NO177636B - Process for producing perfluoroalkyl bromide - Google Patents

Process for producing perfluoroalkyl bromide Download PDF

Info

Publication number
NO177636B
NO177636B NO921992A NO921992A NO177636B NO 177636 B NO177636 B NO 177636B NO 921992 A NO921992 A NO 921992A NO 921992 A NO921992 A NO 921992A NO 177636 B NO177636 B NO 177636B
Authority
NO
Norway
Prior art keywords
bromine
reaction
carried out
rpl
iodide
Prior art date
Application number
NO921992A
Other languages
Norwegian (no)
Other versions
NO921992D0 (en
NO177636C (en
NO921992L (en
Inventor
Gilles Drivon
Original Assignee
Atochem Elf Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atochem Elf Sa filed Critical Atochem Elf Sa
Publication of NO921992D0 publication Critical patent/NO921992D0/en
Publication of NO921992L publication Critical patent/NO921992L/en
Publication of NO177636B publication Critical patent/NO177636B/en
Publication of NO177636C publication Critical patent/NO177636C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/204Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Preparation of perfluoroalkyl bromides RF-Br, RF denoting a linear or branched perfluoroalkyl radical containing from 2 to 12 carbon atoms. The continuous process according to the invention consists in reacting bromine and a perfluoroalkyl iodide RF-I in the gas phase at a temperature of between 200 and 600 DEG C, it being possible for the Br2/RFI molar ratio to range from 0.1 to 2. The selectivity for RF-Br is virtually complete.

Description

Foreliggende oppfinnelse angår fremstilling av perhalogenerte alifatiske hydrokarboner og oppfinnelsens gjenstand er mer spesielt fremstillingen av perfluoralkylbromider eller bromperfluoralkaner Rp-Br, der Rp angir en rett eller forgrenet perfluoralkylrest cnF2n+l' inneh°lden(ie fra 2 til 12 karbonatomer. The present invention relates to the production of perhalogenated aliphatic hydrocarbons and the object of the invention is more particularly the production of perfluoroalkyl bromides or bromoperfluoroalkanes Rp-Br, where Rp denotes a straight or branched perfluoroalkyl residue cnF2n+l' the content (ie from 2 to 12 carbon atoms.

Disse kjente forbindelser benyttes på mange områder, spesielt i medisinen som radiopaque-midler (røngtenkontrastmidler) eller som oksygenbaerere i bloderstatninger. En forbindelse som mer spesielt er undersøkt på dette området er n-perfluoroktylbromid, CgF^yBr. These known compounds are used in many areas, especially in medicine as radiopaque agents (X-ray contrast agents) or as oxygen carriers in blood substitutes. A compound that has been more particularly investigated in this area is n-perfluorooctyl bromide, CgF^yBr.

Blant de kjente metoder for å fremstille disse forbindelser skal fremfor alt nevnes: innvirkning av brom på en forbindelse RpSFs ved 500°C i Among the known methods for preparing these compounds should be mentioned above all: action of bromine on a compound RpSFs at 500°C in

nærvær av nikkel (TJS-PS 3 456 024); presence of nickel (TJS-PS 3 456 024);

gassfasefotolyse av en forbindelse RpH med Br-Cl eller Br-F (J.L. Adcock et al., "CA", 100. 34092e) eller med Br2 (FR-PS 1 512 068). gas phase photolysis of a compound RpH with Br-Cl or Br-F (J.L. Adcock et al., "CA", 100. 34092e) or with Br2 (FR-PS 1 512 068).

I de dårlige utbytter som oppnås og/eller bruken av fluor-derivater som industrielt ikke er tilgjengelige, tillater ingen økonomisk produksjon av RpBr-forbindelsene i industriell målestokk. In the poor yields obtained and/or the use of fluorine derivatives which are not industrially available, no economic production of the RpBr compounds on an industrial scale is allowed.

I EP-PS 0 298 870 og i EP-søknad 90403118.4 har foreliggende oppfinnere beskrevet fremgangsmåter for fremstilling av RpBr-forbindelser fra de tilsvarende perfluoralkansulfonyl-klorider, RpSC^Cl, som omsettes enten med gassformig HBr i nærvær av en katalysator (EP 0 298 870) eller med et kvaternært ammonium- eller fosfoniumbromid (EP 90403118.4). Utbyttene som oppnås er generelt høye, men sulfokloridet, RfSC^Cl, som benyttes er et råstoff som allerede er meget kompleks å produsere fordi syntesen fra det tilsvarende jodid Rjrl krever to reaksjonstrinn ifølge ligningen: In EP-PS 0 298 870 and in EP application 90403118.4, the present inventors have described methods for the preparation of RpBr compounds from the corresponding perfluoroalkanesulfonyl chlorides, RpSC^Cl, which are reacted either with gaseous HBr in the presence of a catalyst (EP 0 298 870) or with a quaternary ammonium or phosphonium bromide (EP 90403118.4). The yields obtained are generally high, but the sulfochloride, RfSC^Cl, used is a raw material that is already very complex to produce because the synthesis from the corresponding iodide Rjrl requires two reaction steps according to the equation:

Den mest direkte rute for å oppnå forbindelsene EpBr ligger åpenbart i en radikal bromering av de tilsvarende jodider Rpl, idet de sistnevnte produkter er tilgjengelige i industrielle mengder. The most direct route to obtain the compounds EpBr obviously lies in a radical bromination of the corresponding iodides Rpl, the latter products being available in industrial quantities.

I "International Journal of Chemical Kinetics", vol. II, 273-285 (1975), beskriver E.N. Okafo og E. Whittle kinetikken for termisk bromering av CF3I i en fotokjemisk reaktor mellom 173 og 321°C med henblikk på å bestemme dissosiasjonsenergien for C—I-bindingen. In "International Journal of Chemical Kinetics", vol. II, 273-285 (1975), describes E.N. Okafo and E. Whittle the kinetics of thermal bromination of CF3I in a photochemical reactor between 173 and 321°C with a view to determining the dissociation energy of the C—I bond.

I "J. Chem. Soc", 1953, 3761-8, beskriver R.N. Haszeldine en fotokjemisk prosess for omsetning av Rpl med brom der operasjonen gjennomføres i et forseglet rør med et overskudd av brom (10$) og under bestråling med UV-lys i 7 dager. Reaksjonstemperaturen og den oppnådde renhet er ikke angitt, det er kun antydet at utbyttet er lik eller høyere enn 90%, avhengig av lengden av den perfluorerte kjede Rp-. 1 JP Kokai 85-184 033 som beskriver reaksjonen mellom Rpl og Br2 i nærvær av en kjemisk radikalinitiator, overskrider de antydede utbytter ikke 42$. In "J. Chem. Soc", 1953, 3761-8, R.N. Haszeldine a photochemical process for the conversion of Rpl with bromine in which the operation is carried out in a sealed tube with an excess of bromine (10$) and under irradiation with UV light for 7 days. The reaction temperature and the achieved purity are not indicated, it is only suggested that the yield is equal to or higher than 90%, depending on the length of the perfluorinated chain Rp-. 1 JP Kokai 85-184 033 which describes the reaction between Rpl and Br2 in the presence of a chemical radical initiator, the indicated yields do not exceed 42$.

De dårlige utbytter som oppnås og/eller den langsomme kinetikk for disse teknikker gjør det ikke mulig å ta sikte på deres anvendelse i industrielle prosesser. The poor yields obtained and/or the slow kinetics of these techniques make it impossible to aim for their application in industrial processes.

Det er nu funnet en fremgangsmåte som tillater kontinuerlig fremstilling av perfluoralkylbromider, RpBr inneholdende fra 2 til 12 og fortrinnsvis 6 til 10 karbonatomer, fra det tilsvarende Rpl, med en tilsynelatende total selektivitet for RFBr. A method has now been found which allows the continuous preparation of perfluoroalkyl bromides, RpBr containing from 2 to 12 and preferably 6 to 10 carbon atoms, from the corresponding Rpl, with an apparent total selectivity for RFBr.

I henhold til dette angår foreliggende oppfinnelse en kontinuerlig fremgangsmåte for fremstilling av et perfluor-alkylbromid Rp-Br der RF angir en rett eller forgrenet perfluoralkylrest inneholdende 2 til 12 karbonatomer, ved omsetning av brom med det tilsvarende perfluoralkyljodid, Rp—I, og denne fremgangsmåte karakteriseres ved at reaksjonen gjennomføres i gassfase ved en temperatur mellom 200 og 600° C med en molforhold B^rRpI mellom 0,1 og 2 og med en kontakttid mellom 1 sekund og 2 minutter. According to this, the present invention relates to a continuous process for the production of a perfluoroalkyl bromide Rp-Br where RF denotes a straight or branched perfluoroalkyl residue containing 2 to 12 carbon atoms, by reacting bromine with the corresponding perfluoroalkyl iodide, Rp-I, and this process is characterized by the fact that the reaction is carried out in the gas phase at a temperature between 200 and 600° C with a molar ratio B^rRpI between 0.1 and 2 and with a contact time between 1 second and 2 minutes.

Reaksjonen kan gjennomføres i en rørreaktor ved en temperatur fra 200 til 600°C, men gjennomføres fortrinnsvis ved temperaturer mellom 300 og 500°C, og fortrinnsvis mellom 350 og 500°C. Reaktoren kan være et hult rør, men kan eventuelt inneholde et inert fast substrat (for eksempel glass eller kvarts) for å lette kontakten mellom de to gasser (Br2 og Rpl). Operasjonen kan også gjennomføres i nærvær av et inert gassformig fortynningsmiddel, for eksempel nitrogen, selv om dette ikke er vesentlig. The reaction can be carried out in a tubular reactor at a temperature from 200 to 600°C, but is preferably carried out at temperatures between 300 and 500°C, and preferably between 350 and 500°C. The reactor can be a hollow tube, but can optionally contain an inert solid substrate (for example glass or quartz) to facilitate contact between the two gases (Br2 and Rpl). The operation can also be carried out in the presence of an inert gaseous diluent, for example nitrogen, although this is not essential.

Fordi reaksjonen mellom brom og Rpl i gassfase er meget hurtig, er kontakttiden, det vil si oppholdstiden for reaktantene i reaktoren, ikke noen kritisk parameter og kan variere innen vide grenser. En kontakttid på mellom 1 sekund og 2 minutter er generelt hensiktsmessig, men i industriell målestokk er det foretrukket å arbeide med en kontakttid i området 5 til 30 sekunder. Because the reaction between bromine and Rpl in the gas phase is very fast, the contact time, that is the residence time for the reactants in the reactor, is not a critical parameter and can vary within wide limits. A contact time of between 1 second and 2 minutes is generally appropriate, but on an industrial scale it is preferred to work with a contact time in the range of 5 to 30 seconds.

I industriell målestokk er det foretrukket å arbeide ved atmosfærisk trykk, men et trykk over det atmosfæriske vil ikke ligge utenfor oppfinnelsens ramme forutsatt at reak-sjonssystemet forblir i gasstilstand. On an industrial scale, it is preferred to work at atmospheric pressure, but a pressure above atmospheric will not lie outside the scope of the invention provided that the reaction system remains in a gaseous state.

For å gjenvinne det dannede RpBr og eventuelt ikke-omdannet Rpl, kan gassene som forlater reaktoren avkjøles og blandingen kan så destilleres direkte eller etter behandling med et reduksjonsmiddel. To recover the formed RpBr and possibly unconverted Rpl, the gases leaving the reactor can be cooled and the mixture can then be distilled directly or after treatment with a reducing agent.

Fremgangsmåten ifølge oppfinnelsen kan implementeres ved å arbeide med et overskudd eller et underskudd på brom i forhold til den teoretiske mengde (0,5 mol Br2 pr. mol Rpl). Br2:RpI-molforholdet kan derfor variere innen vide grenser, særlig mellom 0,1 og 2. For god prosessøkonomi blir imidlertid det hele fortrinnsvis gjennomført ved et Br2:RpI-molforhold på mellom 0,3 og 1. The method according to the invention can be implemented by working with an excess or a deficit of bromine in relation to the theoretical amount (0.5 mol Br2 per mol Rpl). The Br2:RpI molar ratio can therefore vary within wide limits, particularly between 0.1 and 2. However, for good process economy, the whole thing is preferably carried out at a Br2:RpI molar ratio of between 0.3 and 1.

Når operasjonen gjennomføres med et overskudd av brom og uansett temperatur og kontakttid, skjer reaksjonen i henhold til det følgende skjema: When the operation is carried out with an excess of bromine and regardless of temperature and contact time, the reaction takes place according to the following scheme:

Avhengig av de benyttede driftsbetingelser, er det så mulig å oppnå en så å si total omdanning av Rpl og dette gjør det lettere å gjenvinne RpBr i meget ren tilstand kun ved destillasjon. På grunn av den termodynamiske likevekt: Depending on the operating conditions used, it is then possible to achieve a so-called total conversion of Rpl and this makes it easier to recover RpBr in a very pure state only by distillation. Due to the thermodynamic equilibrium:

blir en blanding inneholdende brom og jod nødvendigvis gjenfunnet i reaktorutløpet. a mixture containing bromine and iodine is necessarily recovered in the reactor outlet.

Når operasjonen gjennomføres med et underskudd på brom og avhengig av driftsbetingelsene (molforhold, temperatur, kontakttid), skjer reaksjonen enten i henhold til skjema 1 ovenfor eller i henhold til det følgende skjema 2: When the operation is carried out with a deficit of bromine and depending on the operating conditions (molar ratio, temperature, contact time), the reaction takes place either according to scheme 1 above or according to the following scheme 2:

Tatt i betraktning underskuddet av brom, oppnås kun en partiell omdanning av Rpl. I motsetning til dette er det mulig å kombinere driftsbetingelsene som tillater en i det vesentlige total omdanning av brom (ligning 2) og dette forenkler gjenvinning og kvalitetsforbedring av jodet som oppnås som biprodukt i sin oksyderte eller reduserte form. Etter separering av jodet kan blandingen RpBr:RpI destilleres for å separere ikke-omdannet Rpl og for å resirkulere denne til reaktoren. Det er også mulig å tilsette oppfriskningsbrom til blandingen av RpBr og Rpl og å fullføre reaksjonen i en andre reaktor. Considering the deficit of bromine, only a partial conversion of Rpl is achieved. In contrast, it is possible to combine the operating conditions which allow an essentially total conversion of bromine (equation 2) and this facilitates recovery and quality improvement of the iodine obtained as a by-product in its oxidized or reduced form. After separation of the iodine, the RpBr:RpI mixture can be distilled to separate unconverted Rpl and to recycle this to the reactor. It is also possible to add make-up bromine to the mixture of RpBr and Rpl and to complete the reaction in a second reactor.

Brom og Rpl kan innføres til reaktoren separat. Fordi imidlertid brom partielt er oppløselig i Rpl, er det, når man arbeider ved et molforhold under oppløselighetsgrensen, foretrukket å innføre begge reaktanter ved å starte med en homogen blanding av disse to forbindelser, dette gjør det mulig å arbeide med en enkelt matepumpe og derved å sikre et konstant molforhold. Bromine and Rpl can be introduced to the reactor separately. However, because bromine is partially soluble in Rpl, when working at a molar ratio below the solubility limit, it is preferred to introduce both reactants by starting with a homogeneous mixture of these two compounds, this makes it possible to work with a single feed pump and thereby to ensure a constant mole ratio.

Fremgangsmåten ifølge oppfinnelsen kan anvendes både ved fremstilling av et spesifikt RpBr (for eksempel C^F-j^Br, CgFi7Br, C^oF21Br °S så videre), og for å fremstille en blanding av forskjellige RpBr-forbindelser fra en blanding av de tilsvarende Rpl-forbindelser. The method according to the invention can be used both for the preparation of a specific RpBr (for example C^F-j^Br, CgFi7Br, C^oF21Br °S and so on), and to prepare a mixture of different RpBr compounds from a mixture of the corresponding Rpl -connections.

I de følgende eksempler som illustrerer oppfinnelsen uten å begrense den, er omdanningsgraden (OG) for Rpl beregnet ved bruk av ligningen: og selektiviteten S for RpBr ved bruk av ligningen: In the following examples which illustrate the invention without limiting it, the degree of conversion (OG) for Rpl is calculated using the equation: and the selectivity S for RpBr using the equation:

Eksempel 1; SYNTESE AV PERFLUOROKTYLBROMID Example 1; SYNTHESIS OF PERFLUOROCTYL BROMIDE

En glassrørreaktor (indre diameter: 30 mm; høyde: 300 mm) benyttes idet 1/5 av lengden er pakket med ringer for å sikre god gassblanding og den er videre utstyrt med en termometer-hylse for å undersøke temperaturen og med et dypperør for innføring av reaktantene. A glass tube reactor (internal diameter: 30 mm; height: 300 mm) is used, 1/5 of the length is packed with rings to ensure good gas mixing and it is further equipped with a thermometer sleeve to examine the temperature and with a dip tube for introduction of the reactants.

Prøve nr 1 Sample No. 1

Reaktoren mates samtidig og kontinuerlig i 2 timer ved hjelp av to doseringspumper med 0,261 mol brom og 0,560 mol perfluoroktyljodid (renhet: 99,3$) sammen med 2 l/time nitrogen. Driftsbetingelsene er de følgende: The reactor is fed simultaneously and continuously for 2 hours by means of two dosing pumps with 0.261 mol of bromine and 0.560 mol of perfluorooctyl iodide (purity: 99.3$) together with 2 l/hour of nitrogen. The operating conditions are the following:

temperatur = 300°C temperature = 300°C

kontakttid = 30 sekunder contact time = 30 seconds

Br2<:>C8F17l-molforhold = 0,47 Br2<:>C8F171 molar ratio = 0.47

Gassene som forlater reaktoren samles i et overskudd av vandig oppløsning av natriumsulfitt. Etter dekantering oppnås to faser: en øvre vandig fase som analyseres kvantitativt ved argento-metri for å bestemme innholdet av brom og jod som er til stede (I" = 0,374 eq. og Br" = 0,150 eq.); en nedre organisk fase som veier 283,5 g og hvis analyse ved gassfasekromatografi med en Varian 3300-apparatur (kataro-meterdetektor; 30 m makrobore DBl-kolonne) gir følgende vektsammensetning: CgF17Br = 62,55$ The gases leaving the reactor are collected in an excess of aqueous solution of sodium sulphite. After decantation, two phases are obtained: an upper aqueous phase which is quantitatively analyzed by argentometry to determine the content of bromine and iodine present (I" = 0.374 eq. and Br" = 0.150 eq.); a lower organic phase weighing 283.5 g and whose analysis by gas phase chromatography with a Varian 3300 apparatus (catarometer detector; 30 m macrobore DBl column) gives the following weight composition: CgF17Br = 62.55$

CgF17I = 36,80$ CgF17I = 36.80$

diverse = 0,65$ miscellaneous = 0.65$

noe som tilsvarer en omdanningsgrad for CgF^yl på 66$ og en selektivitet for CgF17Br på 100$. which corresponds to a degree of conversion for CgF^yl of 66$ and a selectivity for CgF17Br of 100$.

Prøvene nr. 2 til 26 Tests No. 2 to 26

Disse prøver, utført i samme apparatur og ved å arbeide på samme måte som i prøve nr. 1, viser innvirkningen av de forskjellige parametere på omdanningsgraden og selektiviteten. These tests, carried out in the same apparatus and by working in the same way as in test no. 1, show the influence of the different parameters on the degree of conversion and the selectivity.

Driftsbetingelsene, de benyttede mengder samt de oppnådde resultater i disse prøver er oppsummert i de følgende tabeller I til V. The operating conditions, the amounts used and the results obtained in these tests are summarized in the following tables I to V.

Eksempel 2: SYNTESE AV PERFLUORHEKSYLBROMID Example 2: SYNTHESIS OF PERFLUOROHEXYL BROMIDE

Prøve nr. 27 Sample No. 27

71 g eller 0,444 mol brom og 180 g eller 0,404 mol perfluorheksyljodid med en renhet på 99,5$ tilføres, samtidig og kontinuerlig og i løpet av 40 minutter, i nærvær av 8,4 l/time nitrogen, i den samme apparatur som i eksempel 1 og under de følgende driftsbetingelser: 71 g or 0.444 mol of bromine and 180 g or 0.404 mol of perfluorohexyl iodide with a purity of 99.5$ are added, simultaneously and continuously and during 40 minutes, in the presence of 8.4 l/hour of nitrogen, in the same apparatus as in example 1 and under the following operating conditions:

Ved reaktorutløpet og etter nøytralisering i en vandig oppløsning av natriumsulfitt og etterfølgende avsetning, gjenvinnes en organisk fase inneholdende 98,8 vekt-$ C^F-^Br og 0,65$ C5F13I, tilsvarende en selektivitet for (^F^Br nær 100$. At the reactor outlet and after neutralization in an aqueous solution of sodium sulphite and subsequent deposition, an organic phase containing 98.8 wt-$ C^F-^Br and 0.65$ C5F13I is recovered, corresponding to a selectivity for (^F^Br close to 100 $.

Prøve nr. 28 Sample No. 28

Utgangsmaterialet er en homogen blanding av 441,7 g eller 0,99 mol CfrFiQl og 67,2 g eller 0,42 mol brom som innføres i løpet av 168 minutter ved hjelp av en enkelt doseringspumpe til den samme reaktor som i eksempel 1, i fravær av nitrogen, under de følgende driftsbetingelser: The starting material is a homogeneous mixture of 441.7 g or 0.99 mol CfrFiQl and 67.2 g or 0.42 mol bromine which is introduced during 168 minutes by means of a single dosing pump to the same reactor as in Example 1, in absence of nitrogen, under the following operating conditions:

Etter reduksjon med sulfitt og avsetning, gjenvinnes det en organisk fase ved reaktorutløpet og denne inneholder på vektbasis 77$ (^F^Br og 21,8$ C^F^I, noe som tilsvarer en selektivitet mot (^F^Br på 100$. After reduction with sulphite and deposition, an organic phase is recovered at the reactor outlet and this contains on a weight basis 77$ (^F^Br and 21.8$ C^F^I, which corresponds to a selectivity against (^F^Br of 100 $.

Claims (10)

1. Kontinuerlig fremgangsmåte for fremstilling av et perfluor-alkylbromid. Rj—Br der Rp angir en rett eller forgrenet perfluoralkylrest inneholdende 2 til 12 karbonatomer, ved omsetning av brom med det tilsvarende perfluoralkyljodid, Rjr—1\ karakterisert ved at reaksjonen gjennomføres i gassfase ved en temperatur mellom 200 og 600°C og med molforholdet B^rRpI mellom 0,1 og 2, og med en kontakttid mellom 1 sekund og 2 minutter.1. Continuous process for the production of a perfluoroalkyl bromide. Rj—Br where Rp denotes a straight or branched perfluoroalkyl residue containing 2 to 12 carbon atoms, by reaction of bromine with the corresponding perfluoroalkyl iodide, Rjr—1\ characterized in that the reaction is carried out in gas phase at a temperature between 200 and 600°C and with the molar ratio B ^rRpI between 0.1 and 2, and with a contact time between 1 second and 2 minutes. 2. Fremgangsmåte ifølge krav 1, karakteriser ved at reaksjonen gjennomføres ved en temperatur mellom mellom 350 og 50CC.2. Method according to claim 1, characterized in that the reaction is carried out at a temperature between 350 and 50°C. 3. Fremgangsmåte ifølge kravene 1 eller 2, karakterisert ved at molforholdet Br2:RpI holdes mellom 0,3 og 1.3. Method according to claims 1 or 2, characterized in that the molar ratio Br2:RpI is kept between 0.3 and 1. 4. Fremgangsmåte ifølge et av kravene 1 til 3, karakterisert ved at operasjonen gjennomføres i nærvær av et inert fortynningsmiddel, fortrinnsvis nitrogen.4. Method according to one of claims 1 to 3, characterized in that the operation is carried out in the presence of an inert diluent, preferably nitrogen. 5. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 4, karakterisert ved at kontakttiden er mellom 5 sekunder og 30 sekunder.5. Method according to any one of claims 1 to 4, characterized in that the contact time is between 5 seconds and 30 seconds. 6. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 5, karakterisert ved at operasjonen gjennom-føres ved atmosfærisk trykk.6. Method according to any one of claims 1 to 5, characterized in that the operation is carried out at atmospheric pressure. 7. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 6, karakterisert ved at en homogen blanding av brom og Rpl innføres i reaktoren.7. Method according to any one of claims 1 to 6, characterized in that a homogeneous mixture of bromine and Rpl is introduced into the reactor. 8. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 7, karakterisert ved at operasjonen gjennom-føres med et Br2:RpI-molforhold under 0,5, at jodet så separeres fra reaksjonsblandingen for å oppnå en RpBr:RpI-blanding som destilleres for å resirkulere Rpl eller hvor til oppfriskningsbrom settes for å fullføre reaksjonen i en andre reaktor.8. Method according to any one of claims 1 to 7, characterized in that the operation is carried out with a Br2:RpI molar ratio below 0.5, that the iodine is then separated from the reaction mixture to obtain a RpBr:RpI mixture which is distilled to recycle Rpl or where refresh bromine is added to complete the reaction in a second reactor. 9. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 8, karakterisert ved at man som jodid Rpl benytter perfluorheksyljodid, perfluoroktyljodid eller perfluordecyljodid.9. Method according to any one of claims 1 to 8, characterized in that perfluorohexyl iodide, perfluorooctyl iodide or perfluorodecyl iodide is used as iodide Rpl. 10. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 8, karakterisert ved at man anvender en blanding av perfluoralkyljodider.10. Method according to any one of claims 1 to 8, characterized in that a mixture of perfluoroalkyl iodides is used.
NO921992A 1991-05-21 1992-05-20 Process for producing perfluoroalkyl bromide NO177636C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9106114A FR2676731A1 (en) 1991-05-21 1991-05-21 SYNTHESIS OF PERFLUOROALKYL BROMIDES.

Publications (4)

Publication Number Publication Date
NO921992D0 NO921992D0 (en) 1992-05-20
NO921992L NO921992L (en) 1992-11-23
NO177636B true NO177636B (en) 1995-07-17
NO177636C NO177636C (en) 1995-10-25

Family

ID=9412960

Family Applications (1)

Application Number Title Priority Date Filing Date
NO921992A NO177636C (en) 1991-05-21 1992-05-20 Process for producing perfluoroalkyl bromide

Country Status (15)

Country Link
EP (1) EP0515258B1 (en)
KR (1) KR950012995B1 (en)
CN (1) CN1032306C (en)
AT (1) ATE110705T1 (en)
AU (1) AU642350B2 (en)
CA (1) CA2069018C (en)
DK (1) DK0515258T3 (en)
ES (1) ES2057968T3 (en)
FI (1) FI922293A (en)
FR (1) FR2676731A1 (en)
HU (1) HU207506B (en)
IE (1) IE64724B1 (en)
IL (2) IL101772A0 (en)
NO (1) NO177636C (en)
ZA (1) ZA923664B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027766A1 (en) * 1990-09-01 1992-03-05 Riedel De Haen Ag METHOD FOR PRODUCING LARGE FLUORINATED ALKYLBROMIDES
FR2710053B1 (en) * 1993-09-16 1995-11-03 Atochem Elf Sa Manufacture of solid perfluoroalkyl bromides.
CN116903433A (en) * 2023-07-12 2023-10-20 安徽科芯微流化工科技有限公司 Method for preparing perfluorooctyl bromide by micro-channel reaction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588719A (en) * 1984-04-27 1986-05-13 William H. Rorer, Inc. Bicyclic benzenoid aminoalkylene ethers and thioethers, pharmaceutical compositions and use
JPS60184033A (en) * 1984-03-02 1985-09-19 Daikin Ind Ltd Production of perfluoroalkyl bromide
IT1200594B (en) * 1985-02-26 1989-01-27 Montefluos Spa PROCEDURE FOR THE PREPARATION OF ALFA-OMEGA-ALOPERFLUOROCARBURI
FR2617836B1 (en) * 1987-07-10 1989-12-01 Atochem SYNTHESIS OF PERFLUOROALKYL BROMIDES
FR2655039B1 (en) * 1989-11-24 1992-02-21 Atochem SYNTHESIS OF PERFLUOROALKYL BROMIDES.
JP2797626B2 (en) * 1990-04-03 1998-09-17 旭硝子株式会社 Method for producing perfluoroalkyl bromide
DE4116361A1 (en) * 1990-06-23 1992-01-02 Hoechst Ag Per:fluoroalkyl mono:bromide(s) prodn. - by reacting per:fluoroalkyl mono:iodide(s) with bromine at elevated temp.

Also Published As

Publication number Publication date
ATE110705T1 (en) 1994-09-15
EP0515258B1 (en) 1994-08-31
HU9201683D0 (en) 1992-08-28
CN1032306C (en) 1996-07-17
CA2069018A1 (en) 1992-11-22
AU1703892A (en) 1992-11-26
ES2057968T3 (en) 1994-10-16
KR920021478A (en) 1992-12-18
FI922293A0 (en) 1992-05-20
KR950012995B1 (en) 1995-10-24
IE921621A1 (en) 1992-12-02
ZA923664B (en) 1993-02-24
CA2069018C (en) 1997-05-13
NO921992D0 (en) 1992-05-20
FI922293A (en) 1992-11-22
FR2676731A1 (en) 1992-11-27
DK0515258T3 (en) 1995-02-13
HUT60987A (en) 1992-11-30
IE64724B1 (en) 1995-08-23
EP0515258A1 (en) 1992-11-25
AU642350B2 (en) 1993-10-14
IL101772A0 (en) 1992-12-30
NO177636C (en) 1995-10-25
IL101772A (en) 1996-01-19
NO921992L (en) 1992-11-23
HU207506B (en) 1993-04-28
CN1067239A (en) 1992-12-23

Similar Documents

Publication Publication Date Title
US9567274B2 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoropropane by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
EP0180057A1 (en) Process for the preparation of halo aromatic compounds
US4970337A (en) Process for the preparation of trifluoromethanesulphonyl chloride
JP4520712B2 (en) Method for producing fluorohalogen ethers
JP3886168B2 (en) Process for producing 1-chloro-1-fluoroethane and / or 1,1-difluoroethane
NO177636B (en) Process for producing perfluoroalkyl bromide
EP0077853B1 (en) Novel trifluoromethyl benzal chlorides and process for the preparation thereof
KR100472210B1 (en) Manufacturing method of 1,1-difluoroethane
JP4970681B2 (en) Preparation of halohydrocarbons in the presence of promoters.
EP0450584B1 (en) Bromination method
US2729687A (en) Process for brominating halogenated methanes
JP3839490B2 (en) Process for producing 1,1-difluoroethane
NO173439B (en) SYNTHESIS OF PERFLUORALKYL BROMIDES
US4332939A (en) Process for the preparation of fluorinated s-triazines
US6350926B1 (en) Chlorofluorohydrocarbon and process thereto
US4306103A (en) Process for the manufacture of 1,3,5-trichlorobenzene
US6372921B1 (en) Process for producing isochromanones and intermediates thereof
US4876404A (en) Preparation of dichlorotrifluoromethyltoluenes including novel isomers
US5432290A (en) Process for the preparation of 2,2-difluoro-1,3-benzodioxole
KR20030029879A (en) Production of hydrofluoroalkanes
KR0146024B1 (en) Preparation of solid perfluoroalkyl bromides
RU2021243C1 (en) Method of fluorinated alkanes synthesis
SU710959A1 (en) Method of preparing palladium (1v) hexafluorocomplexes
JPS61126042A (en) Production of 3-chloro-4-fluorobenzotrifluoride
JPS6357568A (en) Catalyst reuse for liquid phase halogen exchange reaction