblandingen komprimeres i minst to trinn, og utskillelsen av den C2+-rike fraksjon skjer på et innstillbart temperaturnivå, hvor kjølemiddelblandingen oppdeles i en gassformig og en flytende fraksjon, begge fraksjoner underkjøles, ekspanderes i det vesentlige til sugetrykket for det første kompressortrinn og blir i det minste delvis fordampet. The invention relates to a method for liquefaction of a hydrocarbon-rich fraction by simultaneous separation of a C2+-rich fraction, where the cooling and liquefaction of the hydrocarbon-rich fraction takes place in indirect heat exchange with the refrigerant mixture in a refrigerant mixture circuit, where the refrigerant mixture is compressed in at least two stages, and the separation of the C2+-rich fraction occurs at an adjustable temperature level, where the refrigerant mixture is divided into a gaseous and a liquid fraction, both fractions are subcooled, expanded substantially to the suction pressure of the first compressor stage and is at least partially vaporized.

En liknende type fremgangsmåte for flytendegjøring av en hydrokarbonrik fraksjon er eksempelvis kjent fra DE-A 19722490. Slike flytendegjøringsprosesser kommer til anvendelse eksempelvis ved flytendegjøring av jordgass. Ved flytendegjøringsprosesser av liknende type er det som regel nødvendig å utskille bestemte komponenter, da disse faller ut fast ved de nødvendige lave temperaturer og/eller den spesifiserte produktkvalitet ville bli skadet. I det enkleste tilfelle er det tilstrekkelig bare å anordne en utskiller som tjener til utskillelse av de uønskede komponenter fra den hydrokarbonrike fraksjon som skal flytendegjøres. Den selektive utskillelse av lettere jordgassbestanddeler, som eksempelvis etan, stiller derimot vesentlig høyere krav, både til prosessforløpet og til regulerbarheten under foranderlige randbetingelser. A similar type of method for the liquefaction of a hydrocarbon-rich fraction is known, for example, from DE-A 19722490. Such liquefaction processes are used, for example, in the liquefaction of natural gas. In liquefaction processes of a similar type, it is usually necessary to separate certain components, as these precipitate solidly at the required low temperatures and/or the specified product quality would be damaged. In the simplest case, it is sufficient only to arrange a separator which serves to separate the unwanted components from the hydrocarbon-rich fraction to be liquefied. The selective separation of lighter natural gas constituents, such as ethane, on the other hand, places significantly higher demands, both on the course of the process and on the controllability under changing boundary conditions.

Ved jordgassflytendegjøringsprosesser med mindre til midlere kapasitet - med det skal det forstås produksjonsrater på 30 000 til 1 mill. jato LNG - blir det ofte anvendt blandingskretsløp med bare en kretsløpkompressor, hvor disse også blir betegnet som SMR(SingleMixedRefrigerant)-prosesser. Disse har den ulempe at den flytende kjølemiddelfase bare kan fordampes ved et trykknivå. Den målrettede innstilling og regulering av en ønsket temperaturprofil er følgelig vanskelig, da antallet av inngrepsmuligheter hhv. frihetsgrader er begrenset ved slike prosesser. Tilsvarende temperaturprofiler er eksempelvis nødvendig for å drive frem delkondenseringen av den hydrokarbonrike fraksjon som skal flytendegjøres nøyaktig til en bestemt temperatur som er nødvendig for den tilstrebede utskillelse av de uønskede komponenter. In natural gas liquefaction processes with small to medium capacity - by which we mean production rates of 30,000 to 1 million jato LNG - mixing circuits with only one circuit compressor are often used, where these are also referred to as SMR (SingleMixedRefrigerant) processes. These have the disadvantage that the liquid coolant phase can only evaporate at a certain pressure level. The targeted setting and regulation of a desired temperature profile is consequently difficult, as the number of intervention options or degrees of freedom are limited in such processes. Corresponding temperature profiles are, for example, necessary to drive forward the partial condensation of the hydrocarbon-rich fraction which is to be liquefied precisely to a specific temperature which is necessary for the intended separation of the unwanted components.

Formålet med den foreliggende oppfinnelse er å tilveiebringe en fremgangsmåte av liknende type for flyendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon som unngår de foran beskrevne ulemper. Særlig skal det tilveiebringes en fremgangsmåte av likende type for flytendegjøring av en hydrokarbonrik fraksjon som for det første er robust og for det andre muliggjør en effektiv og kontrollerbar utskillelse av etan og høyere hydrokarboner i trekkene i en jordgassflytendegjøringsprosess. Derfor må fordampningsforløpet i en kjølemiddelblandingsstrøm gjøres slik at dette kan settes inn direkte for regulering av en utskillelse av etan og høyere hydrokarboner. The purpose of the present invention is to provide a method of a similar type for flight termination of a hydrocarbon-rich fraction by simultaneous separation of a C2+-rich fraction which avoids the disadvantages described above. In particular, a method of a similar type must be provided for the liquefaction of a hydrocarbon-rich fraction which, firstly, is robust and, secondly, enables an efficient and controllable separation of ethane and higher hydrocarbons in the features of a natural gas liquefaction process. Therefore, the evaporation sequence in a refrigerant mixture flow must be made so that this can be used directly to regulate a separation of ethane and higher hydrocarbons.

For å oppnå dette formål er det tilveiebrakt en fremgangsmåte av liknende type for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon som er kjennetegnet ved at minst en delstrøm av den flytendegjorte tidligere gassformige fraksjon er kjølemiddelblandingen ekspanderes i det minste midlertidig og innblandes inn i kjølemiddelblandingens ekspanderte flytende fraksjon. In order to achieve this purpose, a method of a similar type has been provided for the liquefaction of a hydrocarbon-rich fraction by simultaneous separation of a C2+-rich fraction which is characterized in that at least a partial flow of the liquefied previously gaseous fraction is the refrigerant mixture is expanded at least temporarily and is mixed into the refrigerant mixture's expanded liquid fraction.

Ved hjelp av en variasjon av mengdeforholdene i den flytende fraksjon og den flytendegj orte tidligere gassformige fraksjon, kan temperaturprofilen under fordampningen av det blandede kjølemiddel av de to forannevnte fraksjoner påvirkes på en slik måte at temperaturen av det blandede kjølemiddel i det øvre område av varmeveksleren hhv den varmeveksler som tjener til avkjøling og delkondensering av den hydrokarbonrike fraksjon som skal flytendegjøres, alltid ligger under temperaturen av fraksjonen som skal flytendegjøres. Fremgangsmåten ifølge oppfinnelsen muliggjør en tilstrekkelig regulerbarhet av temperaturen av den hydrokarbonrike fraksjon som skal flytendegjøres ved innløp inn i utskillelsesinnretningen hhv skillekolonnen som skal anordnes for utskillelsen av den C2+-rike fraksjon, slik at innstillingen av en ønsket konsentrasjon av C2+-hydrokarbonene i flytendegjøringsproduktet hhv LNG (Liquefied Natural Gas) er mulig. By means of a variation of the quantity ratios in the liquid fraction and the liquefied previously gaseous fraction, the temperature profile during the evaporation of the mixed refrigerant of the two aforementioned fractions can be affected in such a way that the temperature of the mixed refrigerant in the upper area of the heat exchanger or the heat exchanger which serves for cooling and partial condensation of the hydrocarbon-rich fraction to be liquefied is always below the temperature of the fraction to be liquefied. The method according to the invention enables sufficient controllability of the temperature of the hydrocarbon-rich fraction to be liquefied at the inlet into the separation device or the separation column which is to be arranged for the separation of the C2+-rich fraction, so that the setting of a desired concentration of the C2+ hydrocarbons in the liquefaction product or LNG (Liquefied Natural Gas) is possible.

Ytterligere fordelaktige utførelsesformer av fremgangsmåten ifølge oppfinnelsen for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon som fremstiller gjenstandene i de uselvstendige patentkrav er kjennetegnet ved at delstrømmen av den flytendegjorte tidligere gassformige fraksjon av kjølemiddelblandingen trekkes ut ved den kalde ende av varmevekslingen mellom den hydrokarbonrike fraksjon som skal flytendegjøres og kjølemiddelblandingen og/eller ved en egnet mellomtemperatur, ekspanderes og innblandes inn i kjølemiddelblandingens ekspanderte flytende fraksjon, hvor den egnede mellomtemperatur foreligger når kjølemiddelblandingen har en underkjøling på minst 5 °C, fortrinnsvis på minst 10 °C overfor koketilstanden, Further advantageous embodiments of the method according to the invention for the liquefaction of a hydrocarbon-rich fraction with the simultaneous separation of a C2+-rich fraction which produces the objects in the independent patent claims are characterized by the partial flow of the liquefied previously gaseous fraction of the refrigerant mixture being withdrawn at the cold end of the heat exchange between the hydrocarbon-rich fraction to be liquefied and the coolant mixture and/or at a suitable intermediate temperature, is expanded and mixed into the expanded liquid fraction of the coolant mixture, where the suitable intermediate temperature exists when the coolant mixture has a subcooling of at least 5 °C, preferably of at least 10 °C above the boiling state,

varmevekslingen mellom den hydrokarbonrike fraksjon som skal flytendegjøres og kjølemiddelblandingen skjer i en flerstrømsvarmeveksler som er utformet fortrinnsvis som platevarmeveksler eller viklet varmeveksler, the heat exchange between the hydrocarbon-rich fraction to be liquefied and the coolant mixture takes place in a multi-flow heat exchanger which is designed preferably as a plate heat exchanger or coiled heat exchanger,

såfremt utskillelsen av den C2+-rike fraksjon skjer i minst en skillekolonne, blir i det minste midlertidig en delstrøm av den hydrokarbonrike fraksjon som skal flytendegjøres tilført toppområdet og/eller sumpområdet av skillekolonnen, og såfremt utskillelsen av den C2+-rike fraksjon skjer i minst en skillekolonne, blir skillekolonne/sumptemperaturen innstilt ved hjelp av en oppkoker som er samordnet med skillekolonnen. provided that the separation of the C2+-rich fraction takes place in at least one separation column, at least temporarily a partial stream of the hydrocarbon-rich fraction to be liquefied is supplied to the top area and/or the sump area of the separation column, and provided that the separation of the C2+-rich fraction takes place in at least one separation column, the separation column/sump temperature is set using a reboiler which is coordinated with the separation column.

Fremgangsmåten ifølge oppfinnelsen for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon så vel som ytterligere fordelaktige utførelsesformer av denne, som er gjenstander i uselvstendige patentkrav, skal beskrives nærmere i det følgende ved hjelp av utførelseseksemplene vist på figur 1 og 2. The method according to the invention for liquefaction of a hydrocarbon-rich fraction by simultaneous separation of a C2+-rich fraction as well as further advantageous embodiments thereof, which are objects of non-independent patent claims, shall be described in more detail in the following with the help of the design examples shown in Figures 1 and 2 .

I det følgende blir det ved forklaringen av utførelseseksemplet vist på figur 2 bare gått inn på forskjellene fra fremgangsmåten vist på figur 1. In the following, the explanation of the design example shown in figure 2 only covers the differences from the method shown in figure 1.

Utførelseseksemplene av fremgangsmåten ifølge oppfinnelsen for flytendegjøring av en hydrokarbonrik fraksjon vist på figur 1 og 2 har en skillekolonne T som tjener til utskillelse av en C2+-rik fraksjon fra den hydrokarbonrike fraksjon som skal flytendegjøres. Fraksjonen som skal flytendegjøres, som i det følgende blir betegnet som jordgasstrøm, blir tilført en flerstrømsvarmeveksler E3 via ledning 1. The embodiments of the method according to the invention for liquefaction of a hydrocarbon-rich fraction shown in Figures 1 and 2 have a separation column T which serves to separate a C2+-rich fraction from the hydrocarbon-rich fraction to be liquefied. The fraction to be liquefied, which in the following is referred to as natural gas flow, is supplied to a multi-flow heat exchanger E3 via line 1.

Denne er fortrinnsvis utformet som loddet aluminium-platevarmeveksler. I avhengighet av anleggsstørrelse blir det anordnet fortrinnsvis 1 til 6 parallelle varmevekslerenheter. Alternativt kan flerstrømsvarmeveksleren E3 være utformet som viklet varmeveksler. Her blir aluminium-platevarmeveksleren anvendt fortrinnsvis for en flytendegjøringskapasitet på 30 000 til 500 000 jato LNG viklede varmevekslere blir fortrinnsvis anvendt for en flytendegjøringskapasitet på 100 000 til 1000 000 jato LNG. This is preferably designed as a brazed aluminum plate heat exchanger. Depending on the plant size, preferably 1 to 6 parallel heat exchanger units are arranged. Alternatively, the multi-flow heat exchanger E3 can be designed as a coiled heat exchanger. Here, the aluminum plate heat exchanger is preferably used for a liquefaction capacity of 30,000 to 500,000 jato LNG coiled heat exchangers are preferably used for a liquefaction capacity of 100,000 to 1,000,000 jato LNG.

Jordgasstrømmen blir avkjølt i varmeveksleren E3, partielt kondensert og deretter ekspandert i skillekolonnens T toppområde via ventilen a. Ved toppen av skillekolonnen T blir en metanrik gassfraksjon trukket ut via ledningen 2, flytendegjort i varmeveksleren E3 så vel som underkjølt og deretter trukket ut via ledningen 3 som er forsynt med en reguleringsventil e, og tilført for dens videre anvendelse hhv mellomlagring. Denne fraksjon fremstiller flytendegjøringsproduktet (LNG). Fra sumpen i skillekolonnen T blir via ledningen 4, som likeledes har en reguleringsventil d, en C2+-rik flytende fraksjon trukket ut og tilført dens ytterligere anvendelse. The natural gas stream is cooled in the heat exchanger E3, partially condensed and then expanded in the top area of the separation column T via valve a. At the top of the separation column T, a methane-rich gas fraction is withdrawn via line 2, liquefied in the heat exchanger E3 as well as subcooled and then withdrawn via line 3 which is provided with a control valve e, and supplied for its further use or intermediate storage. This fraction produces the liquefaction product (LNG). From the sump in the separation column T, via line 4, which also has a control valve d, a C2+-rich liquid fraction is extracted and added to its further use.

Ved hjelp av en tilføring av en delstrøm av jordgasstrømmen via ledningen 5 og reguleringsventilen b kan temperaturen av toppen av skillekolonnen T og dermed sammensetningen av den uttrukkede metanrike gassfraksjon via ledningen 2 påvirkes. Også sumptemperaturen ved skillekolonnen T så vel som sammensetningen av den flytende fraksjon som er trukket ut via ledningen 4 kan påvirkes gjennom oppkokeren E4 og/eller tilføring av en delstrøm av jordgasstrømmen via ledningen 6 og ekspansjonsventilen c. By means of a supply of a partial flow of the natural gas flow via the line 5 and the control valve b, the temperature of the top of the separation column T and thus the composition of the extracted methane-rich gas fraction via the line 2 can be influenced. Also the sump temperature at the separation column T as well as the composition of the liquid fraction which is withdrawn via the line 4 can be influenced through the reboiler E4 and/or the supply of a partial flow of the natural gas stream via the line 6 and the expansion valve c.

Kjølemiddelblandingskretsløpet består av en totrinns kompressorenhet, bestående av et første og et andre kompressortrinn Cl hhv C2. De to kompressortrinnene er hver etterkoplet en kjøler El hhv E2. Videre er det anordnet en lavtrykksutskiller Dl, en middeltrykkutskiller D2 og en høytrykksutskiller D3. The refrigerant mixing circuit consists of a two-stage compressor unit, consisting of a first and a second compressor stage Cl and C2 respectively. The two compressor stages are each connected to a cooler El or E2. Furthermore, a low-pressure separator Dl, a medium-pressure separator D2 and a high-pressure separator D3 are arranged.

Fra toppen av lavtrykksutskilleren Dl, som tjener som sikkerhet for det første kompressortrinn Cl, blir kjølemiddelblandingen via ledningen 11 tilført det første kompressortrinn Cl. I dette blir kjølemiddelblandingen komprimert til et ønsket mellomtrykk som vanligvis utgjør mellom 7 og 35 bar, fortrinnsvis mellom 10 og 25 bar, deretter avkjølt i kjøleren El, partielt kondensert og tilført middeltrykkutskilleren D2 via ledningen 12. Mens det fra denne trekkes ut en flytende fraksjon via ledningen 20, som det skal gås nærmere inn på i det følgende, blir kjølemiddelblandingens gassfase som er trukket ut fra toppen av utskilleren D2 via ledningen 13 tilført det andre kompressortrinn C2 og komprimert i dette til det ønskede sluttrykk, hvor dette vanligvis utgjør mellom 30 og 80 bar, fortrinnsvis mellom 40 og 60 bar. Deretter blir kjøleblandingen avkjølt i kjøleren E2, partielt kondensert og tilført høytrykksutskilleren D3 via ledningen 14. Den flytende fraksjon som, som har samlet seg i sumpen av utskilleren D3 blir tilbakeført foran middeltrykkutskilleren D2 via ledningen 16 hvor det er anordnet en ekspansjonsventil k. From the top of the low-pressure separator Dl, which serves as security for the first compressor stage Cl, the refrigerant mixture is supplied via line 11 to the first compressor stage Cl. In this, the refrigerant mixture is compressed to a desired intermediate pressure which is usually between 7 and 35 bar, preferably between 10 and 25 bar, then cooled in the cooler El, partially condensed and supplied to the medium pressure separator D2 via line 12. While a liquid fraction is extracted from this via the line 20, which will be discussed in more detail in the following, the gas phase of the refrigerant mixture which is extracted from the top of the separator D2 via the line 13 is supplied to the second compressor stage C2 and compressed in this to the desired final pressure, where this usually amounts to between 30 and 80 bar, preferably between 40 and 60 bar. The cooling mixture is then cooled in the cooler E2, partially condensed and supplied to the high-pressure separator D3 via line 14. The liquid fraction which has collected in the sump of the separator D3 is returned in front of the medium-pressure separator D2 via line 16 where an expansion valve k is arranged.

På toppen av utskilleren D3 blir den gassformige kjølemiddelandel trukket ut via ledningen 15, flytendegjort og underkjølt i varmeveksleren E3, og trukket ut av denne via ledningen 17. I ekspansjonsventilen g skjer en ekspansjon av denne fraksjon hhv en delstrøm av denne fraksjon til det laveste kretsløptrykk, før den føres via ledningen 18 gjennom varmeveksleren E3 og dermed blir fullstendig fordampet. Den fullstendige fordampede fraksjon blir deretter tilført utskilleren Dl via ledningen 10. At the top of the separator D3, the gaseous refrigerant portion is drawn out via line 15, liquefied and subcooled in the heat exchanger E3, and drawn out of this via line 17. In the expansion valve g, an expansion of this fraction or a partial flow of this fraction takes place to the lowest circuit pressure , before it is passed via the line 18 through the heat exchanger E3 and is thus completely evaporated. The completely evaporated fraction is then supplied to the separator D1 via line 10.

Ved fremgangsmåten vist på figur 1 blir den flytende kjølemiddelandel trukket ut av utskillerens D2 sump via ledningen 20, tilført varmeveksleren E3 og underkjølt i denne. Via ledningen 21 blir den underkjølte flytende fraksjon trukket ut av varmeveksleren E3, ekspandert i ventilen f til det laveste kretsløptrykk og deretter på ny tilført varmeveksleren E3 via ledningen 22. Den fordampede fraksjon i varmeveksleren E3 blir via ledningen 23 innblandet i den allerede fordampede fraksjon i ledningen 10. In the method shown in Figure 1, the liquid coolant portion is drawn out of the separator's D2 sump via line 20, fed to the heat exchanger E3 and subcooled in this. Via the line 21, the subcooled liquid fraction is withdrawn from the heat exchanger E3, expanded in the valve f to the lowest circuit pressure and then re-supplied to the heat exchanger E3 via the line 22. The vaporized fraction in the heat exchanger E3 is mixed via the line 23 into the already vaporized fraction in wire 10.

I ventil f og g skjer ekspansjonen på vanlig måte til et trykk som tilsvarer sugetrykket i det første kompressortrinn Cl inntil uunngåelig trykkfall. Ved hjelp av egnet valg av sammensetningen, mengde og/eller kjølemiddelblandingens fordampningstrykk kan både sluttemperaturen og mengdestrømmen av den hydrokarbonrike fraksjon som skal flytendegjøres hhv jordgasstrømmen som skal flytendegjøres innstilles. In valve f and g, the expansion takes place in the usual way to a pressure that corresponds to the suction pressure in the first compressor stage Cl until an unavoidable pressure drop. By means of a suitable selection of the composition, amount and/or the refrigerant mixture's evaporation pressure, both the final temperature and the flow rate of the hydrocarbon-rich fraction to be liquefied or the natural gas flow to be liquefied can be set.

Til forskjell fra fremgangsmåten vist på figur 1 blir den flytende fraksjon av kjølemiddelblandingen som skal tilføres varmeveksleren E3 i utførelseseksemplet vist på figur 2 ikke trukket ut allerede fra utskilleren D2, men fra utskilleren D3 via ledningen 20'. Den flytende fraksjon som samler seg i sumpen av utskilleren D2 blir derfor tilført utskilleren D3 via ledningen 16' hvor det er anordnet en pumpe P. In contrast to the method shown in Figure 1, the liquid fraction of the coolant mixture to be supplied to the heat exchanger E3 in the design example shown in Figure 2 is not drawn out already from the separator D2, but from the separator D3 via the line 20'. The liquid fraction that collects in the sump of the separator D2 is therefore supplied to the separator D3 via the line 16' where a pump P is arranged.

Fremgangsmåteføringen vist på figur 2 er sammenliknet med fremgangsmåteføringen vist på figur 1 noe mer effektiv - den muliggjør en virkningsgradforbedring på 1 til 5 % -, men behøver imidlertid en pumpe som forårsaker de økede investeringskostnader og en høyere vedlikeholdskostnad. Fremgangsmåteføringen ifølge figur 1 kommer derfor fortrinnsvis til anvendelse ved mindre anleggskapasiteter (30 000 til 500 000 jato LNG), mens fremgangsmåteføringen vist på figur 2 fortrinnsvis blir realisert ved større anleggskapasiteter (100 000 til 1000 000 jato LNG). The procedure shown in Figure 2 is compared to the procedure shown in Figure 1 somewhat more efficient - it enables an efficiency improvement of 1 to 5% - but however requires a pump which causes the increased investment costs and a higher maintenance cost. The procedure according to Figure 1 is therefore preferably used for smaller plant capacities (30,000 to 500,000 jato LNG), while the procedure shown in Figure 2 is preferably implemented for larger plant capacities (100,000 to 1,000,000 jato LNG).

På grunn av den foran beskrevne ekspansjon av den flytende underkjølte så vel som flytendegj orte, tidligere gassformige fraksjon av kjølemiddelblandingen i ventilene f og g til et i det vesentlige identisk fordampningstrykk, er temperaturforløpet av kjølemiddelstrømmen i varmeveksleren E3 motstrøms ventil f ikke fritt velgbart. Sammensetningene av de gassformige og flytende kjølemiddelfraksjoner derimot er koplet gjennom likevektene i utskillerne D2 og D3. Derfor kan ventilstillingen av ventilen f ikke i tilstrekkelig grad påvirke temperaturprofilen i den øvre hhv varmere del av varmeveksleren E3. Due to the previously described expansion of the liquid subcooled as well as liquefied, previously gaseous fraction of the refrigerant mixture in the valves f and g to an essentially identical evaporation pressure, the temperature course of the refrigerant flow in the heat exchanger E3 upstream valve f is not freely selectable. The compositions of the gaseous and liquid coolant fractions, on the other hand, are linked through the equilibria in the separators D2 and D3. Therefore, the valve position of valve f cannot sufficiently influence the temperature profile in the upper or warmer part of the heat exchanger E3.

Ifølge oppfinnelsen blir derfor i det minste midlertidig minst en delstrøm av den flytendegj orte, tidligere gassformige fraksjon av kjølemiddelblandingen 15 ekspandert og innblandet med den ekspanderte flytende fraksjon av kjølemiddelblandingen i ledningen 22. På figurene er det vist to mulige kjølemiddelblanding-delstrømmer 19 og 24 som letter en ekspansjon i ventilen h hhv j kan innblandes i den ekspanderte kjølemiddelblanding i ledningen 22.1 praksis blir i de fleste tilfeller enten ventilen h eller j anordnet. Generelt gjelder imidlertid at kjølemiddelblanding-delstrømmene 19 og 24 kan trekkes nærmere reguleringen av temperaturen hhv temperaturprofilen separat eller sammen. According to the invention, therefore, at least temporarily at least one partial flow of the liquefied, previously gaseous fraction of the refrigerant mixture 15 is expanded and mixed with the expanded liquid fraction of the refrigerant mixture in the line 22. The figures show two possible refrigerant mixture partial flows 19 and 24 which facilitates an expansion in the valve h or j can be mixed into the expanded refrigerant mixture in the line 22.1 practice, in most cases either the valve h or j is arranged. In general, however, the refrigerant mixture partial flows 19 and 24 can be drawn closer to the regulation of the temperature or the temperature profile separately or together.

Med dette blir kjølemiddelblanding-delstrømmene 19 hhv 24 trukket ut ved den kalde ende av varmeveksleren E3 og/eller ved en egnet mellomtemperatur via ledningene 19 hhv 24, ekspandert i ventilen h hhv j og innblandet med den ekspanderte flytende fraksjon av kjølemiddelblandingen 22. En egnet mellomtemperatur foreligger da når kjølemiddelblandingen 15 har en underkjøling på minst 5 °C, fortrinnsvis på minst 10 °C overfor koketilstanden. With this, the coolant mixture partial streams 19 and 24 are withdrawn at the cold end of the heat exchanger E3 and/or at a suitable intermediate temperature via the lines 19 and 24 respectively, expanded in the valve h and j and mixed with the expanded liquid fraction of the coolant mixture 22. A suitable intermediate temperature then exists when the coolant mixture 15 has a subcooling of at least 5 °C, preferably of at least 10 °C compared to the boiling state.

Ved hjelp av fremgangsmåten ifølge oppfinnelsen er det tilveiebrakt en tilstrekkelig regulerbarhet av temperaturen av den hydrokarbonrike fraksjon hhv jordgasstrømmen 1 som skal flytendegjøres ved innløp inn i skillekolonnen T, som er nødvendig for innstillingen av en ønsket konsentrasjon av C2+-hydrokarbonene i flytendegjøirngsproduktet hhv LNG. With the help of the method according to the invention, sufficient controllability of the temperature of the hydrocarbon-rich fraction or natural gas stream 1 to be liquefied at the inlet into the separation column T is provided, which is necessary for the setting of a desired concentration of the C2+ hydrocarbons in the liquefied fermentation product or LNG.

Claims (6)

1. Fremgangsmåte for flytendegjøring av en hydrokarbonrik fraksjon ved samtidig utskillelse av en C2+-rik fraksjon, hvor avkjølingen og flytendegj øringen av den hydrokarbonrike fraksjon skjer i indirekte varme veksling med kjølemiddelblandingen i et kjølemiddelblandingskretsløp, hvor kjølemiddelblandingen komprimeres i minst to trinn, og utskillelsen av den C2+-rike fraksjon skjer på et innstillbart temperaturnivå, hvor kjølemiddelblandingen oppdeles i en gassformig og en flytende fraksjon, begge fraksjoner underkjøles, ekspanderes i det vesentlige til sugetrykket for det første kompressortrinn og blir i det minste delvis fordampet,karakterisert vedat minst en delstrøm (19, 24) av den flytendegj orte tidligere gassformige fraksjon av kjølemiddelblandingen (15) ekspanderes (j, h) i det minste midlertidig og innblandes inn i kjølemiddelblandingens (21) ekspanderte flytende fraksjon.1. Method for liquefaction of a hydrocarbon-rich fraction by simultaneous separation of a C2+-rich fraction, where the cooling and liquefaction of the hydrocarbon-rich fraction takes place in indirect heat exchange with the refrigerant mixture in a refrigerant mixture circuit, where the refrigerant mixture is compressed in at least two stages, and the separation of the C2+-rich fraction occurs at an adjustable temperature level, where the refrigerant mixture is divided into a gaseous and a liquid fraction, both fractions are subcooled, expanded substantially to the suction pressure of the first compressor stage and is at least partially vaporized, characterized by at least one partial flow ( 19, 24) of the liquefied previously gaseous fraction of the refrigerant mixture (15) is expanded (j, h) at least temporarily and mixed into the expanded liquid fraction of the refrigerant mixture (21). 2. Fremgangsmåte ifølge krav 1,karakterisert vedat delstrømmen (19, 24) av den flytendegj orte tidligere gassformige fraksjon av kjølemiddelblandingen (15) trekkes ut ved den kalde ende av varmevekslingen (E3) mellom den hydrokarbonrike fraksjon (1, 2) som skal flytendegjøres og kjølemiddelblandingen (15, 17, 18, 20, 20', 22) og/eller ved en egnet mellomtemperatur, ekspanderes (j, h) og innblandes inn i kjølemiddelblandingens (21) ekspanderte flytende fraksjon, hvor den egnede mellomtemperatur foreligger når kjølemiddelblandingen (15) har en underkjøling på minst 5 °C, fortrinnsvis på minst 10 °C overfor koketilstanden.2. Method according to claim 1, characterized in that the partial flow (19, 24) of the liquefied previously gaseous fraction of the refrigerant mixture (15) is extracted at the cold end of the heat exchange (E3) between the hydrocarbon-rich fraction (1, 2) to be liquefied and the coolant mixture (15, 17, 18, 20, 20', 22) and/or at a suitable intermediate temperature, is expanded (j, h) and mixed into the expanded liquid fraction of the coolant mixture (21), where the suitable intermediate temperature exists when the coolant mixture ( 15) has a subcooling of at least 5 °C, preferably of at least 10 °C compared to the boiling state. 3. Fremgangsmåte ifølge krav 1 eller 2,karakterisert vedat varmevekslingen mellom den hydrokarbonrike fraksjon (1, 2) som skal flytendegjøres og kjølemiddelblandingen (15, 17, 18, 20, 20', 22) skjer i en flerstrømsvarmeveksler (E3) som fortrinnsvis er utformet som platevarmeveksler eller viklet varmeveksler.3. Method according to claim 1 or 2, characterized in that the heat exchange between the hydrocarbon-rich fraction (1, 2) to be liquefied and the coolant mixture (15, 17, 18, 20, 20', 22) takes place in a multi-flow heat exchanger (E3) which is preferably designed as a plate heat exchanger or coiled heat exchanger. 4. Fremgangsmåte ifølge ett av kravene 1-3, hvor utskillelsen av den C2+-rike fraksjon skjer i minst en skillekolonne,karakterisert vedat en delstrøm (5) av den hydrokarbonrike fraksjon som skal flytendegjøres tilføres i det minste midlertidig toppområdet av skillekolonnen (T).4. Method according to one of claims 1-3, where the separation of the C2+-rich fraction takes place in at least one separation column, characterized in that a partial flow (5) of the hydrocarbon-rich fraction to be liquefied is supplied at least temporarily to the top area of the separation column (T) . 5. Fremgangsmåte ifølge ett av de foregående krav 1 til 4, hvor utskillelsen av den C2+-rike fraksjon skjer i minst en skillekolonne,karakterisert vedat en delstrøm (6) av den hydrokarbonrike fraksjon som skal flytendegjøres tilføres i det minste midlertidig sumpområdet av skillekolonnen (T).5. Method according to one of the preceding claims 1 to 4, where the separation of the C2+-rich fraction takes place in at least one separation column, characterized in that a partial flow (6) of the hydrocarbon-rich fraction to be liquefied is supplied at least temporarily to the sump area of the separation column ( T). 6. Fremgangsmåte ifølge ett av de foregående krav 1 til 5, hvor utskillelsen av den C2+-rike fraksjon skjer i minst en skillekolonne,karakterisert vedat skillekolonne sumptemperaturen innstilles ved hjelp av en oppkoker (E4) som er samordnet med skillekolonnen (T).6. Method according to one of the preceding claims 1 to 5, where the separation of the C2+-rich fraction takes place in at least one separation column, characterized in that the separation column sump temperature is set using a reboiler (E4) which is coordinated with the separation column (T).
NO20111214A 2009-02-10 2011-09-08 Process for making a hydrocarbon-rich stream liquid NO20111214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008230A DE102009008230A1 (en) 2009-02-10 2009-02-10 Process for liquefying a hydrocarbon-rich stream
PCT/EP2010/000614 WO2010091804A2 (en) 2009-02-10 2010-02-02 Method for liquefying a hydrocarbon-rich stream

Publications (1)

Publication Number Publication Date
NO20111214A1 true NO20111214A1 (en) 2011-09-08

Family

ID=42317492

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20111214A NO20111214A1 (en) 2009-02-10 2011-09-08 Process for making a hydrocarbon-rich stream liquid

Country Status (11)

Country Link
CN (1) CN102449419B (en)
AR (1) AR075133A1 (en)
AU (1) AU2010213188B2 (en)
BR (1) BRPI1008539B1 (en)
CL (1) CL2011001938A1 (en)
DE (1) DE102009008230A1 (en)
MY (1) MY159967A (en)
NO (1) NO20111214A1 (en)
PE (1) PE20120675A1 (en)
RU (1) RU2537480C2 (en)
WO (1) WO2010091804A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010633A1 (en) * 2011-02-08 2012-08-09 Linde Ag Method for cooling a one-component or multi-component stream
DE102012021637A1 (en) * 2012-11-02 2014-05-08 Linde Aktiengesellschaft Process for cooling a hydrocarbon-rich fraction
DE102013016695A1 (en) * 2013-10-08 2015-04-09 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
DE102014005936A1 (en) * 2014-04-24 2015-10-29 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
US20160109177A1 (en) * 2014-10-16 2016-04-21 General Electric Company System and method for natural gas liquefaction
DE102015002443A1 (en) * 2015-02-26 2016-09-01 Linde Aktiengesellschaft Process for liquefying natural gas
DE102015004125A1 (en) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1619728C3 (en) * 1967-12-21 1974-02-07 Linde Ag, 6200 Wiesbaden Low-temperature rectification process for separating gas mixtures from components whose boiling temperatures are far apart
DE3531307A1 (en) * 1985-09-02 1987-03-05 Linde Ag METHOD FOR SEPARATING C (ARROW DOWN) 2 (ARROW DOWN) (ARROW DOWN) + (ARROW DOWN) HYDROCARBONS FROM NATURAL GAS
DE19722490C1 (en) 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
US5983665A (en) * 1998-03-03 1999-11-16 Air Products And Chemicals, Inc. Production of refrigerated liquid methane
US6158240A (en) * 1998-10-23 2000-12-12 Phillips Petroleum Company Conversion of normally gaseous material to liquefied product
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US7082787B2 (en) * 2004-03-09 2006-08-01 Bp Corporation North America Inc. Refrigeration system
RU2297580C1 (en) * 2005-08-23 2007-04-20 Михаил Васильевич Кнатько Method of liquefying natural gas

Also Published As

Publication number Publication date
RU2537480C2 (en) 2015-01-10
CN102449419B (en) 2015-10-07
PE20120675A1 (en) 2012-06-03
WO2010091804A3 (en) 2012-09-20
AU2010213188A1 (en) 2011-08-18
CL2011001938A1 (en) 2011-10-28
BRPI1008539B1 (en) 2020-08-04
AU2010213188B2 (en) 2015-12-24
WO2010091804A2 (en) 2010-08-19
AR075133A1 (en) 2011-03-09
MY159967A (en) 2017-02-15
CN102449419A (en) 2012-05-09
RU2011137411A (en) 2013-03-20
DE102009008230A1 (en) 2010-08-12
BRPI1008539A2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
NO20111214A1 (en) Process for making a hydrocarbon-rich stream liquid
CA3029950C (en) System and method for liquefaction of natural gas
US8505333B2 (en) Optimized heavies removal system in an LNG facility
JP4713548B2 (en) Natural gas liquefaction method and apparatus
CN205037679U (en) Natural gas liquefaction system
AU2008277656B2 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
NO338434B1 (en) Hybrid gas melting cycle with mutiple expand
NO337772B1 (en) Integrated multi-loop cooling process for liquefying gas
NO321734B1 (en) Process for liquefying gas with partial condensation of mixed refrigerant at intermediate temperatures
NO328493B1 (en) System and method for regulating the cooling process
AU2008235485B2 (en) Method and apparatus for separating one or more C2+ hydrocarbons from a mixed phase hydrocarbon stream
NO328205B1 (en) Procedure and process plant for gas condensation
US20090151391A1 (en) Lng facility employing a heavies enriching stream
NO312736B1 (en) Method and plant for cooling and possibly liquefying a product gas
US11408678B2 (en) Method and apparatus for separating hydrocarbons
WO2014173599A2 (en) Method and apparatus for producing a liquefied hydrocarbon stream
NO20111413A1 (en) Process for condensing a hydrocarbon-rich fraction
RU2580453C1 (en) Method of processing natural hydrocarbon gas
US20090211297A1 (en) Helium production in lng plants
US6931889B1 (en) Cryogenic process for increased recovery of hydrogen
WO2020092806A1 (en) Mixed refrigerant system for natural gas processing
RU2423653C2 (en) Method to liquefy flow of hydrocarbons and plant for its realisation
US20090293537A1 (en) NGL Extraction From Natural Gas
RU2488759C2 (en) Method and device for cooling and separation of hydrocarbon flow
RU2803363C1 (en) Method for natural gas liquefaction

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application