NO179176B - Process for preparing rhamnose from rhamnolipids - Google Patents

Process for preparing rhamnose from rhamnolipids Download PDF

Info

Publication number
NO179176B
NO179176B NO930885A NO930885A NO179176B NO 179176 B NO179176 B NO 179176B NO 930885 A NO930885 A NO 930885A NO 930885 A NO930885 A NO 930885A NO 179176 B NO179176 B NO 179176B
Authority
NO
Norway
Prior art keywords
rhamnose
rhamnolipids
emulsion
water phase
separated
Prior art date
Application number
NO930885A
Other languages
Norwegian (no)
Other versions
NO930885D0 (en
NO179176C (en
NO930885L (en
Inventor
Johann Mixich
Knut Martin Rapp
Manfred Vogel
Original Assignee
Suedzucker Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suedzucker Ag filed Critical Suedzucker Ag
Publication of NO930885D0 publication Critical patent/NO930885D0/en
Publication of NO930885L publication Critical patent/NO930885L/en
Publication of NO179176B publication Critical patent/NO179176B/en
Publication of NO179176C publication Critical patent/NO179176C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/08Deoxysugars; Unsaturated sugars; Osones

Abstract

The invention relates to a process for the production of rhamnose from rhamnolipids in which an acid emulsion of the rhamnolipid is hydrolysed at 100 to 200 C and then cooled, the aqueous phase of the hydrolysate produced is separated from the lipid phase, its pH is raised by the addition of a basic compound, any remaining precipitate is separated, the remaining solution condensed and either further processed directly or chromatographed via an ion exchange resin. The eluate comprises rhamnose-containing fractions which can be further processed as such or converted into crystalline rhamnose monohydrate.

Description

Oppfinnelsen angår en framgangsmåte for framstilling av rhamnose fra rhamnolipider. The invention relates to a method for producing rhamnose from rhamnolipids.

Bakgrunn Background

Rhamnose er et 6-deoksysukker (monosakkarid), som i naturen forekommer såvel i D-som L-form. Rhamnose is a 6-deoxysugar (monosaccharide), which occurs in nature in both D and L forms.

Framstillingen av L-rhamnose, som inntil nå har vært det enklest tilgjengelige 6-deoksymonosakkarid, har vært gjenstand for flere patentsøknader. Fra slike deoksysukre kan det framstilles blant annet 2,5-dimetyl-4-hydroksy-2,3-dihydrofuran-3-on (furanol), som kan anvendes som aromastoff. The production of L-rhamnose, which until now has been the most easily available 6-deoxymonosaccharide, has been the subject of several patent applications. From such deoxysugars, 2,5-dimethyl-4-hydroxy-2,3-dihydrofuran-3-one (furanol) can be produced, among other things, which can be used as a flavoring agent.

Som råstoff for utvinning av rhamnose kommer ulike naturlige forbindelser i betraktning, slik som glykosider, f.eks. rutin, quercitrin, naringin, hesperidin og polysakkarider f.eks. gummi arabicum, det fermentativt utvunnete polysakkarid S-60 (US patentskrift 4.326.053) eller rhamnolipider, som produseres fermentativt eller mikrobielt, f.eks. med bakterier av slekten Pseudomonas, fra blant annet naturlige oljer eller j ordolj efraksj oner. As raw material for the extraction of rhamnose, various natural compounds come into consideration, such as glycosides, e.g. rutin, quercitrin, naringin, hesperidin and polysaccharides e.g. gum arabic, the fermentatively derived polysaccharide S-60 (US patent 4,326,053) or rhamnolipids, which are produced fermentatively or microbially, e.g. with bacteria of the genus Pseudomonas, from, among other things, natural oils or petroleum fractions.

Uavhengig av typen av de ovennevnte utgangsforbindelsene er det for utvinning av rhamnose nødvendig med hydrolyse, som kan være enzymatisk eller syre-katalysert, hvorved en oppnår en blanding, som foruten rhamnose inneholder andre substanser. Regardless of the type of the above-mentioned starting compounds, the extraction of rhamnose requires hydrolysis, which can be enzymatic or acid-catalyzed, whereby a mixture is obtained which, in addition to rhamnose, contains other substances.

Når en går ut fra rhamnoseholdige glykosider er en henvist til planteråstoffer, slik som avfall fra sitrussaftframstilling, som kun opptrer i årssykluser og hvis sammensetning svinger innen vide grenser. For å kunne være uavhengig av slike svingninger, er det fordelaktig å anvende fermentativt framstilte polysakkarider eller rhamnolipider som utgangsforbindelser, som kan framstilles reproduserbart. When starting from rhamnose-containing glycosides, one is referred to plant raw materials, such as waste from citrus juice production, which only occurs in annual cycles and whose composition fluctuates within wide limits. In order to be independent of such fluctuations, it is advantageous to use fermentatively produced polysaccharides or rhamnolipids as starting compounds, which can be produced reproducibly.

Anvendelsen av rhamnolipider har overfor rhamnoseholdige heteropolysakkarider den fordel at det søkte sukker - rhamnose - etter en hydrolyse ikke trenger å skilles fra andre sukkere, slik som glukose og mannose, som ellers ofte er tilstede i vesentlige mengder i hydrolyseløsningen. Separasjon av en kompleks sukkerblanding er teknisk sett mere krevende enn isoleringen av rhamnose fra hydrolysatet av et rhamnolipid. The use of rhamnolipids has the advantage over rhamnose-containing heteropolysaccharides that the desired sugar - rhamnose - after a hydrolysis does not need to be separated from other sugars, such as glucose and mannose, which are otherwise often present in significant quantities in the hydrolysis solution. Separation of a complex sugar mixture is technically more demanding than the isolation of rhamnose from the hydrolyzate of a rhamnolipid.

Et rhamnolipid, særlig et fermentativt framstilt rhamnolipid, er følgelig et godt egnet utgangsmateriale for en rhamnoseproduksjon. A rhamnolipid, in particular a fermentatively produced rhamnolipid, is consequently a well-suited starting material for a rhamnose production.

For produksjon av rhamnose i teknisk målestokk er foruten et egnet utgangsmateriale muligheten for lett isolering av rhamnose fra en kompleks hydrolysat-sammensetning av For the production of rhamnose on a technical scale, in addition to a suitable starting material, the possibility of easy isolation of rhamnose from a complex hydrolyzate composition of

ganske avgjørende betydning. quite crucial importance.

For utvinning av rhamnose fra hydrolysater er følgende metoder beskrevet: The following methods are described for extracting rhamnose from hydrolysates:

Ifølge DE 35 45 107 blir det til det nøytraliserte vandige hydrolysatet tilført en stor mengde, særlig en 5 til 10 ganger så stor mengde, regnet på basis av vannfasen, et polart organisk løsningsmiddel. Deretter følger fjerning av løsningsmidlet, utskillelse av sukkeret over en sterk syre-kationebytter, fortrinnsvis ved anvendelse av aceton eller acetonitril som "ekstraksjonsmiddel", og rensing av rhamnose ved absorpsjon i aktivt kull. Denne framgangsmåten er omstendelig og uegnet for kommersiell utvinning av rhamnose. According to DE 35 45 107, a large amount, in particular a 5 to 10 times larger amount, calculated on the basis of the water phase, of a polar organic solvent is added to the neutralized aqueous hydrolyzate. This is followed by removal of the solvent, separation of the sugar over a strong acid cation exchanger, preferably using acetone or acetonitrile as "extractant", and purification of rhamnose by absorption on activated carbon. This procedure is cumbersome and unsuitable for the commercial extraction of rhamnose.

Ifølge EP-A-317 033 blir glukosidholdig sitrusavfall hydrolysert enzymatisk for utvinning av rhamnose. Glukosen som er tilstede i hydrolysatet blir fjernet ved gjæring med gjær eller ved selektiv oksidasjon av glukose til 5-ketoglukosesyre. Denne metoden er kostbar og omstendelig, samtidig med at det kreves en kromatografisk rensing over aktivt kull. According to EP-A-317 033, glucoside-containing citrus waste is hydrolyzed enzymatically for the recovery of rhamnose. The glucose present in the hydrolyzate is removed by fermentation with yeast or by selective oxidation of glucose to 5-ketoglucose acid. This method is expensive and cumbersome, and at the same time requires a chromatographic purification over activated carbon.

Ifølge EP-A-282 942 anvendes et isolert rhamnolipid som utgangsmateriale, som hydrolyseres med H2S04 ved 30 til 100°C. Den dannete hydroksydekansyren blir videre ekstrahert med etylacetat eller adsorbert på en anionebytter. Hydrolysen av rhamnolipid-utfellingen (eksempel III) følger i svært fortynnet løsning. Bunnfall med innhold av 1.9 g rhamnose, tilsvarende 3.8 g rhamnolipid, suspenderes i 300 ml IM H2S04, varmes og behandles til slutt med et fire ganger så stort volum, dvs. 1200 ml, etylacetat. I vannfasen blir det funnet 1.2 g rhamnose, i den organiske (etylacetat-) fasen blir det 0.5 g rhamnose tilbake. According to EP-A-282 942, an isolated rhamnolipid is used as starting material, which is hydrolysed with H 2 SO 4 at 30 to 100°C. The hydroxydecanoic acid formed is further extracted with ethyl acetate or adsorbed on an anion exchanger. The hydrolysis of the rhamnolipid precipitate (Example III) follows in very dilute solution. Precipitate with a content of 1.9 g rhamnose, corresponding to 3.8 g rhamnolipid, is suspended in 300 ml IM H 2 SO 4 , heated and finally treated with four times the volume, i.e. 1200 ml, of ethyl acetate. In the water phase, 1.2 g of rhamnose is found, in the organic (ethyl acetate) phase, 0.5 g of rhamnose remains.

De påkrevde syre- og løsningsmiddelmengdene for framstillingen av kun 1.2 g rhamnose betinger at en kommersiell produksjon av rhamnose er umulig på denne måten. The required amounts of acid and solvent for the production of only 1.2 g of rhamnose means that a commercial production of rhamnose is impossible in this way.

Det finnes pr. dato følgelig ingen kjent framgangsmåte, som tillater framstilling av rhamnose i større mengde med kostnadseffektive midler og uten kostbare og farlige hjelpestoffer (enzymer, brennbare og giftige løsningsmidler). There are per date consequently no known procedure, which allows the production of rhamnose in large quantities with cost-effective means and without expensive and dangerous auxiliaries (enzymes, flammable and toxic solvents).

Formål Purpose

Hovedformålet med oppfinnelsen er å anvise en framgangsmåte for framstilling av rhamnose fra rhamnolipider. The main purpose of the invention is to provide a method for the production of rhamnose from rhamnolipids.

Oppfinnelsen The invention

Dette formål oppnås med en framgangsmåte ifølge den karakteriserende del av patentkrav 1. Ytterligere fordelaktige trekk framgår av de uselvstendige kravene. This purpose is achieved with a method according to the characterizing part of patent claim 1. Further advantageous features appear from the independent claims.

Oppfinnelsen angår en framgangsmåte for framstilling av rhamnose fra rhamnolipider, kjenneteknet ved at en sur emulsjon av rhamnolipidene hydrolyseres ved 100 til 200°C og deretter avkjøles, hvorved vannfasen i det oppnådde hydrolysatet skilles fra lipidfasen, pH-verdien i vannfasen heves ved tilsats av en basisk forbindelse, hvorved et eventuelt bunnfall skilles fra, den gjenværende løsningen inndampes, og videre bearbeides umiddelbart eller underlegges kromatografi over en ionebytterharpiks, hvorved det som eluat oppnås rhamnoseholdige fraksjoner, som bearbeides som de er eller opparbeides til krystallint rhamnosemonohydrat. The invention relates to a process for the production of rhamnose from rhamnolipids, characterized in that an acidic emulsion of the rhamnolipids is hydrolysed at 100 to 200°C and then cooled, whereby the water phase in the obtained hydrolyzate is separated from the lipid phase, the pH value in the water phase is raised by the addition of a basic compound, whereby any precipitate is separated, the remaining solution is evaporated, and further processed immediately or subjected to chromatography over an ion exchange resin, whereby rhamnose-containing fractions are obtained as eluate, which are processed as they are or processed to crystalline rhamnose monohydrate.

Det er en fordel med framgangsmåten ifølge oppfinnelsen at en helt og holdent kan gi avkall på anvendelsen av organiske løsningsmidler og anvende utelukkende vann som løsningsmiddel. It is an advantage of the method according to the invention that one can completely dispense with the use of organic solvents and use exclusively water as solvent.

Rhamnolipidene anvendt i den foreliggende framgangsmåten kan anvendes på ulike måter, som i henhold til EP-A-282 942 og DE-A-34 05 664 framstilles ved fermentering. Det er hensiktsmessig å befri de oppnådde emulsjonene grundig for fremmede salter, fortrinnsvis i den grad at de oppviser en ledningsevne på mindre enn 12 mS/cm, fortrinnsvis mindre enn 5 mS/cm. Slike avsaltete emulsjoner kan også framstilles ifølge framgangsmåten beskrevet i patentsøknad inngitt for Hoechst Aktiengesellschaft (HOE 90/F 284) med tittel "Framgangsmåte for framstilling av egnet glykolipid ved membranseparasjon med ultrafiltrering", hvilken søknad har samme inngivelsesdag som den foreliggende. For den foreliggende framgangsmåten anvendes hensiktsmessig slike emulsjoner, hvis vannfase oppviser en pH-verdi på 0 til 3, fortrinnsvis fra 0.5 til 1.5 og som oppviser et tørrstoffinnhold, dvs. fordampingsmotstand bestemt ved 30 minutters oppvarming ved 85 °C ved 6 kPa, fra 5 til 50, fortrinnsvis 10 til 20 vekt%. Slike tørrstoffinnhold lar seg justere ved oppkonsentrering eller fortynning med vann. The rhamnolipids used in the present method can be used in various ways, which according to EP-A-282 942 and DE-A-34 05 664 are produced by fermentation. It is appropriate to thoroughly free the emulsions obtained from extraneous salts, preferably to the extent that they exhibit a conductivity of less than 12 mS/cm, preferably less than 5 mS/cm. Such desalted emulsions can also be produced according to the procedure described in the patent application filed for Hoechst Aktiengesellschaft (HOE 90/F 284) entitled "Procedure for the production of suitable glycolipid by membrane separation with ultrafiltration", which application has the same filing date as the present one. For the present method, such emulsions are suitably used, whose water phase exhibits a pH value of 0 to 3, preferably from 0.5 to 1.5 and which exhibits a dry matter content, i.e. evaporation resistance determined by heating for 30 minutes at 85 °C at 6 kPa, from 5 to 50, preferably 10 to 20% by weight. Such dry matter content can be adjusted by concentration or dilution with water.

Framgangsmåten ifølge oppfinnelsen kan gjennomføres diskontinuerlig eller kontinuerlig, hvorved den kontinuerlige arbeidsmetoden er foretrukket. The method according to the invention can be carried out discontinuously or continuously, whereby the continuous working method is preferred.

For innstilling av emulsjonens pH-verdi fra 0 til 3 kan en eksempelvis anvende saltsyre; er imidlertid kontinuerlig framstilling aktuelt, anbefales det å anvende slike syrer som danner et tungtløselig salt med den basiske forbindelsen, som tilsettes i et senere For setting the emulsion's pH value from 0 to 3, one can for example use hydrochloric acid; however, if continuous production is relevant, it is recommended to use such acids which form a sparingly soluble salt with the basic compound, which is added in a later

forløp av framgangsmåten, fortrinnsvis H2S04, H3P04 og HF. course of the procedure, preferably H2SO4, H3PO4 and HF.

Den sure emulsjonen blir eksempelvis diskontinuerlig eller kontinuerlig varmet under god omrøring i 5 til 300 minutter, fortrinnsvis 20 til 150 minutter, særlig 30 til 120 minutter, ved en temperatur fra 100 til 200°C, fortrinnsvis 110 til 160°C, særlig 120 til 150°C, og deretter avkjølt. En god gjennomblanding av den hydrolyserende blandingen inntil separasjon av vannfasen fra oljefasen er svært viktig, da det dreier seg om en heterogen hydrolyse, der syra som tjener som katalysator såvel som den frigjorte rhamnose befinner seg i vannfasen, og det hydrolyserende rhamnolipid sammen med uomsatt substrat, eksempelvis soyaolje i lipidfasen. Gjennomblandingen kan understøttes med fysikalske midler, eksempelvis ved omrøring, risting eller anvendelse av ultralyd. The acidic emulsion is, for example, discontinuously or continuously heated with good stirring for 5 to 300 minutes, preferably 20 to 150 minutes, especially 30 to 120 minutes, at a temperature of 100 to 200°C, preferably 110 to 160°C, especially 120 to 150°C, and then cooled. Thorough mixing of the hydrolysing mixture until separation of the water phase from the oil phase is very important, as this is a heterogeneous hydrolysis, where the acid that serves as a catalyst as well as the liberated rhamnose are in the water phase, and the hydrolysing rhamnolipid together with unreacted substrate , for example soybean oil in the lipid phase. The thorough mixing can be supported by physical means, for example by stirring, shaking or using ultrasound.

Varigheten av hydrolysen er som ved den diskontinuerlige framgangsmåten naturligvis avhengig av den anvendte temperatur. Ved den kontinuerlige metoden kan oppholdstiden varieres ved endring av ulike faktorer, slik som ytelsen fra fødepumpa, antall reaktorer henholdsvis volumene for trykkventilen. As with the discontinuous method, the duration of the hydrolysis naturally depends on the temperature used. With the continuous method, the residence time can be varied by changing various factors, such as the output from the feed pump, the number of reactors and the volumes for the pressure valve.

Etter hydrolysen felles et produkt ut, som hovedsakelig består av en vannfase, som After the hydrolysis, a product is precipitated, which mainly consists of a water phase, which

inneholder den søkte rhamnose og videre en oljefase, som inneholder blant annet uomsatt rhamnolipid. Disse produktene blir for eksempel skilt i begge fasene i en separator. For å muliggjøre en lett separasjon, blir begge fasene separert ved en temperatur på maksimalt 100°C, fortrinnsvis ved 50 til 90°C. contains the sought-after rhamnose and further an oil phase, which contains, among other things, unreacted rhamnolipid. These products are, for example, separated in both phases in a separator. To enable an easy separation, both phases are separated at a temperature of a maximum of 100°C, preferably at 50 to 90°C.

Forbindelser særlig egnet som basiske forbindelser, er slike som danner et tungtløselig salt med den tilsatte syra, fortrinnsvis Ca(OH)2 og/eller CaC03. Slike salter er foretrukket framfor alt for den kontinuerlige arbeidsmetoden. Hevingen av pH-verdien følger hensiktsmessig til en verdi på 2 til 8, fortrinnsvis 3 til 7. Det dannete faste materialet blir eventuelt fraskilt ved tilsats av et filterhjelpemiddel, og filtratet inndampet ved redusert trykk, fortrinnsvis under 20 kPa, eksempelvis under 60°C, til et tørrstoffinnhold fra 20 til 60, fortrinnsvis 25 til 50 vekt%. Aktuelle filterhjelpestoffer er eksempelvis slike som er basert på cellulose eller kiselgur, f.eks. Arbocell og Celite (begge varenavn). Compounds particularly suitable as basic compounds are those which form a sparingly soluble salt with the added acid, preferably Ca(OH)2 and/or CaCO3. Such salts are preferred above all for the continuous working method. The raising of the pH value appropriately follows to a value of 2 to 8, preferably 3 to 7. The solid material formed is optionally separated by the addition of a filter aid, and the filtrate evaporated at reduced pressure, preferably below 20 kPa, for example below 60°C , to a dry matter content of from 20 to 60, preferably 25 to 50% by weight. Relevant filter aids are, for example, those based on cellulose or diatomaceous earth, e.g. Arbocell and Celite (both trade names).

Egnete ionebytterharpikser er tverrbundet polystyrenharpiks i saltform sulfonert med divinylbenzen, som fortrinnsvis inneholder samme type kationer som den basiske forbindelse som anvendes for nøytralisering. De rhamnoseholdige fraksjonene oppnådd fra kromatografi blir ved redusert trykk, fortrinnsvis under 20 kPa, inndampet i relasjon til temperaturen, for eksempel til et tørrstoffinnhold på omlag 65 vekt% og etter en eventuell filtrering krystallisert. Suitable ion exchange resins are crosslinked polystyrene resin in salt form sulphonated with divinylbenzene, which preferably contains the same type of cations as the basic compound used for neutralisation. The rhamnose-containing fractions obtained from chromatography are evaporated under reduced pressure, preferably below 20 kPa, in relation to the temperature, for example to a dry matter content of approximately 65% by weight and, after possible filtration, crystallized.

Rhamnose kan før eller etter en kromatografisk utskilling bearbeides videre i denne formen, for eksempel til furanol, når renheten av løsningen er tilstrekkelig. Rhamnose can, before or after a chromatographic separation, be processed further in this form, for example into furanol, when the purity of the solution is sufficient.

For innledende rensing av vannfasen før kromatografi og krystallisasjon, kan denne behandles med et fargefjerningsmiddel, slik som aktivt kull eller bentonitt. For initial purification of the water phase before chromatography and crystallization, this can be treated with a color removal agent, such as activated carbon or bentonite.

Krystallisasjonen kan gjennomføres som fordampings- og/eller kjølingskrystallisasjon. Kjølingskrystallisasjonen følger fortrinnsvis mellom 65 og 15°C med en kjølehastighet på 1 til 10°C pr. time, fortrinnsvis 3 til 6°C pr. time. Fordampingskrystallisasjonen lar seg eksempelvis gjennomføre slik at en ved en temperatur på 65°C og et trykk på 20 kPa fordamper vann så raskt at det oppnås en overmetning i moderløsningen fra 1.05 til 1.3, fortrinnsvis 1.1 til 1.15, og krystallene fra rhamnosemonohydrat kan vokse til en sidelengde fra 0.3 til 0.5 mm. Krystallisatet kan skilles fra moderløsningen i en filtersentrifuge. Moderløsningen kan underkastes et andre krystallisasjonstrinn. En slik flertrinns fordampings-krystallisasjon fører som kjent til høyere utbytte av krystallisert produkt. The crystallization can be carried out as evaporation and/or cooling crystallization. The cooling crystallization preferably follows between 65 and 15°C with a cooling rate of 1 to 10°C per hour, preferably 3 to 6°C per hour. Evaporation crystallization can be carried out, for example, so that at a temperature of 65°C and a pressure of 20 kPa, water evaporates so quickly that a supersaturation is achieved in the mother solution from 1.05 to 1.3, preferably 1.1 to 1.15, and the crystals from rhamnose monohydrate can grow into a side length from 0.3 to 0.5 mm. The crystallisate can be separated from the mother solution in a filter centrifuge. The mother liquor can be subjected to a second crystallization step. Such a multi-stage evaporation crystallization leads, as is known, to a higher yield of crystallized product.

Den resterende moderløsningen oppnådd på denne måten kan befries for forstyrrende fremmedlegemer via en kromatografisk behandling og videre opparbeides som beskrevet ovenfor til krystallint rhamnosemonohydrat. The remaining mother solution obtained in this way can be freed from interfering foreign bodies via a chromatographic treatment and further processed as described above into crystalline rhamnose monohydrate.

Rhamnose faller ut i form av krystaller av rhamnosemonohydrat som råprodukt (renhet ca. 95%). Dette råkrystallisatet kan rekrystalliseres i vann og tørkes på høvelig måte, f.eks. ved bevegelse over 70°C varm luft eller ved redusert trykk, eksempelvis under 20 kPa, ved en temperatur fra 20 til 70°C. Rhamnose precipitates in the form of crystals of rhamnose monohydrate as a crude product (purity approx. 95%). This crude crystallisate can be recrystallized in water and dried in a suitable way, e.g. when moving above 70°C hot air or at reduced pressure, for example below 20 kPa, at a temperature from 20 to 70°C.

Framgangsmåten for kontinuerlig sur hydrolyse av et rhamnolipid er i det etterfølgende beskrevet i nærmere detalj i form av eksempler. The procedure for continuous acid hydrolysis of a rhamnolipid is subsequently described in more detail in the form of examples.

Eksempel 1 Example 1

Fra et fermentativt oppnådd avsaltet konsentrat med et tørrstoffinnhold på 40 vekt% From a fermentatively obtained desalted concentrate with a dry matter content of 40% by weight

(gravimetrisk bestemt) ble det under omrøring med svovelsyre og vann framstilt en rhamnolipidemulsjon med 15 vekt% tørrstoffinnhold og en pH-verdi på 0.9. (determined gravimetrically) a rhamnolipid emulsion with 15% dry matter content by weight and a pH value of 0.9 was produced while stirring with sulfuric acid and water.

380 liter av denne emulsjonen ble periodevis tilført en hydrolyseinnretning ved hjelp av ei monopumpe, hvilken innretning hovedsakelig består av: 380 liters of this emulsion were periodically supplied to a hydrolysis device using a monopump, which device mainly consists of:

a) et homogeniseringsapparat (f.eks. Supraton-maskin) med en regelmessig dampinjeksjon på sugesiden, b) en varmeinnretning bestående av flere seriekoplete reaktorer, hvorav den siste er forsynt med en trykkholdeinnretning (trykkventil), hvorved et bestemt trykk a) a homogenisation device (e.g. Supraton machine) with a regular steam injection on the suction side, b) a heating device consisting of several series-connected reactors, the last of which is equipped with a pressure holding device (pressure valve), whereby a certain pressure

mellom monopumpa og trykkventilen kan innstilles, den vandige emulsjonen varmes til 150 - 160°C, hvorved oppholdstiden i varmeinnretningen varte i between the monopump and the pressure valve can be set, the aqueous emulsion is heated to 150 - 160°C, whereby the residence time in the heating device lasted for

omlag 120 minutter, og about 120 minutes, and

c) en kjøleinnretning, f.eks. rørkjøler, der hydrolysatet kjøles ned til under 100°C. c) a cooling device, e.g. tube cooler, where the hydrolyzate is cooled to below 100°C.

I Supraton-maskinen er det innebygget verktøy, som bevirker en god homogenisering In the Supraton machine, there are built-in tools, which cause good homogenization

og findeling. Denne maskinen har den oppgaven å underkaste produktstrømmen høye skjærkrefter og grundig blande såvel syre, vann og rhamnolipid, betingelser som er av stor betydning for en heterogen reaksjonsblanding. and comminution. This machine has the task of subjecting the product stream to high shear forces and thoroughly mixing both acid, water and rhamnolipid, conditions which are of great importance for a heterogeneous reaction mixture.

Det avkjølte hydrolysatet ble samlet i en beholder forsynt med rører. Deretter ble fasene skilt mekanisk, f.eks. i en separator (f.eks. Westfalia-separator) og vannfasen kontinuerlig fjernet. Dette ble samlet i en beholder forsynt med rører, justert til pH ca. 4.5 med kalsiumkarbonat, det resulterende bunnfallet (gips) ble fraskilt i f.eks. en kammerfilterpresse og filtratet inndampet ved redusert trykk (ved 20 kPa). En oppnår fra totalt 380 l/h av emulsjonen tilført hydrolyseanlegget omlag 440 l/h hydrolysat og omlag 380 l/h filtrat. Dette ble inndampet til et tørrstoffinnhold på omlag 50 vekt%, filtrert og underlagt kromatografi over en ionebytter Lewatit TSW 40 i kalsiumform. The cooled hydrolyzate was collected in a container fitted with stirrers. The phases were then separated mechanically, e.g. in a separator (e.g. Westfalia separator) and the water phase continuously removed. This was collected in a container fitted with a stirrer, adjusted to a pH of approx. 4.5 with calcium carbonate, the resulting precipitate (gypsum) was separated in e.g. a chamber filter press and the filtrate evaporated at reduced pressure (at 20 kPa). From a total of 380 l/h of the emulsion supplied to the hydrolysis plant, approximately 440 l/h of hydrolyzate and approximately 380 l/h of filtrate are obtained. This was evaporated to a dry matter content of approximately 50% by weight, filtered and subjected to chromatography over an ion exchanger Lewatit TSW 40 in calcium form.

Anlegget som ble benyttet for kromatografisk separasjon besto av 3 kolonner (diameter 1 m) med totalt harpiksinnhold på 14 m<3>. The plant used for chromatographic separation consisted of 3 columns (diameter 1 m) with a total resin content of 14 m<3>.

700 kg av råproduktet med et tørrstoffinnhold på 47.6 vekt% (333 kg tørrsubstans), som inneholdt 244 kg rhamnose, ble eluert ved 65°C og en gjennomstrømning av 1.6 m<3>/h avsaltet vann. Produktfraksjonen, som ble oppnådd etter 0.5 liter fyllvolum ved slutten av 3. kolonne og utgjorde 0.275 liter fyllvolum (3.85 m<3>, inneholdende 210 kg rhamnose), ble skånsomt inndampet og brakt sammen med nok en produktfraksjon til krystallisasjon. 700 kg of the crude product with a dry matter content of 47.6% by weight (333 kg dry matter), which contained 244 kg of rhamnose, was eluted at 65°C and a flow of 1.6 m<3>/h of desalted water. The product fraction, which was obtained after 0.5 liter fill volume at the end of the 3rd column and amounted to 0.275 liter fill volume (3.85 m<3>, containing 210 kg rhamnose), was gently evaporated and brought together with another product fraction for crystallization.

660 kg av den konsentrerte produktfraksjonen (tørrstoff-innhold 69.2 vekt%, 457 kg tørrstoff) ble avkjølt i en 600 liter kjølekrystallisator ved omrøring fra 65°C til 20°C med en kjølehastighet på 3° C/time, og deretter skilt i en filtersentrifuge til 354 kg rhamnosemonohydratkrystaller og 386 kg moderløsning (inkl. vaskevann). 660 kg of the concentrated product fraction (dry matter content 69.2% by weight, 457 kg dry matter) was cooled in a 600 liter cooling crystallizer by stirring from 65°C to 20°C at a cooling rate of 3°C/hour, and then separated in a filter centrifuge for 354 kg rhamnose monohydrate crystals and 386 kg mother solution (incl. washing water).

Krystallene hadde en renhet på 98 % og hadde en svakt gul farge, som kunne rekrystalliseres i vann. Moderløsningen ble underlagt nok en krystallisasjon og den resulterende sluttmoderløsningen ble underlagt kromatografi på nytt. The crystals had a purity of 98% and had a faint yellow color, which could be recrystallized in water. The mother liquor was subjected to another crystallization and the resulting final mother liquor was subjected to chromatography again.

Eksempel 2 (Diskontinuerlig hydrolyse) Example 2 (Discontinuous hydrolysis)

Til et konsentrat (40 vekt% tørrstoff) avsaltet ved ultrafiltrering ble det tilsatt konsentrert saltsyre i en mengde slik at den totale blandingen var omlag 1/8N HC1 (0.46 vekt%). Concentrated hydrochloric acid was added to a concentrate (40% dry matter by weight) desalted by ultrafiltration in an amount so that the total mixture was approximately 1/8N HC1 (0.46% by weight).

I en rør-autoklav ble emulsjonen varmet to ganger til 140°C, og etter avkjøling fulgte en faseseparasjon. Vannfasen ble innstilt til pH 6-8 med kalsiumhydroksid, og ble etter tilsats av bentonitt omrørt i en time og filtrert. In a tube autoclave, the emulsion was heated twice to 140°C, and after cooling a phase separation followed. The water phase was adjusted to pH 6-8 with calcium hydroxide, and after addition of bentonite was stirred for one hour and filtered.

Filtratet hadde en pH-verdi på 6-8, et tørrstoffinnhold på omlag 11 vekt% og inneholdt omlag 75 g rhamnose pr. liter. Denne løsningen ble brakt direkte til krystallisasjon. Moderløsningen ble som i eksempel 1 underlagt kromatografi og brakt til krystallisasjon som i eksempel 1 eller 3. The filtrate had a pH value of 6-8, a dry matter content of approximately 11% by weight and contained approximately 75 g of rhamnose per litres. This solution was brought directly to crystallization. As in example 1, the mother solution was subjected to chromatography and brought to crystallization as in example 1 or 3.

Eksempel 3 (Fordampingskrystallisasjon) Example 3 (Evaporative crystallization)

I en fordampingskrystallisator (100 liter innhold) ble den konsentrerte produktfraksjonen inndampet ved et konstant trykk på 20 kPa til et tørrstoff-innhold på In an evaporation crystallizer (100 liter capacity) the concentrated product fraction was evaporated at a constant pressure of 20 kPa to a solids content of

i omlag 65 vekt%, hvorved nivået ble holdt over varmekammeret. Ved en overmetning på 1.1 (se vedlagte løselighetskurve) ble det innpodet finmalte rhamnosemonohydratkrystaller, og til slutt fulgte den konsentrerte produktløsningen med tilsvarende krystallisasjonshastighet langsomt inntil kokeapparatet var fylt. Tørrstoffinnholdet i magma var da omlag 80 vekt%. Fyllmassen (magma) ble til slutt skilt i en filtersentrifuge til 27.8 kg krystaller av rhamnosemonohydrat og 46.5 kg moderløsning. around 65% by weight, whereby the level was kept above the heating chamber. At a supersaturation of 1.1 (see the attached solubility curve), finely ground rhamnose monohydrate crystals were inoculated, and finally the concentrated product solution followed slowly with a corresponding crystallization rate until the cooker was filled. The dry matter content in the magma was then around 80% by weight. The filling mass (magma) was finally separated in a filter centrifuge into 27.8 kg of crystals of rhamnose monohydrate and 46.5 kg of mother solution.

Moderløsningen ble krystallisert nok en gang; sluttmoderløsningen ble befridd fra biprodukter i en kromatografisk separasjon og rhamnose krystallisert som beskrevet ovenfor. The mother liquor was crystallized once more; the final mother liquor was freed from by-products in a chromatographic separation and rhamnose crystallized as described above.

Claims (16)

1. Framgangsmåte for framstilling av rhamnose fra rhamnolipider, karakterisert ved at en sur emulsjon av rhamnolipidene hydrolyseres ved 100 til 200°C og deretter avkjøles, hvorved vannfasen i det oppnådde hydrolysatet skilles fra lipidfasen, pH-verdien i vannfasen heves ved tilsats av en basisk forbindelse, hvorved et eventuelt bunnfall skilles fra, den gjenværende løsningen inndampes, og videre bearbeides umiddelbart eller underlegges kromatografi over en ionebytterharpiks, hvorved det som eluat oppnås rhamnoseholdige fraksjoner, som bearbeides som de er eller opparbeides til krystallint rhamnosemonohydrat.1. Process for the production of rhamnose from rhamnolipids, characterized in that an acidic emulsion of the rhamnolipids is hydrolysed at 100 to 200°C and then cooled, whereby the water phase in the obtained hydrolyzate is separated from the lipid phase, the pH value in the water phase is raised by the addition of a basic compound, whereby any precipitate is separated, the remaining solution is evaporated, and further processed immediately or subjected to chromatography over an ion exchange resin, whereby rhamnose-containing fractions are obtained as eluate, which are processed as they are or processed into crystalline rhamnose monohydrate. 2. Framgangsmåte ifølge krav 1, karakterisert ved at det som løsningsmiddel anvendes utelukkende vann.2. Method according to claim 1, characterized in that only water is used as solvent. 3. Framgangsmåte ifølge krav 1 eller 2, karakterisert ved at det som utgangsmateriale anvendes en fermentativt utvunnet emulsjon av rhamnolipider.3. Method according to claim 1 or 2, characterized in that a fermentatively extracted emulsion of rhamnolipids is used as starting material. 4. Framgangsmåte ifølge et av kravene 1 til 3, karakterisert ved at framgangsmåten utføres kontinuerlig.4. Method according to one of claims 1 to 3, characterized in that the procedure is carried out continuously. 5. Framgangsmåte ifølge et av kravene 1 til 4, karakterisert ved at lipidfasen føres tilbake senest i hydrolysetrinnet i framgangsmåten.5. Method according to one of claims 1 to 4, characterized in that the lipid phase is returned at the latest in the hydrolysis step of the procedure. 6. Framgangsmåte ifølge et av kravene 1 til 5, karakterisert ved at det anvendes en rhamnolipidemulsjon som oppviser en ledningsevne på mindre enn 12 mS/cm, fortrinnsvis mindre enn 5 mS/cm.6. Method according to one of claims 1 to 5, characterized in that a rhamnolipid emulsion is used which exhibits a conductivity of less than 12 mS/cm, preferably less than 5 mS/cm. 7. Framgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at emulsjonen oppviser et tørrstoffinnhold på 5 - 50 vekt%, fortrinnsvis 10 - 20 vekt%.7. Method according to one of claims 1 to 6, characterized in that the emulsion has a dry matter content of 5 - 50% by weight, preferably 10 - 20% by weight. 8. Framgangsmåte ifølge et av kravene 1 til 7, karakterisert ved at vannfasen i den sure emulsjonen oppviser en pH-verdi fra 0 til 3, fortrinnsvis fra 0.5 til 1.5.8. Method according to one of claims 1 to 7, characterized in that the water phase in the acidic emulsion exhibits a pH value of from 0 to 3, preferably from 0.5 to 1.5. 9. Framgangsmåte ifølge et av kravene 1 til 8, karakterisert ved at hydrolysen gjennomføres ved 110 til 160°C, fortrinnsvis ved 120 til 150°C.9. Method according to one of claims 1 to 8, characterized in that the hydrolysis is carried out at 110 to 160°C, preferably at 120 to 150°C. 10. Framgangsmåte ifølge et av kravene 1 til 9, karakterisert ved at vannfasen i det oppnådde hydrolysatet skilles fra lipidfasen ved en temperatur på maksimalt 100°C, fortrinnsvis ved 50 til 90°C.10. Method according to one of claims 1 to 9, characterized in that the water phase in the obtained hydrolyzate is separated from the lipid phase at a temperature of a maximum of 100°C, preferably at 50 to 90°C. 11. Framgangsmåte ifølge et av kravene 1 til 10, karakterisert ved at pH-verdien i vannfasen økes til pH 2-8, fortrinnsvis til pH 3-7, ved tilsats av en basisk forbindelse, fortrinnsvis Ca(OH)2og/eller CaC03, som danner et tungtløselig salt med syreanionet opptatt i løsningen.11. Method according to one of claims 1 to 10, characterized in that the pH value in the water phase is increased to pH 2-8, preferably to pH 3-7, by the addition of a basic compound, preferably Ca(OH)2 and/or CaCO3, which forms a sparingly soluble salt with the acid anion taken up in the solution. 12. Framgangsmåte ifølge et av kravene 1 til 11, karakterisert ved at den gjenværende løsning etter fraskilling av bunnfall behandles med et avfargingsmiddel, fortrinnsvis bentonitt.12. Method according to one of claims 1 to 11, characterized in that the remaining solution after separation of sediment is treated with a decolorizing agent, preferably bentonite. 13. Framgangsmåte ifølge et av kravene 1 til 12, karakterisert ved at løsningen, som underlegges kromatografi over ionebytterharpiksen, inndampes til et tørrstoffinnhold på 20 - 60, fortrinnsvis 25 - 50 vekt%.13. Method according to one of claims 1 to 12, characterized in that the solution, which is subjected to chromatography over the ion exchange resin, is evaporated to a dry matter content of 20 - 60, preferably 25 - 50% by weight. 14. Framgangsmåte ifølge et av kravene 1 til 13, karakterisert ved at krystalliseringen av rhamnosemonohydratet utføres som kjølings- eller fordampingskrystallisasjon.14. Method according to one of claims 1 to 13, characterized in that the crystallization of the rhamnose monohydrate is carried out as cooling or evaporation crystallization. 15. Framgangsmåte ifølge krav 14, karakterisert ved at kjølingskrystallisasjonen utføres med en kjølehastighet på 1-10, fortrinnsvis 3 - 6°C per time.15. Method according to claim 14, characterized in that the cooling crystallization is carried out at a cooling rate of 1-10, preferably 3-6°C per hour. 16. Framgangsmåte ifølge krav 14, karakterisert ved at det ved fordampingskrystallisasjon oppnås en overmetning på 1.05 til 1.3, fortrinnsvis 1.1 til 1.15.16. Method according to claim 14, characterized in that a supersaturation of 1.05 to 1.3, preferably 1.1 to 1.15, is achieved during evaporation crystallization.
NO930885A 1990-09-25 1993-03-11 Process for preparing rhamnose from rhamnolipids NO179176C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4030262A DE4030262A1 (en) 1990-09-25 1990-09-25 METHOD FOR PRODUCING RHAMNOSE FROM RHAMNOLIPID
PCT/EP1991/001426 WO1992005182A1 (en) 1990-09-25 1991-07-30 Process for producing rhamnose from rhamnolipids

Publications (4)

Publication Number Publication Date
NO930885D0 NO930885D0 (en) 1993-03-11
NO930885L NO930885L (en) 1993-03-11
NO179176B true NO179176B (en) 1996-05-13
NO179176C NO179176C (en) 1996-08-21

Family

ID=6414911

Family Applications (1)

Application Number Title Priority Date Filing Date
NO930885A NO179176C (en) 1990-09-25 1993-03-11 Process for preparing rhamnose from rhamnolipids

Country Status (9)

Country Link
EP (1) EP0550448B1 (en)
JP (1) JP3140775B2 (en)
AT (1) ATE106083T1 (en)
DE (2) DE4030262A1 (en)
DK (1) DK0550448T3 (en)
ES (1) ES2054501T3 (en)
FI (1) FI103119B (en)
NO (1) NO179176C (en)
WO (1) WO1992005182A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0599159T3 (en) 1992-11-27 2001-12-17 Aventis Res & Tech Gmbh & Co Heterogeneous protein mixture with alpha-L rhamnosidase activity, process for its preparation and its use
JP2002504513A (en) * 1998-02-24 2002-02-12 タトジャナ・ピルジャック Use of rhamnolipid in wound healing, treatment of burn shock, atherosclerosis, organ transplantation, depression, schizophrenia, and cosmetics
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US20040121313A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in organs for transplantation
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
WO2004060278A2 (en) 2002-12-06 2004-07-22 Isis Pharmaceuticals, Inc. Methods for rapid identification of pathogens in humans and animals
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US20120122096A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
EP2458619B1 (en) 2004-05-24 2017-08-02 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
WO2006094238A2 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
AU2007353877B2 (en) 2006-09-14 2012-07-19 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
WO2010033599A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
EP2344893B1 (en) 2008-09-16 2014-10-15 Ibis Biosciences, Inc. Microplate handling systems and methods
EP2396803A4 (en) 2009-02-12 2016-10-26 Ibis Biosciences Inc Ionization probe assemblies
WO2011008971A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
EP2957641B1 (en) 2009-10-15 2017-05-17 Ibis Biosciences, Inc. Multiple displacement amplification
CN102766172A (en) * 2011-09-19 2012-11-07 大庆沃太斯化工有限公司 Industrial production method of rhamnolipid biosurfactant dry powder
US9884883B2 (en) * 2015-01-12 2018-02-06 Logos Technologies, Llc Production of rhamnolipid compositions
BR102017000578B1 (en) 2017-01-11 2019-04-02 Natura Cosméticos S.A. PROCESS OF OBTAINING RAMNOLIPID PRODUCED BY PSEUDOMONAS OR ENTEROBACTER USING ANDIROBA OR MURUMURU SEED WASTE
WO2018144053A1 (en) * 2017-02-06 2018-08-09 Logos Technologies, Llc Decolorization of concentrated rhamnolipid composition
CN108949850B (en) * 2018-08-01 2021-07-23 万华化学集团股份有限公司 Online separation and purification method of rhamnolipid fermentation liquor
CN112225763A (en) * 2020-11-16 2021-01-15 西安润嬴生物科技有限公司 Separation and purification method of rhamnolipid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933281A (en) * 1987-03-17 1990-06-12 The University Of Iowa Research Foundation Method for producing rhamnose
EP0314959B1 (en) * 1987-11-03 1992-05-27 Societe Des Produits Nestle S.A. Selective hydrolysis
GB8727221D0 (en) * 1987-11-20 1987-12-23 Unilever Plc Glycoside hydrolysis

Also Published As

Publication number Publication date
EP0550448B1 (en) 1994-05-25
JP3140775B2 (en) 2001-03-05
NO930885D0 (en) 1993-03-11
EP0550448A1 (en) 1993-07-14
DE4030262A1 (en) 1992-03-26
NO179176C (en) 1996-08-21
NO930885L (en) 1993-03-11
FI930736A (en) 1993-02-18
DK0550448T3 (en) 1994-09-26
DE59101734D1 (en) 1994-06-30
ES2054501T3 (en) 1994-08-01
FI103119B1 (en) 1999-04-30
WO1992005182A1 (en) 1992-04-02
FI930736A0 (en) 1993-02-18
FI103119B (en) 1999-04-30
ATE106083T1 (en) 1994-06-15
JPH06500309A (en) 1994-01-13

Similar Documents

Publication Publication Date Title
NO179176B (en) Process for preparing rhamnose from rhamnolipids
KR100406066B1 (en) How to recover xylose from xylose solution
US9109265B2 (en) Process for separation of Ca- or Mg-sulfite spent liquor to yield crystalline xylose
JP4831420B2 (en) Sugar separation
WO1989005861A1 (en) Process and apparatus for manufacturing ethanol, glycerol, succinic acid and free flowing distiller&#39;s dry grain and solubles
EP1678330A1 (en) Separation process
CA2801258C (en) Process for manufacturing tagatose and glucose
US4816078A (en) Process for production of crystalline L-arabinose
US6146856A (en) Process for the production of isomatulose and other products
EP0273076B1 (en) Process for preparing l-rhamnose
US20070037266A1 (en) Process for producing erythritol
CN113574062A (en) Method for producing L-fucose
US6506897B1 (en) Method of preparing l-arabinose from sugar beet pulp
US5550227A (en) Method for the preparation of rhamnose monohydrate from rhamnolipids
US8580955B2 (en) Purification method and production method for cellobiose
EP0314959B1 (en) Selective hydrolysis
NO140666B (en) PROCEDURES FOR THE PREPARATION OF CRYSTALLINIC, ESSENTIALLY XYLOSE - FREE, XYLITOL FROM A WATER SOLUTION CONTAINING XYLITOL AND XYLOSE
CA2290735A1 (en) Process for the production of isomaltulose and other products
EP3356563B1 (en) Methods of enriching arabinose fractions
CS234623B1 (en) Method of d-mannitol production
EA005167B1 (en) Method for producing crystalline fructose from artichoke
UA52987A (en) A method for a purified inulin preparation

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN JANUARY 2003