NO177192B - Synthetic two-component fiber and process for its preparation - Google Patents

Synthetic two-component fiber and process for its preparation Download PDF

Info

Publication number
NO177192B
NO177192B NO904763A NO904763A NO177192B NO 177192 B NO177192 B NO 177192B NO 904763 A NO904763 A NO 904763A NO 904763 A NO904763 A NO 904763A NO 177192 B NO177192 B NO 177192B
Authority
NO
Norway
Prior art keywords
component
fibers
fiber
synthetic
core
Prior art date
Application number
NO904763A
Other languages
Norwegian (no)
Other versions
NO904763D0 (en
NO904763L (en
NO177192C (en
Inventor
Anders Staf Hansen
Bjoern Marcher
Peter Schloss
Original Assignee
Danaklon As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danaklon As filed Critical Danaklon As
Publication of NO904763D0 publication Critical patent/NO904763D0/en
Publication of NO904763L publication Critical patent/NO904763L/en
Publication of NO177192B publication Critical patent/NO177192B/en
Publication of NO177192C publication Critical patent/NO177192C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Abstract

A thermobondable bicomponent synthetic fibre with a length of at least about 3 mm, adapted to use in the blending of fluff pulp for the production of hygiene absorbent products, the fibre comprising an inner core component and an outer sheath component, in which the core component comprises a polyolefin or a polyester, the sheath component comprises a polyolefin, and the core component has a higher melting point than the sheath component, and a process for producing said fibre. The sheath-and-core type fibre is preferably made permanently substantially hydrophilic by incorporating a surface active agent into the sheath component. The long bicomponent fibres form a strong supporting three-dimensional matrix structure in the absorbent product upon thermobonding.

Description

Den foreliggende oppfinnelse angår en termofestbar (thermo-bondable), hydrofil syntetisk fiber bestående av to komponenter (bicomponent synthetic fibre, heretter kalt syntetisk tokomponent-fiber) til bruk ved blanding av dunaktig masse, og en fremgangsmåte til fremstilling av fiberen. Nærmere bestemt angår oppfinnelsen en fiber som omfatter en ytre overtrekkskomponent (sheath component) og en indre kjernekomponent (core component), idet kjernekomponenten har et høyere smeltepunkt enn overtrekkskomponenten. Fiberen er permanent stort sett hydrofil. Uttrykket "hydrofil" refererer til det faktum at fiberen har affinitet for vann og således lett dispergeres i vann eller vandige blandinger. Denne affinitet kan tilskrives nærværet av polare grupper på fiberens overflate. Uttrykket "permanent" stort sett hydrofil refererer til det faktum at fiberen vil beholde sine hydrofile egenskaper etter gjentatte dispergeringer i vann. Dette oppnås ved innlemmelse av et overflateaktivt middel og eventuelt en hydrofil polymer eller kopolymer i fiberens overtrekkskomponent. Fiberen ifølge oppfinnelsen er nyttig til fremstilling av "dun" ("fluff"), som er et dunaktig fibrøst materiale som anvendes som et absorberende materiale, og/eller væskeledende kjerne ved fremstillingen av absorberende hygieniske produkter såsom engangsbleier. Dun (fluff) fremstilles ved fibrering og tørrforming av såkalt "dunaktig masse" ("fluff pulp") som består av naturlige og/eller syntetiske fibrer. The present invention relates to a thermo-bondable, hydrophilic synthetic fiber consisting of two components (bicomponent synthetic fiber, hereinafter called synthetic two-component fiber) for use when mixing down-like mass, and a method for producing the fiber. More specifically, the invention relates to a fiber comprising an outer covering component (sheath component) and an inner core component (core component), the core component having a higher melting point than the covering component. The fiber is permanently largely hydrophilic. The term "hydrophilic" refers to the fact that the fiber has an affinity for water and is thus easily dispersed in water or aqueous mixtures. This affinity can be attributed to the presence of polar groups on the fiber's surface. The term "permanent" substantially hydrophilic refers to the fact that the fiber will retain its hydrophilic properties after repeated dispersions in water. This is achieved by incorporating a surface-active agent and possibly a hydrophilic polymer or copolymer in the fiber's coating component. The fiber according to the invention is useful for the production of "down" ("fluff"), which is a downy fibrous material used as an absorbent material, and/or liquid-conducting core in the production of absorbent hygienic products such as disposable nappies. Down (fluff) is produced by fibering and dry forming of so-called "fluff pulp" which consists of natural and/or synthetic fibres.

I de senere år har der vært en tendens i retning av sterkere, tynnere og lettere engangsbleier og andre hygieniske absorberende engangsprodukter. En faktor i denne retning har vært utviklingen av en rekke syntetiske fibrer, særlig varmeklebende (termofestbare) syntetiske fibrer som er blitt brukt til å erstatte i det minste noen av de naturlige cellulosefibrer i disse produkter. Slike termofestbare syntetiske fibrer blir typisk anvendt til å binde sammen cellulosefibrene for derved å oppnå et absorberende materiale med forbedret styrke og tillate produksjonen av tynnere og lettere produkter. Eksempler på patentskrifter som beskriver slike fibrer eller deres anvendelse eller produksjon er US-PS 4 189 338 (ikke-vevet stoff omfattende side-om-side tokomponent-fibrer), 4 234 655 (varmeklebende komposittfibrer), 4 269 888 (varmeklebende komposittfibrer), 4 425 126 (fibermateriale som anvender termoplastiske syntetiske fibrer), 4 458 042 (absorberende materiale inneholdende polyalken-masse behandlet med et fuktemiddel) og 4 655 877 (absorberende sammenhengende (web) struktur inneholdende korte hydrofile termoplastfibrer) og EP patentsøknad nr. 0 248 598 (ikke-vevet stoff av polyalkentype). In recent years, there has been a trend towards stronger, thinner and lighter disposable nappies and other hygienic absorbent disposable products. One factor in this direction has been the development of a number of synthetic fibers, particularly heat-adhesive (thermosetting) synthetic fibers that have been used to replace at least some of the natural cellulose fibers in these products. Such thermosetting synthetic fibers are typically used to bind together the cellulose fibers to thereby obtain an absorbent material with improved strength and allow the production of thinner and lighter products. Examples of patents describing such fibers or their use or production are US-PS 4,189,338 (Nonwoven fabric comprising side-by-side bicomponent fibers), 4,234,655 (Heat adhesive composite fibers), 4,269,888 (Heat adhesive composite fibers) , 4,425,126 (fibrous material using thermoplastic synthetic fibers), 4,458,042 (absorbent material containing polyalkene pulp treated with a wetting agent) and 4,655,877 (absorbent continuous (web) structure containing short hydrophilic thermoplastic fibers) and EP Patent Application No. 0 248 598 (non-woven fabric of polyalkene type).

Bruken av disse syntetiske fibrer i absorberende produkter har imidlertid ikke vært uten problemer. Ett problem som man kan støte på, er det at det kan være vanskelig å fordele de syntetiske fibrer i den dunaktige masse som fremstilles ved en våtprosess, da disse syntetiske fibrer generelt er av en hydrofob beskaffenhet. Slike hydrofobe fibrer avstøter vann og har derfor en tendens til å danne opphopninger i den dunaktige masse eller å flyte på overflaten av den våte dunaktige masse dersom de er lettere enn vann. Hvis de syntetiske fibrer også fordeles ujevnt i dunet, kan barrierer som hindrer transporten av fuktighet, dannes i det absorberende produkt på grunn av sammensmelting av de termofestede fibrer til hverandre i områder hvor der er en opphopning av slike fibrer. Videre er de syntetiske fibrer som for tiden anvendes i fremstillingen av dun, generelt ganske korte, dvs. normalt kortere enn de cellulosefibrer som typisk utgjør en betydelig del av dunet. Den understøttende struktur av det absorberende materiale blir derfor dannet av cellulosefibrene i materialet, og da absorberende kjerner av slike naturlige cellulosefibrer har en tendens til å knekkes og bøyes under de belastninger som f.eks. bleier utsettes for, blir barrierer mot oppsugning (wicking barriers) lett dannet. Absorberende kjerner som består bare av naturlige cellulosefibrer, dvs. som ikke inneholder noen syntetiske fibrer, kan på samme måte også bli utsatt for brekkasje og dannelse av oppsugningsbarrierer på grunn av påkjenninger og bøying. However, the use of these synthetic fibers in absorbent products has not been without problems. One problem that can be encountered is that it can be difficult to distribute the synthetic fibers in the fluffy mass produced by a wet process, as these synthetic fibers are generally of a hydrophobic nature. Such hydrophobic fibers repel water and therefore tend to form clumps in the fluffy mass or to float on the surface of the wet fluffy mass if they are lighter than water. If the synthetic fibers are also unevenly distributed in the down, barriers that prevent the transport of moisture can be formed in the absorbent product due to fusion of the thermoset fibers to each other in areas where there is an accumulation of such fibers. Furthermore, the synthetic fibers that are currently used in the production of down are generally quite short, i.e. normally shorter than the cellulose fibers that typically make up a significant part of the down. The supporting structure of the absorbent material is therefore formed by the cellulose fibers in the material, and as absorbent cores of such natural cellulose fibers tend to break and bend under the loads that e.g. diapers are exposed to, wicking barriers are easily formed. Absorbent cores consisting only of natural cellulosic fibres, i.e. containing no synthetic fibres, can likewise be subject to breakage and the formation of absorbent barriers due to stresses and bending.

Hygieniske absorberende produkter omfatter ofte en såkalt superabsorberende polymer i form av et pulver eller små partikler, som innlemmes i materialet for å oppnå en vektbe-sparelse. Den superabsorberende polymer i disse materialer har imidlertid ofte en tendens til å forflytte seg ut av den stilling hvor den opprinnelig ble anbragt på grunn av mangelen på en struktur som effektivt kan holde tilbake de små partikler. Hygienic absorbent products often include a so-called super absorbent polymer in the form of a powder or small particles, which is incorporated into the material to achieve a weight saving. However, the superabsorbent polymer in these materials often tends to move out of the position where it was originally placed due to the lack of a structure that can effectively retain the small particles.

Den lange tokomponent syntetiske fiber ifølge oppfinnelsen er rettet mot de problemer som er nevnt ovenfor. Tokomponent-fibrene ifølge oppfinnelsen er betydelig lengre enn andre fibrer som typisk anvendes i fremstillingen av dun. I løpet av fremstillingen av absorberende produkter fra dun inneholdende tokomponent-fiberen blir dunet underkastet en varmebehandling (termofesting) hvor overtrekkskomponenten i tokomponent-fiberen smeltes, mens den høytsmeltende kjernekomponent i fiberen forblir intakt. Kjernekomponenten i de lange tokomponent-fibrer blir således smeltet sammen ved smeltingen av overtrekkskomponenten for dannelse av en sterk, ensartet, understøttende, tredimensjonal grunnmasse eller matriks i det absorberende materiale. Det absorberende materiale er således i stand til å motstå bøyning uten at der utvikles oppsugningsbarrierer på grunn av brekkasje av den absorberende kjerne. Dessuten gir den grunnmassestruktur som dannes ved tokomponent-fibrene, materialet forbedret evne til å holde på fasongen under dynamisk påkjenning ved bruk av det absorberende produkt. The long two-component synthetic fiber according to the invention is aimed at the problems mentioned above. The two-component fibers according to the invention are significantly longer than other fibers that are typically used in the production of down. During the production of absorbent products from down containing the two-component fiber, the down is subjected to a heat treatment (thermosetting) where the cover component of the two-component fiber is melted, while the high-melting core component of the fiber remains intact. The core component in the long two-component fibers is thus fused together by the melting of the covering component to form a strong, uniform, supporting, three-dimensional base mass or matrix in the absorbent material. The absorbent material is thus able to resist bending without developing absorption barriers due to breakage of the absorbent core. In addition, the matrix structure formed by the two-component fibers gives the material an improved ability to retain its shape under dynamic stress when using the absorbent product.

Den tredimensjonale nettlignende struktur som dannes av den høytsmeltende komponent i tokomponent-fiberen i det termofestede materiale tillater at den superabsorberende polymer holdes i den ønskede stilling. Dette er en ytterligere fordel som gir mer effektiv bruk av den superabsorberende polymer og hjelper til å øke porøsiteten såvel som å gjøre fremstillingen av lettere absorberende materialer mulig. The three-dimensional net-like structure formed by the high-melting component of the two-component fiber in the thermoset material allows the superabsorbent polymer to be held in the desired position. This is a further advantage which provides more efficient use of the superabsorbent polymer and helps to increase the porosity as well as making the production of lighter absorbent materials possible.

Dessuten har den lavtsmeltende overtrekkskomponent blitt gjort permanent stort sett hydrofil, hvilket tillater fibrene å fordeles homogent i den våtbehandlede dunaktige masse, som typisk anvendes i fremstillingen av absorberende materiale. Det er også ønskelig at fibrene i det ferdige produkt er hydrofile, slik at produktets absorberende og væskeledende egenskaper ikke forringes, noe som kan være tilfellet i et produkt med et betydelige innhold av hydrofobe fibrer. In addition, the low-melting coating component has been made permanently largely hydrophilic, which allows the fibers to be distributed homogeneously in the wet-treated downy mass, which is typically used in the manufacture of absorbent material. It is also desirable that the fibers in the finished product are hydrophilic, so that the product's absorbent and liquid-conducting properties are not impaired, which may be the case in a product with a significant content of hydrophobic fibres.

Den foreliggende oppfinnelse angår en termofestbar, hydrofil syntetisk tokomponent-fiber til bruk ved blanding av dunaktig masse (fluff pulp), omfattende en indre kjernekomponent og en ytre overtrekkskomponent, hvor The present invention relates to a thermosetting, hydrophilic synthetic two-component fiber for use in mixing fluff pulp, comprising an inner core component and an outer covering component, where

- kjernekomponenten omfatter et polyalken eller en polyester, - the core component comprises a polyalkene or a polyester,

- overtrekkskomponenten omfatter et polyalken, og - the coating component comprises a polyalkene, and

- kjernekomponenten har et høyere smeltepunkt enn overtrekkskomponenten , - the core component has a higher melting point than the coating component,

idet fiberen er permanent stort sett hydrofil pga. innlemmelsen i overtrekkskomponenten av fra 0,1-5%, regnet på den samlede vekt av fiberen, av et overflateaktivt middel, f.eks. en fettsyreester av glycerol, et fettsyreamid, en polyglykolester, et polyetoksylert amid, et annet ikke-ionisk overflateaktivt middel, et kationisk overflateaktivt middel eller en blanding av de ovenfor angitte og/eller andre forbindelser som normalt anvendes som emulgeringsmidler, overflateaktive midler eller detergenter, og fiberen har en lengde på 3-24 mm. as the fiber is permanently largely hydrophilic due to the incorporation in the coating component of from 0.1-5%, calculated on the total weight of the fiber, of a surface-active agent, e.g. a fatty acid ester of glycerol, a fatty acid amide, a polyglycol ester, a polyethoxylated amide, another non-ionic surfactant, a cationic surfactant or a mixture of the above and/or other compounds normally used as emulsifiers, surfactants or detergents, and the fiber has a length of 3-24 mm.

I en tokomponent-fiber av typen overtrekk-og-kjerne er kjernekomponenten omgitt av overtrekkskomponenten i motsetning til en tokomponent-fiber av side-om-side eller bilateral type, hvor de to komponenter begge har en kontinuerlig longitudinell ytre overflate. En liten del av kjernekomponenten kan imidlertid være blottlagt ved overflaten når det gjelder såkalt "asentrisk" overtrekk-og-kjerne-fiber som forklart nedenfor. In a bicomponent fiber of the cladding-and-core type, the core component is surrounded by the cladding component, in contrast to a bicomponent fiber of the side-by-side or bilateral type, where the two components both have a continuous longitudinal outer surface. However, a small portion of the core component may be exposed at the surface in the case of so-called "acentric" cover-and-core fiber as explained below.

Overtrekkskomponenten i tokomponent-fiberen velges fra gruppen polyalkener, mens kjernekomponenten kan omfatte et polyalken eller en polyester. Kjernekomponenten har typisk et smeltepunkt på minst 150°C, fortrinnsvis minst 160°C og overtrekkskomponenten har typisk et smeltepunkt på 140°C eller lavere, fortrinnsvis 135°C eller lavere. De to komponenter i fiberen har således smeltepunkter som er vesentlig forskjellige fra hverandre, hvilket tillater at den lavtsmeltende overtrekkskomponent smeltes i en termofesteprosess, mens den høyt-smeltende kjernekomponent forblir stort sett intakt. Skjønt spesifikke smeltepunkter er angitt nedenfor, må man huske på at disse materialer som alle krystallinske polymermaterialer i virkeligheten smelter gradvis over et område på noen få grader. Dette er imidlertid ikke et problem, fordi de to komponenter i fiberen i praksis vil velges slik at deres smeltepunkter er vesentlig forskjellige fra hverandre. The covering component in the two-component fiber is selected from the group of polyalkenes, while the core component may comprise a polyalkene or a polyester. The core component typically has a melting point of at least 150°C, preferably at least 160°C and the coating component typically has a melting point of 140°C or lower, preferably 135°C or lower. The two components of the fiber thus have melting points that are significantly different from each other, which allows the low-melting coating component to be melted in a thermosetting process, while the high-melting core component remains largely intact. Although specific melting points are indicated below, it must be remembered that these materials, like all crystalline polymeric materials, actually melt gradually over a range of a few degrees. However, this is not a problem, because in practice the two components of the fiber will be chosen so that their melting points are significantly different from each other.

Fortrinnsvis innbefatter fiberen en overtrekkskomponent som omfatter et lavtsmeltende polyalken såsom et høytetthetspoly-etylen (smeltepunkt (smp.) ca. 130°C), lavtetthetspolyetylen (smp. ca. 110°C), lineært lavtetthetspolyetylen (smp. ca. 125°C) eller poly(1-buten) (smp. ca. 130°C) eller blandinger eller kopolymerer av disse, sammen med en kjernekomponent som omfatter et polyalken såsom polypropylen (smp. ca. 160°C). Overtrekkskomponenten kan videre omfatte en etylen-propylen-kopolymer basert på propylen med inntil ca. 7% etylen (smp. ca. 145°C). Preferably, the fiber includes a coating component comprising a low-melting polyalkene such as a high-density polyethylene (melting point (m.p.) about 130°C), low-density polyethylene (m.p. about 110°C), linear low-density polyethylene (m.p. about 125°C) or poly(1-butene) (m.p. about 130°C) or mixtures or copolymers thereof, together with a core component comprising a polyalkene such as polypropylene (m.p. about 160°C). The coating component can further comprise an ethylene-propylene copolymer based on propylene with up to approx. 7% ethylene (m.p. approx. 145°C).

Fiberen i henhold til oppfinnelsen kan også innbefatte en kjernekomponent som omfatter poly(4-metyl-l-penten) (smp. ca. 230°C) og en overtrekkskomponent som omfatter et hvilket som helst av de ovenfor angitte polyalkener, (dvs. høytetthetspoly-etylen, lavtetthetspolyetylen, lineært lavtetthetspolyetylen, poly(1-buten) eller polypropylen). The fiber according to the invention can also include a core component comprising poly(4-methyl-l-pentene) (m.p. approx. 230°C) and a coating component comprising any of the above-mentioned polyalkenes, (i.e. high density poly -ethylene, low density polyethylene, linear low density polyethylene, poly(1-butene) or polypropylene).

Alternativt kan kjernekomponenten omfatte en polyester med et høyt smeltepunkt (dvs. over ca. 210°C) såsom poly(etylen-tereftalat) (smp. ca. 255°C), poly(butylen-tereftalat) (smp. ca. 230°C) eller poly(1,4-cykloheksylen-dimetylen-tereftalat) Alternatively, the core component may comprise a polyester with a high melting point (ie above about 210°C) such as poly(ethylene terephthalate) (m.p. about 255°C), poly(butylene terephthalate) (m.p. about 230° C) or poly(1,4-cyclohexylene-dimethyl-terephthalate)

(smp. ca. 290°C) eller andre polyestere eller kopolyestere som omfatter de ovenfor angitte strukturer og/eller andre polyestere. Dersom fiberen innbefatter en polyesterkjerne, kan overtrekket omfatte et hvilket som helst av de materialer som er nevnt tidligere, dvs. høytetthetspolyetylen, lavtetthetspolyetylen, lineært lavtetthetspolyetylen, poly(1-buten), (m.p. approx. 290°C) or other polyesters or copolyesters which comprise the structures stated above and/or other polyesters. If the fiber includes a polyester core, the coating may comprise any of the materials mentioned previously, i.e. high density polyethylene, low density polyethylene, linear low density polyethylene, poly(1-butene),

polypropylen eller kopolymerer eller blandinger av disse materialer), eller et annet materiale med et smeltepunkt på ca. 170°C eller lavere. polypropylene or copolymers or mixtures of these materials), or another material with a melting point of approx. 170°C or lower.

Dessuten kan overtrekkskomponenten omfatte en blanding av f.eks. lavtetthetspolyetylen og enten en (etylvinylacetat)-kopolymer eller en (etylenakrylsyre)-kopolymer (smp. ca. 100°C) som forklart nedenfor. In addition, the coating component may comprise a mixture of e.g. low density polyethylene and either an (ethyl vinyl acetate) copolymer or an (ethylene acrylic acid) copolymer (m.p. about 100°C) as explained below.

Blandingen av fiberens to komponenter kan således varieres for å innbefatte en rekke forskjellige grunnmaterialer, og den nøyaktige sammensetning i hvert tilfelle vil åpenbart avhenge av det materiale i hvilket fiberen skal anvendes, såvel som det utstyr og de produksjonsprosesser som anvendes til fremstilling av det aktuelle absorberende materiale. The mixture of the fiber's two components can thus be varied to include a number of different base materials, and the exact composition in each case will obviously depend on the material in which the fiber is to be used, as well as the equipment and the production processes used to manufacture the absorbent in question material.

Fiberen er blitt gitt permanente hydrofile overflateegenskaper ved innlemmelse av et overflateaktivt middel i overtrekkskomponenten og valgfritt ved innlemmelse av en hydrofil polymer eller kopolymer i overtrekkskomponenten. The fiber has been given permanent hydrophilic surface properties by incorporating a surfactant into the coating component and optionally by incorporating a hydrophilic polymer or copolymer into the coating component.

Det overflateaktive middel kan typisk velges fra forbindelser som normalt anvendes som emulgeringsmidler, overflateaktive midler eller detergenter, og kan omfatte blandinger av disse forbindelser. Eksempler på slike forbindelser er fettsyreestere av glycerol, fettsyreamider, polyglykolestere, polyetoksylerte amider, ikke-ioniske overflateaktive midler og kationiske overflateaktive midler. The surface-active agent can typically be selected from compounds that are normally used as emulsifiers, surface-active agents or detergents, and can comprise mixtures of these compounds. Examples of such compounds are fatty acid esters of glycerol, fatty acid amides, polyglycol esters, polyethoxylated amides, non-ionic surfactants and cationic surfactants.

Spesifikke eksempler på slike forbindelser er en polyetylen-glykollauryl-eter som har formelen: Specific examples of such compounds are a polyethylene glycol lauryl ether having the formula:

glycerolmonostearat som har formelen: erucamid som har formelen: stearinsyreamid som har formelen: et trialkylfosfat som har formelen: alkylfosfataminester som har formelen: et laurylfosfat-kaliumsalt som har formelen: eller: og en etylendiaminpolyetylenglykol som har formelen: glycerol monostearate having the formula: erucamide having the formula: stearic acid amide having the formula: a trialkyl phosphate having the formula: alkyl phosphate amine ester having the formula: a lauryl phosphate potassium salt having the formula: or: and an ethylenediamine polyethylene glycol having the formula:

Forbindelsene bør fortrinnsvis ha en hydrofob del for å gjøre The compounds should preferably have a hydrophobic part to make

dem forenlige med den alkenske polymer og en hydrofil del for å gjøre overflaten av fiberen fuktbar. Blandinger av forbindelser kan anvendes for å regulere de hydrofile egenskaper. Det overflateaktive middel blir typisk innlemmet i overtrekkskomponenten i en mengde på 0,5-2%, regnet på den samlede vekt av fiberen. Denne mengde overflateaktivt middel er tilstrekkelig til å gi fiberen den ønskede hydrofilitet, uten at them compatible with the alkenic polymer and a hydrophilic part to make the surface of the fiber wettable. Mixtures of compounds can be used to regulate the hydrophilic properties. The surfactant is typically incorporated into the coating component in an amount of 0.5-2%, calculated on the total weight of the fiber. This amount of surfactant is sufficient to give the fiber the desired hydrophilicity, without

den har noen ugunstig virkninger på andre egenskaper av fiberen. it has some adverse effects on other properties of the fiber.

Overtrekkskomponenten kan dessuten omfatte en hydrofil polymer eller hydrofil kopolymer. Eksempler på en slik hydrofil kopolymer er (etylvinylacetat)-kopolymer og (etylenakrylsyre)-kopolymer. I dette tilfelle kan overtrekkskomponenten omfatte, foruten det overflateaktive middel som beskrevet ovenfor, en blanding av f.eks. 50-75% lavtetthetspolyetylen og 50-25% av den hydrofile kopolymer, og mengden av vinylacetat eller akrylsyre vil henholdsvis være typisk 0,1-5%, og fortrinnsvis 0,5-2%, regnet på den samlede vekt av fiberen. The coating component may also comprise a hydrophilic polymer or hydrophilic copolymer. Examples of such a hydrophilic copolymer are (ethyl vinyl acetate) copolymer and (ethylene acrylic acid) copolymer. In this case, the coating component may comprise, in addition to the surfactant as described above, a mixture of e.g. 50-75% low density polyethylene and 50-25% of the hydrophilic copolymer, and the amount of vinyl acetate or acrylic acid will respectively be typically 0.1-5%, and preferably 0.5-2%, calculated on the total weight of the fiber.

Fibrene kan testes for hydrofilitet ved f.eks. måling av den tid som er nødvendig for dem å synke i vann, f.eks. i henhold til European Disposable Non-woven Association standard nr. 10.1-72. Fibrene kan plasseres i et metallnett på overflaten av vannet, og de kan defineres som hydrofile dersom de synker under overflaten innen ca. 10 s og fortrinnsvis innen ca. 5 s. The fibers can be tested for hydrophilicity by e.g. measuring the time required for them to sink in water, e.g. according to the European Disposable Non-woven Association standard no. 10.1-72. The fibers can be placed in a metal mesh on the surface of the water, and they can be defined as hydrophilic if they sink below the surface within approx. 10 s and preferably within approx. 5 p.

Vektforholdet av overtrekks- og kjernekomponentene i tokomponent-f iberen ligger fortrinnsvis i området fra 10:90 til 90:10. Dersom overtrekkskomponenten omfatter mindre enn ca. 10% av den samlede vekt av fiberen, kan det være vanskelig å oppnå tilstrekkelig termofesting av kjernekomponenten til andre fibrer i materialet. Likeledes, dersom kjernekomponenten omfatter mindre enn ca. 10% av den samlede vekt av fiberen, kan det være at det ikke er mulig for den termofestede kjernekomponent å meddele det ferdige produkt tilstrekkelig styrke. Nærmere bestemt vil vektforholdet mellom overtrekkskomponent og kjernekomponent typisk ligge i området fra 30:70 til 70:30 og fortrinnsvis fra 40:60 til 65:35. The weight ratio of the cover and core components in the two-component fiber is preferably in the range from 10:90 to 90:10. If the cover component includes less than approx. 10% of the total weight of the fiber, it may be difficult to achieve sufficient thermosetting of the core component to other fibers in the material. Likewise, if the core component comprises less than approx. 10% of the total weight of the fiber, it may not be possible for the thermoset core component to impart sufficient strength to the finished product. More precisely, the weight ratio between cover component and core component will typically lie in the range from 30:70 to 70:30 and preferably from 40:60 to 65:35.

Tverrsnittet av tokomponent-fiberen er fortrinnsvis sirkelformet, da det utstyr som typisk anvendes til fremstilling av syntetiske tokomponent-fibrer normalt produserer fibrer med et stort sett sirkelformet tverrsnitt. Tverrsnittet kan imidlertid også være ovalt eller uregelmessig. Utformingen av overtrekks-og kjernekomponentene kan være enten konsentrisk eller asentrisk (som vist på fig. 1), idet den sistnevnte utforming eller konfigurasjon iblant er kjent som en "modifisert side-om-side" eller en "eksentrisk" tokomponent-fiber. Den konsentriske konfigurasjon er kjennetegnet ved at overtrekkskomponenten har en stort sett ensartet tykkelse slik at kjernekomponenten ligger tilnærmet i sentrum av fiberen. I den asentriske konfigurasjon varierer tykkelsen av overtrekkskomponenten, og kjernekomponenten ligger derfor ikke i sentrum av fiberen. I begge tilfeller er kjernekomponenten stort sett omgitt av overtrekkskomponenten. I en asentrisk tokomponent-fiber kan imidlertid et parti av kjernekomponenten være blottlagt, slik at i praksis kan inntil ca. 20% av overflaten av fiberen utgjøres av kjernekomponenten. Overtrekkskomponenten i en fiber med en asentrisk utforming vil ikke desto mindre omfatte hoveddelen av fiberens overflate, dvs. minst ca. 80%. Både tverrsnittet av fiberen og utformingen av komponentene vil avhenge av det utstyr som anvendes til fremstilling av fiberen, prosessbetingelsene og molekylvekten av de to komponenter. The cross-section of the two-component fiber is preferably circular, as the equipment typically used for the production of synthetic two-component fibers normally produces fibers with a largely circular cross-section. However, the cross-section can also be oval or irregular. The design of the cladding and core components can be either concentric or acentric (as shown in Fig. 1), the latter design or configuration being sometimes known as a "modified side-by-side" or an "eccentric" two-component fiber. The concentric configuration is characterized by the covering component having a largely uniform thickness so that the core component lies approximately in the center of the fibre. In the acentric configuration, the thickness of the cladding component varies, and the core component is therefore not in the center of the fiber. In both cases, the core component is largely surrounded by the cover component. In an acentric two-component fibre, however, part of the core component can be exposed, so that in practice up to approx. 20% of the surface of the fiber is made up of the core component. The coating component in a fiber with an acentric design will nevertheless comprise the main part of the fiber's surface, i.e. at least approx. 80%. Both the cross-section of the fiber and the design of the components will depend on the equipment used to produce the fiber, the process conditions and the molecular weight of the two components.

Fibrene har fortrinnsvis en finhet på 1-7 desitex (dtex), en desitex er vekten i gram av 10 km fiber. Lengden av fibrene må tas i betraktning når man velger finheten av slike fibrer, og fordi, slikt det er forklart nedenfor, tokomponent-fibrene ifølge oppfinnelsen er forholdsvis lange, bør finheten innstilles i henhold til dette. Fibrene vil således typisk ha en finhet på 1,5-5 dtex, fortrinnsvis 1,7-3,3 dtex og helst 1,7-2,2 dtex. Når mer enn én type slike fibrer anvendes i det samme dunaktige materiale, f.eks. fibrer av forskjellig lengde, kan dtex/lengde-forholdet av de enkelte typer fibrer være konstant eller variabelt. The fibers preferably have a fineness of 1-7 decitex (dtex), a decitex is the weight in grams of 10 km of fibre. The length of the fibers must be taken into account when choosing the fineness of such fibers, and because, as explained below, the two-component fibers according to the invention are relatively long, the fineness should be adjusted accordingly. The fibers will thus typically have a fineness of 1.5-5 dtex, preferably 1.7-3.3 dtex and preferably 1.7-2.2 dtex. When more than one type of such fibers are used in the same fluffy material, e.g. fibers of different lengths, the dtex/length ratio of the individual types of fibers can be constant or variable.

Fibrene blir fortrinnsvis kruset, dvs. gitt en bølgeform, for å gjøre dem lettere å bearbeide når man fremstiller den dunaktige masse. Typisk vil de ha fra 0 til 10 krusninger pr. cm, og fortrinnsvis fra 0 til 4 krusninger pr. cm. The fibers are preferably crimped, i.e. given a wave shape, to make them easier to process when producing the fluffy mass. Typically, they will have from 0 to 10 ripples per cm, and preferably from 0 to 4 ripples per cm.

Lengden av de syntetiske tokomponent-fibrer ifølge oppfinnelsen er av betydning, da de er vesentlig lengre enn andre fibrer som typisk anvendes i fremstillingen av dunaktig masse (fluff). For eksempel, naturlige cellulosemasse-fibrer som er typisk den viktigste komponent i fluff, er normalt ikke mer enn ca. 3 mm lange. De termofestbare syntetiske fibrer som for tiden anvendes i fremstillingen av fluff, er typisk kortere enn cellulosefibrer, og cellulosefibrene utgjør derfor den grunnleggende struktur av materialet. De syntetiske tokomponent-f ibrer ifølge oppfinnelsen er imidlertid vesentlig lengre enn f.eks. cellulosefibrer. Følgelig utgjør den høytsmeltende kjernekomponent av tokomponent-fibrene den grunnleggende struktur i det termofestede absorberende materiale, hvilket gir det forbedrede egenskaper med hensyn til styrke og dimensjonen stabilitet. The length of the synthetic two-component fibers according to the invention is important, as they are significantly longer than other fibers that are typically used in the production of downy mass (fluff). For example, natural cellulosic pulp fibers that are typically the major component of fluff are normally no more than approx. 3 mm long. The heat-set synthetic fibers that are currently used in the production of fluff are typically shorter than cellulose fibers, and the cellulose fibers therefore form the basic structure of the material. The synthetic two-component fibers according to the invention are, however, significantly longer than e.g. cellulose fibers. Accordingly, the high-melting core component of the two-component fibers constitutes the basic structure of the thermoset absorbent material, which gives it improved properties with regard to strength and dimensional stability.

Fibrene i den foreliggende oppfinnelse er således typisk kappet til en lengde på 5-20 mm, fortrinnsvis 6-18 mm. Spesielt foretrukne lengder er ca. 6 mm og 12 mm. Den ønskede lengde velges i henhold til det utstyr som skal anvendes i fremstillingen av det absorberende materiale såvel som beskaffenheten av selve materialet. Skjønt de er forholdsvis lange, er fibrene ikke desto mindre i stand til å passere stort sett intakt gjennom nettinghullene i de hammermøller som anvendes til fremstilling av fluff, da disse hull typisk har en diameter på 10-18 mm, slik det skal beskrives nedenfor. The fibers in the present invention are thus typically cut to a length of 5-20 mm, preferably 6-18 mm. Particularly preferred lengths are approx. 6 mm and 12 mm. The desired length is chosen according to the equipment to be used in the production of the absorbent material as well as the nature of the material itself. Although they are relatively long, the fibers are nonetheless able to pass largely intact through the mesh holes in the hammer mills used to produce fluff, as these holes typically have a diameter of 10-18 mm, as will be described below.

Fibrene kan fremstilles ved anvendelse av en prosess som omfatter de følgende trinn: - smelting av bestanddelene av kjerne- og overtrekks-komponentene, - innlemmelse av fra 0,1-5%, regnet på den samlede vekt av fiberen, av et overflateaktivt middel, f.eks. en fettsyreester av glycerol, et fettsyreamid, en polyglykolester, et polyetoksylert amid, et ikke-ionisk overflateaktivt middel, et kationisk overflateaktivt middel eller en blanding av de ovenfor angitte og/eller andre forbindelser som normalt anvendes som emulgeringsmidler, overflateaktive midler eller The fibers can be produced using a process which includes the following steps: - melting of the constituents of the core and coating components, - incorporation of from 0.1-5%, calculated on the total weight of the fibre, of a surface-active agent, e.g. a fatty acid ester of glycerol, a fatty acid amide, a polyglycol ester, a polyethoxylated amide, a non-ionic surfactant, a cationic surfactant or a mixture of the above and/or other compounds normally used as emulsifiers, surfactants or

detergenter i overtrekkskomponenten, detergents in the coating component,

- spinning av den lavtsmeltende overtrekkskomponent og den høytsmeltende kjernekomponent til en spunnet bunt av - spinning of the low-melting coating component and the high-melting core component into a spun bundle of

tokomponent-filamenter, bicomponent filaments,

- strekking av bunten av filamenter, - stretching of the bundle of filaments,

- fortrinnsvis krusning av fibrene, - preferably curling of the fibers,

- tørking og fiksering av fibrene, og - drying and fixing the fibres, and

- kapping av fibrene til en lengde på 3-24 mm. - cutting the fibers to a length of 3-24 mm.

De ovenfor angitte trinn skal beskrives i nærmere detalj som følger: Bestanddelene av henholdsvis overtrekkskomponenten og kjernekomponenten blir smeltet i separate ekstrudere (en ekstruder for hver av de to komponenter), som blander de respektive komponenter slik at smeltene har en ensartet konsistens og temperatur før spinning. Temperaturen av de smeltede komponenter i ekstruderne er godt over deres respektive smeltepunkter, typisk mer enn ca. 90°C over smeltepunktene, for således å sikre at smeltene har flytegenskaper som er passende for den etterfølgende spinning av fibrene. The above-mentioned steps shall be described in more detail as follows: The components of the coating component and the core component, respectively, are melted in separate extruders (one extruder for each of the two components), which mix the respective components so that the melts have a uniform consistency and temperature before spinning . The temperature of the molten components in the extruders is well above their respective melting points, typically more than approx. 90°C above the melting points, thus ensuring that the melts have flow properties suitable for the subsequent spinning of the fibres.

Til den smeltede overtrekkskomponent settes et overflateaktivt middel i en passende mengde regnet på den samlede vekt av de spunnede fibrer, som forklart ovenfor. Dessuten kan, som forklart ovenfor, overtrekkskomponenten innbefatte en hydrofil polymer eller kopolymer. Det overflateaktive middel og den hydrofile polymer eller kopolymer som eventuelt anvendes, er viktig for produksjonen av våtbearbeidet dunaktig masse, fordi, som forklart ovenfor, det er nødvendig at overflaten av de syntetiske tokomponent-fibrer gjøres stort sett hydrofil, slik at de kan fordeles homogent i den dunaktige masse. Det er mulig å behandle overflaten av de spunnede fibrer med et fuktemiddel, men resultatet er ikke nødvendigvis permanent, og således kan der være en risiko for at de ønskede hydrofile overflateegenskaper går tapt i løpet av produksjonen av det absorberende materiale. Ved innlemmelse av det overflateaktive middel og valgfritt den hydrofile polymer eller kopolymer i overtrekkskomponenten før spinning blir den spunnede fiber gjort permanent stort sett hydrofil, hvilket sikrer at den ønskede homogene fordeling av tokomponent-fibrene i den dunaktige masse kan oppnås, og at funksjoneringen av det absorberende produkt ikke vil hindres ved nærvær av hydrofobe fibrer. To the molten coating component is added a surfactant in an appropriate amount based on the total weight of the spun fibers, as explained above. Also, as explained above, the coating component may include a hydrophilic polymer or copolymer. The surface-active agent and the hydrophilic polymer or copolymer that may be used are important for the production of wet-processed downy pulp, because, as explained above, it is necessary that the surface of the synthetic two-component fibers be made largely hydrophilic, so that they can be distributed homogeneously in the fluffy mass. It is possible to treat the surface of the spun fibers with a wetting agent, but the result is not necessarily permanent, and thus there may be a risk that the desired hydrophilic surface properties are lost during the production of the absorbent material. By incorporating the surface-active agent and optionally the hydrophilic polymer or copolymer in the coating component before spinning, the spun fiber is made permanently largely hydrophilic, which ensures that the desired homogeneous distribution of the two-component fibers in the fluffy mass can be achieved, and that the functioning of the absorbent product will not be hindered by the presence of hydrophobic fibres.

De smeltede komponenter blir typisk filtrert før spinning, f.eks. ved bruk av et metallnett for å fjerne eventuelle usmeltede eller tverrbundne stoffer som kan foreligge. Spinningen av fibrene blir typisk oppnådd ved anvendelse av vanlig smeltespinning (også kjent som "langspinning"), særlig vanlig spinning med middels hastighet, men såkalt "kortspinning" eller "kompaktspinning" kan også anvendes (Ahmed, M., Polypropylene Fibers - Science and Technology, 1982). Vanlig spinning omfatter en totrinns-prosess, hvor det første trinn er ekstrudering av smeltene og den egentlige spinning av fibrene, mens det annet trinn er strekking av de spunnede fibrer slik de foreligger etter spinningen ("as-spun"). Kortspinning er en éntrinns-prosess, hvor fibrene både spinnes og strekkes i én enkelt operasjon. The molten components are typically filtered before spinning, e.g. using a metal mesh to remove any unmelted or cross-linked substances that may be present. The spinning of the fibers is typically achieved by using ordinary melt spinning (also known as "long spinning"), especially ordinary spinning at medium speed, but so-called "short spinning" or "compact spinning" can also be used (Ahmed, M., Polypropylene Fibers - Science and Technology, 1982). Normal spinning comprises a two-stage process, where the first stage is the extrusion of the melts and the actual spinning of the fibers, while the second stage is the stretching of the spun fibers as they are after spinning ("as-spun"). Card spinning is a one-step process, where the fibers are both spun and stretched in a single operation.

De smeltede overtrekks- og kjernekomponenter som fås som angitt ovenfor, føres fra deres respektive ekstrudere gjennom et fordelingssystem og føres gjennom hullene i en spinndyse. Fremstilling av tokomponent-fibrer er mer komplisert enn fremstilling av énkomponent-fibrer, fordi de to komponenter må være riktig fordelt til hullene. Følgelig blir i tilfellet tokomponent-fibrer en spesiell type spinndyse anvendt til å fordele de respektive komponenter, f.eks. en spinndyse basert på de prinsipper som er beskrevet i US-PS 3 584 339. Diameteren av hullene i spinndysen er typisk 0,4-1,2 mm, avhengig av finheten av de fibrer som produseres. De ekstruderte smelter blir deretter ført gjennom en bråkjølingskanal hvor de kjøles ved en strøm av luft og på samme tid trekkes til tokomponent-filamenter som samles til bunter av filamenter. Buntene inneholder typisk minst ca. 100 filamenter og mer typisk minst ca. 700 filamenter. Spinnhastigheten etter avkjølingskanalen er typisk minst 200 m/min, og mer typisk 500-2000 m/min. The molten coating and core components obtained as indicated above are passed from their respective extruders through a distribution system and passed through the holes of a spinning die. The production of two-component fibers is more complicated than the production of one-component fibers, because the two components must be correctly distributed to the holes. Accordingly, in the case of two-component fibers, a special type of spinning nozzle is used to distribute the respective components, e.g. a spinning nozzle based on the principles described in US-PS 3 584 339. The diameter of the holes in the spinning nozzle is typically 0.4-1.2 mm, depending on the fineness of the fibers produced. The extruded melts are then passed through a quench channel where they are cooled by a stream of air and at the same time drawn into two-component filaments which are collected into bundles of filaments. The bundles typically contain at least approx. 100 filaments and more typically at least approx. 700 filaments. The spinning speed after the cooling channel is typically at least 200 m/min, and more typically 500-2000 m/min.

Buntene av filamenter blir deretter strukket, fortrinnsvis ved bruk av såkalt adskilt (off-line) strekking eller trekking som, slik det er angitt ovenfor, finner sted separat fra spinne-prosessen. Strekking blir typisk oppnådd ved bruk av en serie varme valser og en varmluftsovn, hvor en rekke bunter av filamenter strekkes samtidig. Buntene av filamenter passerer først gjennom ett sett valser, fulgt av passasje gjennom en varmluftsovn og deretter passasje gjennom et annet sett valser. De varme valser har typisk en temperatur på 70-130°C, og varmluftsovnen har typisk en temperatur på 80-140°C. Hastigheten av det annet sett valser er større enn hastigheten av det første sett og den oppvarmede bunt filamenter blir derfor strukket i henhold til forholdet mellom de to hastigheter (kalt strekkforholdet eller trekkforholdet). En annen ovn og et tredje sett valser kan også anvendes (totrinns-strekking), idet det tredje sett valser har en høyere hastighet enn det annet sett. I dette tilfelle er strekkforholdet forholdet mellom hastigheten av det siste og det første sett valser. På lignende måte kan ytterligere sett med valser og ovner anvendes. Fibrene ifølge oppfinnelsen blir typisk strukket med et strekkforhold fra 2,5:1 til 4,5:1, og fortrinnsvis fra 3,0:1 til 4,0:1, hvilket fører til en passende finhet, dvs. 1-7 dtex, typisk 1,5-5 dtex, fortrinnsvis 1,7-3,3 dtex, og helst 1,7-2,2 dtex, som forklart ovenfor. The bundles of filaments are then stretched, preferably using so-called off-line stretching or drawing which, as indicated above, takes place separately from the spinning process. Stretching is typically achieved using a series of hot rollers and a hot air furnace, where a number of bundles of filaments are stretched simultaneously. The bundles of filaments first pass through one set of rollers, followed by passage through a hot air furnace and then passage through another set of rollers. The hot rollers typically have a temperature of 70-130°C, and the hot air oven typically has a temperature of 80-140°C. The speed of the second set of rollers is greater than the speed of the first set and the heated bundle of filaments is therefore stretched according to the ratio between the two speeds (called the stretch ratio or draw ratio). Another oven and a third set of rollers can also be used (two-stage stretching), the third set of rollers having a higher speed than the second set. In this case, the stretch ratio is the ratio between the speed of the last and the first set of rollers. In a similar way, further sets of rollers and ovens can be used. The fibers according to the invention are typically stretched with a draw ratio of from 2.5:1 to 4.5:1, and preferably from 3.0:1 to 4.0:1, which leads to a suitable fineness, i.e. 1-7 dtex , typically 1.5-5 dtex, preferably 1.7-3.3 dtex, and preferably 1.7-2.2 dtex, as explained above.

Fibrene blir fortrinnsvis kruset (crimped), typisk i en såkalt masseboks (stuffer box) for å gjøre dem lettere å bearbeide til den dunaktige masse på grunn av den høyere fiber-til-fiber-friksjon. Buntene av filamenter blir ført av et par trykkvalser inn i kammeret i masseboksen hvor de blir kruset på grunn av det trykk som resulterer fra at de ikke trekkes forover inne i kammeret. Graden av krusning kan reguleres ved trykket av valsene før masseboksen, trykket og temperaturen i kammeret, og tykkelsen av bunten av filamenter. Som et alternativ kan filamentene lufttekstureres ved at de føres gjennom en dyse ved hjelp av en luftstrøm i form av en stråle. The fibers are preferably crimped, typically in a so-called stuffing box (stuffer box) to make them easier to process into the fluffy pulp due to the higher fibre-to-fibre friction. The bundles of filaments are guided by a pair of pressure rollers into the chamber of the pulp box where they are crimped due to the pressure resulting from not being pulled forward inside the chamber. The degree of ripple can be regulated by the pressure of the rollers before the pulp box, the pressure and temperature of the chamber, and the thickness of the bundle of filaments. As an alternative, the filaments can be air-textured by passing them through a nozzle by means of an air flow in the form of a jet.

De krusede fibrer blir deretter fortrinnsvis herdet for å redusere spenninger som kan foreligge etter strekking- og krusningsprosessene, og de bør deretter tørkes. Herding og tørking kan finne sted samtidig, typisk ved at filamentbuntene føres fra masseboksen, f.eks. via et samlebånd, gjennom en varmluftsovn. Temperaturen i ovnen vil avhenge av sammenset-ningen av tokomponent-fibrene, men må åpenbart være godt under smeltepunktet av overtrekkskomponenten. The crimped fibers are then preferably cured to reduce stresses that may be present after the stretching and crimping processes, and they should then be dried. Curing and drying can take place at the same time, typically by feeding the filament bundles from the pulp box, e.g. via an assembly line, through a hot air oven. The temperature in the oven will depend on the composition of the two-component fibres, but must obviously be well below the melting point of the coating component.

De herdede og tørkede filamentbunter blir deretter ført til en kappemaskin, hvor fibrene kappes til den ønskede lengde. Kapping blir typisk utført ved at fibrene føres over et hjul som inneholder radielt anordnede kniver. Fibrene presses mot knivene ved trykk fra valser og blir således kappet til den ønskede lengde som er lik avstanden mellom knivene. Som forklart ovenfor blir fibrene ifølge oppfinnelsen kappet slik at de er forholdsvis lange, dvs. 3-24 mm, typisk 5-20 mm, fortrinnsvis 6-18 mm, med spesielt foretrukne lengder på 6 mm og ca. 12 mm. The cured and dried filament bundles are then taken to a cutting machine, where the fibers are cut to the desired length. Cutting is typically carried out by passing the fibers over a wheel containing radially arranged knives. The fibers are pressed against the knives by pressure from rollers and are thus cut to the desired length which is equal to the distance between the knives. As explained above, the fibers according to the invention are cut so that they are relatively long, i.e. 3-24 mm, typically 5-20 mm, preferably 6-18 mm, with particularly preferred lengths of 6 mm and approx. 12 mm.

Som angitt ovenfor er den lange termofestbare tokomponent-fiber ifølge oppfinnelsen nyttig til fremstillingen av fluff, dvs. det dunaktige, fibrøse materiale som anvendes som en absorberende kjerne ved fremstillingen av hygieniske absorberende produkter såsom engangsbleier, sanitetsbind, inkontinensprodukter for voksne etc. Bruken av tokomponent-fiberen i fremstillingen av fluff fører til absorberende materialer med overlegne egenskaper, innbefattet, som forklart ovenfor, forbedret styrke og dimensjonen stabilitet og mer effektiv bruk av den superabsorberende polymer, hvilket gjør det mulig å fremstille tynnere og lettere produkter og/eller produkter med forbedret absorpsjonsevne. As indicated above, the long thermosetting two-component fiber according to the invention is useful for the production of fluff, i.e. the fluffy, fibrous material used as an absorbent core in the production of hygienic absorbent products such as disposable diapers, sanitary napkins, incontinence products for adults, etc. The use of two-component -the fiber in the manufacture of fluff leads to absorbent materials with superior properties, including, as explained above, improved strength and dimensional stability and more efficient use of the superabsorbent polymer, which makes it possible to manufacture thinner and lighter products and/or products with improved absorption capacity.

En betydelig del av den dunaktige masse som anvendes til fremstillingen av absorberende produkter, består typisk av cellulosemassefibrer. Som angitt ovenfor kan den dunaktige masse også inneholde ytterligere fibrer, f.eks. termofestbare syntetiske fibrer. Cellulosefibrene og de syntetiske fibrer blir typisk blandet sammen i en massefabrikk og deretter formet til et såkalt blandingsark (blend sheet) som rulles opp til en rull og transporteres til et omdannelsesanlegg (converting factory), hvor den egentlige fremstilling av fluff og de absorberende produkter finner sted. Blandingsarket dannes ved en "våtleggings" ("wet-laid") prosess, hvor en våt blanding inneholdende cellulosefibrer og syntetiske fibrer dannes til et ark som deretter føres via et transportbånd til et tørke-apparat, typisk en ovn, hvor det tørkes. Fluffblandinger av fibrer kan også fremstilles ved en tørrprosess hvor syntetiske fibrer fra en balle behandles med massefibrer i omdannelsesanlegget. Våtprosessen som produserer blandingsarket fore-trekkes imidlertid, fordi blandingsarket kan mates i form av en rull direkte til en hammermølle i omdannelsesanlegget, hvilket gjør omdannelsesprosessen mindre komplisert. A significant part of the downy pulp used for the production of absorbent products typically consists of cellulose pulp fibres. As indicated above, the fluffy mass may also contain additional fibers, e.g. thermosetting synthetic fibers. The cellulose fibers and the synthetic fibers are typically mixed together in a pulp factory and then formed into a so-called blend sheet, which is rolled up into a roll and transported to a converting factory, where the actual production of fluff and absorbent products takes place place. The mixed sheet is formed by a "wet-laid" process, where a wet mixture containing cellulose fibers and synthetic fibers is formed into a sheet which is then conveyed via a conveyor belt to a drying device, typically an oven, where it is dried. Fluff mixtures of fibers can also be produced by a dry process where synthetic fibers from a bale are treated with pulp fibers in the conversion plant. The wet process which produces the mixed sheet is preferred, however, because the mixed sheet can be fed in the form of a roll directly to a hammer mill in the converting plant, which makes the converting process less complicated.

Det absorberende materiale som inneholder de lange termofestbare tokomponent-fibrer som beskrevet ovenfor kan fremstilles som følger: - tokomponent-fibrene og ikke-tokomponent-fibrene underkastes blanding gjennom dispergering i vann, i en produksjonsprosess for dunaktig masse for oppnåelse av en blanding av dunaktig masse hvor tokomponent-fibrene er fordelt på en stort sett The absorbent material containing the long thermosetting two-component fibers as described above can be prepared as follows: - the two-component fibers and the non-two-component fibers are subjected to mixing through dispersion in water, in a downy pulp production process to obtain a downy pulp mixture where the two-component fibers are distributed over a large set

tilfeldig og homogen måte, random and homogeneous manner,

- den våte blanding av tokomponent- og ikke-tokomponent-fibrer formes til et blandingsark, - the wet mixture of two-component and non-two-component fibers is formed into a mixed sheet,

- blandingsarket tørkes og vikles opp til en rull, - the mixed sheet is dried and wound up into a roll,

- den tørkede dunaktige masse fibreres, - the dried fluffy mass is fiberized,

- den dunaktige masse formes til en matte, - the fluffy mass is formed into a mat,

- en superabsorberende polymer blir eventuelt innlemmet i den dunaktige matte (fluff mat), og - den lavtsmeltende overtrekkskomponent av tokomponent-fibrene i materialet termofestes. - a superabsorbent polymer is possibly incorporated into the downy mat (fluff mat), and - the low-melting coating component of the two-component fibers in the material is heat-bonded.

Ikke-tokomponent-fibrene i det dunaktige materiale kan omfatte en rekke forskjellige typer naturlige og/eller syntetiske fibrer i henhold til det spesielle absorberende materiale som skal fremstilles. Naturlige cellulosefibrer til bruk i fremstillingen av det dunaktige materiale vil typisk omfatte blekede kvaliteter av CTMP (kjemisk-termomekanisk masse), sulfittmasse eller kraftmasse. The non-two-component fibers in the fluffy material may comprise a number of different types of natural and/or synthetic fibers according to the particular absorbent material to be produced. Natural cellulose fibers for use in the production of the downy material will typically include bleached grades of CTMP (chemical-thermomechanical pulp), sulphite pulp or kraft pulp.

Vektforholdet mellom tokomponent-fibrene og ikke-tokomponent-fibrene i det dunaktige materiale (fluff) ligger fortrinnsvis i området fra 1:99 til 80:20. Det er nødvendig at fluff-materialet inneholder et visst minimum av tokomponent-fibrene for at de forbedrede egenskaper som skyldes den understøttende struktur av de termofestede tokomponent-fibrer kan oppnås. Således kan et innhold av tokomponent-fiber på ca. 1% anses som et minimum. På den annen side behøver ikke nødvendigvis fibrene ifølge oppfinnelsen å utgjøre en stor andel av fluff-materialet. En av fordelene ved disse fibrer er faktisk at de kan anvendes i en redusert mengde sammenlignet med den mengde som typisk anvendes i produkter som omfatter andre for tiden tilgjengelige termofestbare syntetiske fibrer. Vektforholdet mellom tokomponent-fibrene og ikke-tokomponent-fibrene i fluff-materialet vil derfor typisk være fra 3:97 til 50:50, fortrinnsvis fra 5:95 til 20:80, helst fra 5:95 til 15:85, og spesielt fra 5:95 til 8:92. The weight ratio between the two-component fibers and the non-two-component fibers in the fluffy material (fluff) is preferably in the range from 1:99 to 80:20. It is necessary that the fluff material contains a certain minimum of the two-component fibers so that the improved properties due to the supporting structure of the thermoset two-component fibers can be achieved. Thus, a two-component fiber content of approx. 1% is considered a minimum. On the other hand, the fibers according to the invention do not necessarily have to make up a large proportion of the fluff material. Indeed, one of the advantages of these fibers is that they can be used in a reduced amount compared to the amount typically used in products comprising other currently available thermosetting synthetic fibers. The weight ratio between the two-component fibers and the non-two-component fibers in the fluff material will therefore typically be from 3:97 to 50:50, preferably from 5:95 to 20:80, preferably from 5:95 to 15:85, and especially from 5:95 to 8:92.

Tokomponent-fibrene som er blitt gjort permanent stort sett hydrofile kan lett fordeles på en tilfeldig og stort sett homogen måte i den våte dunaktige masse som forklart ovenfor. The two-component fibers which have been made permanently substantially hydrophilic can easily be distributed in a random and substantially homogeneous manner in the wet downy mass as explained above.

Det er mulig at i løpet av våtprosessen hvor den dunaktige masse blandes, kan en viss mengde av det overflateaktive middel i visse tilfeller bli fjernet fra overflaten av de syntetiske tokomponent-fibrer. Man antar imidlertid at dette ikke vil føre til en permanent reduksjon i de hydrofile egenskaper av fibrene, da det antas at det overflateaktive middel som også foreligger i det indre av fibrenes overtrekkskomponent, senere vil vandre utover til overflaten av fibrene i løpet av kort tid, typisk innen 24 h, for derved å gjenopprette fibrenes hydrofile egenskaper. It is possible that during the wet process where the fluffy mass is mixed, a certain amount of the surfactant can in certain cases be removed from the surface of the synthetic two-component fibres. However, it is assumed that this will not lead to a permanent reduction in the hydrophilic properties of the fibres, as it is assumed that the surfactant which is also present in the interior of the fibres' coating component, will later migrate outwards to the surface of the fibers within a short time, typically within 24 h, thereby restoring the fibres' hydrophilic properties.

Den våte dunaktige masse blir deretter overført til en netting for dannelse av et blandingsark som føres til et tørkeapparat, typisk en ovn, og tørkes ved anvendelse av en temperatur som er betydelig lavere enn smeltepunktet for overtrekkskomponenten av tokomponent-fibrene. Blandingsarket blir typisk tørket til et vanninnhold på 6-9%. Blandingsarket som typisk veier 550- The wet downy mass is then transferred to a mesh to form a composite sheet which is fed to a drying apparatus, typically an oven, and dried using a temperature significantly lower than the melting point of the coating component of the bicomponent fibers. The mix sheet is typically dried to a water content of 6-9%. The mixing sheet, which typically weighs 550-

750 g/m<2>, og mer typisk ca. 650 g/m<2>, blir deretter rullet opp, og rullen blir deretter normalt transportert til omdannelsesanlegget hvor de resterende trinn i fremstillingen av det absorberende materiale typisk finner sted. 750 g/m<2>, and more typically approx. 650 g/m<2>, is then rolled up, and the roll is then normally transported to the conversion plant where the remaining steps in the production of the absorbent material typically take place.

Ved omdannelsesanlegget blir den dunaktige masse fra rullen typisk ført til en hammermølle (som vist på fig. 4), f.eks. via et par matevalser, hvor den dunaktige masse fibreres. Fibrering kan imidlertid også utføres ved andre metoder, f.eks. ved bruk av en piggmølle, sagtannet mølle eller skivekvern. Hammer-møllens hus omslutter en rekke hammere som er festet til en rotor. Rotoren har typisk en diameter på f.eks. 800 mm, og roterer typisk med en hastighet av f.eks. 3000 omdr. pr. min. Hammermøllen blir typisk drevet av en motor med en effekt på f.eks. 100 kW. Fibrering oppnås etter hvert som fibrene i den dunaktige masse slynges ut gjennom nettinghullene i hammer-møllen. Størrelsen av nettinghullene avhenger av typen fluff som produseres, men de vil typisk være 10-18 mm i diameter. Tokomponent-fibrene bør ha en lengde som er forenlig med størrelsen av nettinghullene, slik at fibrene vil overleve fibreringen i hammermøllen stort sett intakt. Dette betyr at fibrene ikke bør være vesentlig lengre enn diameteren av nett inghul1ene. At the conversion plant, the fluffy mass from the roll is typically taken to a hammer mill (as shown in Fig. 4), e.g. via a pair of feed rollers, where the fluffy mass is fibred. Fibering can, however, also be carried out by other methods, e.g. using a spike mill, sawtooth mill or disc grinder. The hammer mill's housing encloses a series of hammers attached to a rotor. The rotor typically has a diameter of e.g. 800 mm, and typically rotates at a speed of e.g. 3000 rpm per my. The hammer mill is typically driven by a motor with an output of e.g. 100 kW. Fibration is achieved as the fibers in the fluffy mass are ejected through the mesh holes in the hammer mill. The size of the mesh holes depends on the type of fluff produced, but they will typically be 10-18 mm in diameter. The two-component fibers should have a length that is compatible with the size of the mesh holes, so that the fibers will survive the fiberization in the hammer mill largely intact. This means that the fibers should not be significantly longer than the diameter of the net holes.

Det fibrerte fluff blir deretter dannet til en fluffmatte i en formingshette for fluffmatte ved at det suges opp på en trådduk, typisk fulgt av passasje gjennom en serie med kondenserings- eller pregningsvalser. Matten blir fortrinnsvis presset sammen (dvs. enten kondensert eller preget), men den kan også være ikke-sammenpresset ettersom hvordan det absorberende materiale skal anvendes. Sammenpressing av matten kan alternativt finne sted enten før eller etter termofesting. The fibrous fluff is then formed into a fluff mat in a fluff mat forming hood by suction onto a wire cloth, typically followed by passage through a series of condensing or embossing rolls. The mat is preferably compressed (ie either condensed or embossed), but it can also be non-compressed depending on how the absorbent material is to be used. Compression of the mat can alternatively take place either before or after thermosetting.

Før termofesting blir en superabsorberende polymer i form av et pulver eller små partikler ofte innlemmet i materialet, typisk ved at det sprayes inn i fluffmatten fra en dyse som er anordnet i fluffmattens formingshette. Formålet med å anvende en superabsorberende polymer er å oppnå en reduksjon i vekten og størrelsen av det absorberende produkt, da mengden av fluff i produktet kan reduseres. Typen superabsorberende polymer som anvendes er ikke kritisk, men den er typisk et kjemisk tverrbundet polyakrylsyresalt, fortrinnsvis et natriumsalt eller natriumammoniumsalt. Slike superabsorberende materialer er typisk i stand til å absorbere ca. 60 ganger deres egen vekt av urin, blod eller andre kroppsvæsker, eller ca. 200 ganger deres egen vekt i rent vann. De har også den ytterligere fordel at de danner en gel ved fukting, hvilket gjør at det absorberende produkt mer effektivt kan holde på den absorberte væske under trykk. Som angitt ovenfor er den superabsorberende polymer fiksert i den ønskede posisjon i det absorberende materiale på grunn av den stabile grunnmassestruktur som dannes av tokomponent-fibrene ved termofesting. En mer effektiv bruk av den superabsorberende polymer blir således oppnådd, og sammenhopninger av det superabsorberende materiale som kan føre til barrierer forårsaket av gelen som dannes ved fukting og svelling, unngås. Before thermosetting, a superabsorbent polymer in the form of a powder or small particles is often incorporated into the material, typically by spraying it into the fluff mat from a nozzle arranged in the fluff mat's forming cap. The purpose of using a super absorbent polymer is to achieve a reduction in the weight and size of the absorbent product, as the amount of fluff in the product can be reduced. The type of superabsorbent polymer used is not critical, but it is typically a chemically cross-linked polyacrylic acid salt, preferably a sodium salt or sodium ammonium salt. Such super absorbent materials are typically able to absorb approx. 60 times their own weight of urine, blood or other body fluids, or approx. 200 times their own weight in pure water. They also have the further advantage that they form a gel upon wetting, which means that the absorbent product can more effectively hold the absorbed liquid under pressure. As indicated above, the superabsorbent polymer is fixed in the desired position in the absorbent material due to the stable matrix structure formed by the two-component fibers by thermosetting. A more efficient use of the superabsorbent polymer is thus achieved, and aggregations of the superabsorbent material which can lead to barriers caused by the gel formed by wetting and swelling are avoided.

Et gram superabsorberende polymer kan typisk erstatte ca. One gram of super absorbent polymer can typically replace approx.

5 gram massefiber (f.eks. cellulosefiber) i det absorberende materiale. Den superabsorberende polymer blir typisk innlemmet i en mengde på 10-70%, fortrinnsvis 12-40%, helst 12-20% og spesielt ca. 15%, regnet på vekten av materialet. 5 grams of pulp fiber (e.g. cellulose fiber) in the absorbent material. The superabsorbent polymer is typically incorporated in an amount of 10-70%, preferably 12-40%, preferably 12-20% and especially approx. 15%, calculated on the weight of the material.

Etter innlemmelsen av den superabsorberende polymer blir matten termofestet, f.eks. ved bruk av en ovn med gjennomlufting (air-through), infrarød oppvarming eller ultrasonisk festing, slik at den lavtsmeltende komponent av tokomponent-fibrene smelter og smeltes sammen med andre tokomponent-fibrer og i det minste noen av de ikke-tokomponent-fibrer samtidig som den høyt-smeltende komponent av tokomponent-fibrene forblir stort sett intakt for dannelse av en understøttende tredimensjonal grunnmasse i det absorberende materiale (som vist på fig. 3). Foruten å gi det absorberende materiale de forbedrede egenskaper som allerede er angitt, gjør denne grunnmassestruktur det også mulig å termoforme de absorberende produkter, f.eks. å oppnå kanaler for væskedistribusjon eller å gi produktene en anatomisk fasong. After the incorporation of the superabsorbent polymer, the mat is thermoset, e.g. using an oven with air-through, infrared heating or ultrasonic fixing, so that the low-melting component of the bicomponent fibers melts and fuses with other bicomponent fibers and at least some of the non-bicomponent fibers at the same time as the high-melting component of the two-component fibers remains largely intact to form a supporting three-dimensional matrix in the absorbent material (as shown in Fig. 3). Besides giving the absorbent material the improved properties already indicated, this matrix structure also makes it possible to thermoform the absorbent products, e.g. to obtain channels for liquid distribution or to give the products an anatomical shape.

Det termofestede absorberende materiale blir deretter typisk formet til enheter som egnet til bruk i produksjonen av hygieniske absorberende produkter såsom engangsbleier, sanitetsbind og inkontinensprodukter for voksne, f.eks. ved skjæring med vannstråle. Alternativt kan det absorberende materiale formes til slike enkelte enheter før termofesting. Det resterende materiale (utskjæringer) kan deretter føres tilbake til hammermøllen for å anvendes på nytt i fremstillingen av fluff. The thermoset absorbent material is then typically formed into units suitable for use in the production of hygienic absorbent products such as disposable nappies, sanitary pads and incontinence products for adults, e.g. when cutting with a water jet. Alternatively, the absorbent material can be formed into such individual units before thermosetting. The remaining material (cuts) can then be returned to the hammer mill to be used again in the production of fluff.

Oppfinnelsen skal nå beskrives mer fullstendig under henvisning til de ledsagende tegninger. Fig. 1 viser tokomponent-fibrer hvor komponentene er arrangert i en konsentrisk (a) og en asentrisk (b) utforming. Fig. 2 viser de lange tokomponent-fibrer og de andre fibrer i den dunaktige masse før termofesting. Fig. 3 viser grunnmassestrukturen dannet av tokomponent-fibrene etter termofesting. Fig. 4 viser hammermøllen og utstyret for fremstilling av det absorberende materiale. Fig. la viser et tverrsnitt av en tokomponent-fiber 8 med en konsentrisk utforming. En kjernekomponent 10 er omgitt av en overtrekkskomponent 12 med en stort sett ensartet tykkelse, hvilket fører til en tokomponent-fiber hvor kjernekomponenten 10 er stort sett sentralt anordnet. Fig. lb viser et tverrsnitt av en tokomponent-fiber 14 med en asentrisk utforming. En kjernekomponent 16 er stort sett omgitt av en overtrekkskomponent 18 med en varierende tykkelse, hvilket fører til en tokomponent-fiber hvor kjernekomponenten 16 ikke er sentralt anordnet. Fig. 2 viser strukturen av den dunaktige masse før termofesting. Tokomponent-fibrer 20 i henhold til oppfinnelsen, omfattende en lavtsmeltende overtrekkskomponent og en høyt-smeltende kjernekomponent, er arrangert på en stort sett tilfeldig og homogen måte blant ikke-tokomponent-fibrer 22 i den dunaktige masse. Fig. 3 viser den samme struktur som illustrert på fig. 2 etter termofesting. Overtrekkskomponenten av tokomponent-fibrene er blitt smeltet ved termofesteprosessen, hvorved de intakte kjernekomponenter smeltes sammen 24, for således å danne en understøttende, tredimensjonal grunnmasse. Ikke-tokomponent-fibrene 22 er tilfeldig anordnet i tomrommene som avgrenses av tokomponent-fibrene. Noen av ikke-tokomponent-fibrene 22 er blitt sammensmeltet 26 med tokomponent-fibrene. The invention will now be described more fully with reference to the accompanying drawings. Fig. 1 shows two-component fibers where the components are arranged in a concentric (a) and an acentric (b) design. Fig. 2 shows the long two-component fibers and the other fibers in the fluffy mass before thermosetting. Fig. 3 shows the matrix structure formed by the two-component fibers after thermosetting. Fig. 4 shows the hammer mill and the equipment for producing the absorbent material. Fig. 1a shows a cross-section of a two-component fiber 8 with a concentric design. A core component 10 is surrounded by a coating component 12 with a largely uniform thickness, which leads to a two-component fiber where the core component 10 is largely centrally arranged. Fig. 1b shows a cross-section of a two-component fiber 14 with an acentric design. A core component 16 is largely surrounded by a coating component 18 with a varying thickness, which leads to a two-component fiber where the core component 16 is not centrally arranged. Fig. 2 shows the structure of the fluffy mass before thermosetting. Bicomponent fibers 20 according to the invention, comprising a low-melting coating component and a high-melting core component, are arranged in a largely random and homogeneous manner among non-bicomponent fibers 22 in the fluffy mass. Fig. 3 shows the same structure as illustrated in fig. 2 after thermosetting. The covering component of the two-component fibers has been fused by the thermosetting process, whereby the intact core components are fused together 24, so as to form a supporting, three-dimensional base mass. The non-two-component fibers 22 are randomly arranged in the voids delimited by the two-component fibers. Some of the non-bicomponent fibers 22 have been fused 26 with the bicomponent fibers.

På fig. 4 blir en dunaktig masse 30 fra en rull 32 fuktet med vann som sprøytes på fra en dyse 34 idet massen føres til en hammermølle 36. Den fuktede dunaktige masse føres inn i hammermøllen 36 via matevalser 38. Den dunaktige masse 30 omfatter en blanding av tokomponent-fibrene ifølge oppfinnelsen og andre ikke-tokomponent-fibrer. Hammermøllen 36 innbefatter et hammermøllehus 40, primærluftinntak 42 og et sekundær-luftinntak 44, hammere 46 som er festet til en rotor 48, en netting 50 og et utløp 52 for fibrert materiale 54. En vifte 56 fører det fibrerte materiale 54 til en fluffmatte-formingshette 62 via et eksosutløp 60. Et superabsorberende polymerpulver distribueres i fluffmatten 63 via en dyse 61. Fluffmatten 63 føres fra en trådduk 64 gjennom kondenserings- eller pregningsvalser 66 til en annen trådduk 72 hvor tokomponent-fibrene termofestes ved varmebehandling i en ovn med gjennomlufting 68 hvor varm luft trekkes gjennom materialet ved hjelp av en sugekasse 70. En omdannelsesmaskin 74 anvendes til fremstilling av hygieniske absorberende produkter fra det termofestede materiale. In fig. 4, a downy mass 30 from a roll 32 is moistened with water that is sprayed on from a nozzle 34 as the mass is fed to a hammer mill 36. The moistened downy mass is fed into the hammer mill 36 via feed rollers 38. The downy mass 30 comprises a mixture of two components - the fibers according to the invention and other non-two-component fibers. The hammer mill 36 includes a hammer mill housing 40, primary air intake 42 and a secondary air intake 44, hammers 46 attached to a rotor 48, a screen 50 and an outlet 52 for fibrous material 54. A fan 56 carries the fibrous material 54 to a fluff mat forming cap 62 via an exhaust outlet 60. A superabsorbent polymer powder is distributed in the fluff mat 63 via a nozzle 61. The fluff mat 63 is led from a wire cloth 64 through condensation or embossing rollers 66 to another wire cloth 72 where the two-component fibers are thermo-fixed by heat treatment in an oven with through-ventilation 68 where warm air is drawn through the material by means of a suction box 70. A conversion machine 74 is used to produce hygienic absorbent products from the thermoset material.

Rullen med den dunaktige masse (fluff pulp) 32 omfattende, som angitt ovenfor, en tørket blanding av tokomponent-fibrene ifølge oppfinnelsen og ikke-tokomponent-fibrer fremstilles i et masseanlegg og transporteres til et omdannelsesanlegg hvor prosessen som vist på fig. 4 finner sted. Før bearbeiding i hammermøllen blir den dunaktige masse fuktet av en vanndusj for å eliminere oppbygning av statisk elektrisitet. Rullen 32 med dunaktig masse, slik den fås fra masseanlegget, har typisk en diameter på f.eks. 1000 mm, en bredde på f.eks. 500 mm og et fuktighetsinnhold på 6-9%, og vekten av arket er typisk ca. The roll with the fluffy mass (fluff pulp) 32 comprising, as indicated above, a dried mixture of the two-component fibers according to the invention and non-two-component fibers is produced in a pulp plant and transported to a conversion plant where the process as shown in fig. 4 takes place. Before processing in the hammer mill, the fluffy mass is moistened by a water shower to eliminate the build-up of static electricity. The roll 32 with downy pulp, as it is obtained from the pulp plant, typically has a diameter of e.g. 1000 mm, a width of e.g. 500 mm and a moisture content of 6-9%, and the weight of the sheet is typically approx.

650 g/m<2>. Den dunaktige masse fibreres i hammermøllen 36, hvor de roterende hammere 46 slynger ut den dunaktige masse gjennom hullene i nettingen 50. Rotoren 48 som holder hammerne 46, har typisk en diameter på f.eks. 800 mm og roterer med en hastighet av f.eks. 3000 omdr./min, drevet av en motor som har en effekt på f.eks. 100 kW. Nettingen 50 som er fremstilt fra en metallplate med en tykkelse på ca. 3 mm, inneholder hull med en diameter på 10-18 mm. Lengden av tokomponent-fibrene i den dunaktige masse 3 0 er ikke vesentlig større enn diameteren av hullene i nettingen 50, slik at tokomponent-fibrene såvel som de kortere ikke-tokomponent-fibrer kan passere gjennom hullene i nettingen 50 stort sett intakt. Det fibrerte materiale 54 blir deretter ved hjelp av viften 56 ført gjennom eksosutløpet 60 til formingshetten 62 for fluffmatten, hvor en fluffmatte 63 dannes ved at det fibrerte materiale 54 suges opp på en nettingduk 64. Et superabsorberende polymerpulver blir typisk sprayet fra en dyse 61 når halvparten av fluffmatten 63 er dannet, slik at det superabsorberende polymerpulver ligger stort sett i sentrum av fluffmatten 63. Fluffmatten 63 passerer typisk gjennom en serie valser 66 hvor matten 63 kondenseres 650 g/m<2>. The fluffy mass is fiberized in the hammer mill 36, where the rotating hammers 46 eject the fluffy mass through the holes in the mesh 50. The rotor 48 which holds the hammers 46 typically has a diameter of e.g. 800 mm and rotates at a speed of e.g. 3000 rpm, driven by a motor that has an effect of e.g. 100 kW. The netting 50, which is made from a metal plate with a thickness of approx. 3 mm, contains holes with a diameter of 10-18 mm. The length of the two-component fibers in the fluffy mass 30 is not significantly greater than the diameter of the holes in the mesh 50, so that the two-component fibers as well as the shorter non-two-component fibers can pass through the holes in the mesh 50 largely intact. The fibrous material 54 is then guided by the fan 56 through the exhaust outlet 60 to the forming cap 62 for the fluff mat, where a fluff mat 63 is formed by sucking the fibrous material 54 onto a mesh cloth 64. A superabsorbent polymer powder is typically sprayed from a nozzle 61 when half of the fluff mat 63 is formed, so that the superabsorbent polymer powder lies mostly in the center of the fluff mat 63. The fluff mat 63 typically passes through a series of rollers 66 where the mat 63 is condensed

eller preges før termofesteprosessen. Matten 63 blir deretter ført via den annen trådduk 72 forbi gjennomluftingsovnen 68, hvilket termofester materialet for således å produsere den understøttende struktur som er dannet ved kjernekomponenten i tokomponent-fibrene som vist på fig. 3. Det termofestede materiale blir deretter ført til omdannelsesmaskinen 74, hvor produksjonen av hygieniske absorberende produkter såsom bleier finner sted. or embossed before the thermosetting process. The mat 63 is then passed via the second wire cloth 72 past the blow-through oven 68, which thermosets the material to thus produce the supporting structure formed by the core component of the two-component fibers as shown in fig. 3. The thermoset material is then taken to the converting machine 74, where the production of hygienic absorbent products such as diapers takes place.

Oppfinnelsen skal ytterligere belyses ved de følgende eksempler. The invention shall be further illustrated by the following examples.

EKSEMPEL 1 EXAMPLE 1

Fremstilling av en permanent hydrofil, termofestbar, syntetisk tokomponent-f iber Preparation of a permanently hydrophilic, thermosetting, synthetic two-component fiber

Fremstilling av fiberen bestod av de følgende trinn: Production of the fiber consisted of the following steps:

- innlemmelse av et overflateaktivt middel i overtrekkskomponenten av polyetylen, - å utsette de to komponenter i fiberen for en vanlig smeltespinning av typen overtrekk-og-kjerne, hvilket førte til en - incorporating a surface-active agent in the cover component of polyethylene, - subjecting the two components of the fiber to a conventional cover-and-core type melt spinning, which led to a

ferdigspunnet (as-spun) bunt filamenter, pre-spun (as-spun) bundle of filaments,

- strekking av den ferdigspunnede bunt filamenter, - stretching of the finished spun bundle of filaments,

- krusning av den strukkede bunt filamenter, - ripple of the stretched bundle of filaments,

- herding og tørking av den strukkede bunt filamenter, og - hardening and drying of the stretched bundle of filaments, and

- kapping av fibrene. - cutting the fibers.

Overtrekkskomponenten i tokomponent-fiberen besto av polyetylen (LLDPE - lineær lavtetthetspolyetylen, oktenbasert) med et smeltepunkt på 125°C og en tetthet på 0,940 g/cm<3>, mens kjernekomponenten bestod av isotaktisk polypropylen med et smeltepunkt på 160°C. Et overflateaktivt middel ble innlemmet i polyetylenkomponenten før spinning ved at den ble blandet inn i det smeltede polyetylen for således å gjøre tokomponent-fibrene permanent hydrofile, idet hydrofilitet defineres som en synketid i vann på ikke mer enn 5 s. Det overflateaktive middel (Atmer® 685 fra ICI, en merkebeskyttet ikke-ionisk overflateaktivt middel-blanding) ble innlemmet i en mengde på 1%, basert på den samlede vekt av tokomponent-fibrene. Dette svarte til 2% av vekten av polyetylenkomponenten, da forholdet mellom polyetylen og polypropylen i tokomponent-fibrene var 50/50. Atmer® 685 er en blanding som omfatter 20% overflateaktivt middel og 805 polyetylen, med en HLB (hydrofil-lipofil balanse)-verdi på 5,6 og en viskositet ved 25°C på 170 mPa#s. The covering component of the two-component fiber consisted of polyethylene (LLDPE - linear low-density polyethylene, octene-based) with a melting point of 125°C and a density of 0.940 g/cm<3>, while the core component consisted of isotactic polypropylene with a melting point of 160°C. A surfactant was incorporated into the polyethylene component prior to spinning by mixing it into the molten polyethylene to thus make the two-component fibers permanently hydrophilic, hydrophilicity being defined as a sink time in water of no more than 5 s. The surfactant (Atmer® 685 from ICI, a proprietary nonionic surfactant blend) was incorporated in an amount of 1%, based on the total weight of the bicomponent fibers. This corresponded to 2% of the weight of the polyethylene component, as the ratio between polyethylene and polypropylene in the two-component fibers was 50/50. Atmer® 685 is a blend comprising 20% surfactant and 805 polyethylene, with an HLB (hydrophilic-lipophilic balance) value of 5.6 and a viscosity at 25°C of 170 mPa#s.

Polyetylenkomponenten ble ekstrudert ved en temperatur på 245°C og et trykk på 35 bar, mens polypropylenkomponenten ble ekstrudert ved en temperatur på 320°C og et trykk på 55 bar. De to komponenter ble deretter underkastet en vanlig smeltespinning av typen overtrekk-og-kjerne ved bruk av en spinne-hastighet på 820 m/min, hvilket førte til en "ferdigspunnet" bunt tokomponent-f ilamenter. The polyethylene component was extruded at a temperature of 245°C and a pressure of 35 bar, while the polypropylene component was extruded at a temperature of 320°C and a pressure of 55 bar. The two components were then subjected to conventional cover-and-core melt spinning using a spinning speed of 820 m/min, resulting in a "ready-spun" bundle of two-component filaments.

Separat strekking av filamentene ble utført i en totrinns trekkeoperasjon ved bruk av en kombinasjon av varmvalser og en varmluftsovn, som begge hadde en temperatur på 110°C, med et strekkforhold på 3,6:1. De strukkede filamenter ble deretter kruset i et masseboks-krusningsapparat. Filamentene ble herdet i en ovn ved en temperatur på 115°C for å redusere sammentrek-kingen av fiberen under fremstillingen av absorberende materiale og også for å oppnå en reduksjon i fiberens vanninnhold (til 5-10%) og deretter kappet. Separate drawing of the filaments was carried out in a two-stage drawing operation using a combination of hot rollers and a hot air oven, both of which had a temperature of 110°C, with a draw ratio of 3.6:1. The drawn filaments were then crimped in a pulp box crimper. The filaments were cured in an oven at a temperature of 115°C to reduce shrinkage of the fiber during the production of absorbent material and also to achieve a reduction in the water content of the fiber (to 5-10%) and then cut.

De ferdige tokomponent-fibrer hadde en lengde på ca. 12 mm, en finhet på 1,7-2,2 dtex and 2-4 krusninger pr. cm. The finished two-component fibers had a length of approx. 12 mm, a fineness of 1.7-2.2 dtex and 2-4 ripples per cm.

EKSEMPEL 2 EXAMPLE 2

Fremstilling av et absorberende materiale ved bruk av CTMP-fibrer og lange hydrofile termofestbare syntetiske tokomponent-f ibrer. Preparation of an absorbent material using CTMP fibers and long hydrophilic thermoset bicomponent synthetic fibers.

Fremstillingen av det absorberende materiale omfattet de følgende trinn: - blanding av CTMP-fibrer og tokomponent-fibrene ifølge oppfinnelsen under våttrinnet i en prosess til fremstilling av dunaktig masse (fluff pulp), The production of the absorbent material comprised the following steps: - mixing of CTMP fibers and the two-component fibers according to the invention during the wet step in a process for the production of fluff pulp,

- tørking av den dunaktige masse, - drying the fluffy mass,

- fibrering av den dunaktige masse, - fibering of the fluffy mass,

- dannelse av fluff til en fluffkake og - formation of fluff into a fluff cake and

- termofesting av den lavtsmeltende overtrekkskomponent av tokomponent-f ibrene. - thermosetting of the low-melting coating component of the two-component fibres.

I en laboratorie-hydropulper (British disintegrator) ble syntetiske tokomponent-fibrer (polypropylen kjerne/polyetylen overtrekk) blandet med CTMP-fibrer av dunaktig masse (kjemi-termomekanisk masse) i et forhold på 6%:94% (3 g tokomponent-fibrer, 47 g CTMP-fibrer). Tokomponent-fibrene hadde en kappet lengde på 12 mm, en finhet på 1,7-2,2 dtex og 2-4 krusninger pr. cm og var fremstilt som i eksempel 1. CTMP-fibrene hadde en lengde på ca. 1,8 mm og en tykkelse på 10-70 jum (gjennomsnitt 30 + 10 /xm) . CTMP-f ibrer produseres i en kombinert kjemisk og mekanisk raffineringsprosess (i motsetning til andre massefibrer som er utsatt bare for kjemisk behandling. Tokomponent-fibrene som innbefattet et overflateaktivt middel som var blitt innlemmet i polyetylen-overtrekkskomponenten som beskrevet i eksempel 1, var hydrofile og ble derfor lett dispergert i den våte dunaktige masse. In a laboratory hydropulper (British disintegrator) synthetic bicomponent fibers (polypropylene core/polyethylene cover) were mixed with downy pulp CTMP fibers (chemical thermomechanical pulp) in a ratio of 6%:94% (3 g of bicomponent fibers , 47 g CTMP fibers). The two-component fibers had a cut length of 12 mm, a fineness of 1.7-2.2 dtex and 2-4 ripples per cm and was produced as in example 1. The CTMP fibers had a length of approx. 1.8 mm and a thickness of 10-70 jum (average 30 + 10 /xm) . CTMP fibers are produced in a combined chemical and mechanical refining process (as opposed to other pulp fibers which are subjected only to chemical treatment. The two-component fibers which included a surfactant incorporated into the polyethylene coating component as described in Example 1 were hydrophilic and was therefore easily dispersed in the wet fluffy mass.

Tørking av den dunaktige masse ble utført i en tørketrommel ved en temperatur på 60°C, som var godt under smeltepunktet for den lavtsmeltende komponent av tokomponent-fibrene i en periode på 4 h. Den tørkede dunaktige masse (vanninnhold 6-9%) veide 750 g/m<2>. For å eliminere oppbygging av statisk elektrisitet ble den tørkede dunaktige masse kondisjonert over natten ved 50% relativ fuktighet og en temperatur på 23°C. Drying of the fluffy pulp was carried out in a dryer at a temperature of 60°C, which was well below the melting point of the low-melting component of the bicomponent fibers for a period of 4 h. The dried fluffy pulp (water content 6-9%) weighed 750 g/m<2>. To eliminate static build-up, the dried downy mass was conditioned overnight at 50% relative humidity and a temperature of 23°C.

Fibrering ble utført i en laboratorie-hammermølle (type H-01 Laboratory Defibrator, Kamas Industri AB, Sverige) med en Fibration was carried out in a laboratory hammer mill (type H-01 Laboratory Defibrator, Kamas Industri AB, Sweden) with a

1,12 kW motor, med hammere festet til en rotor med en diameter på 220 mm og som roterte med en hastighet på ca. 4500 omdr./min og med nettinghull med diameter på 12 mm i en 2 mm tykk metallplate. Det dunaktige materiale ble matet til hammermøllen med en hastighet på 3,5 g/s. Tokomponent- og CTMP-fibrene, hvorav ingen var mer enn 12 mm lange, kunne begge passere stort 1.12 kW motor, with hammers attached to a rotor with a diameter of 220 mm and which rotated at a speed of approx. 4500 rpm and with mesh holes with a diameter of 12 mm in a 2 mm thick metal plate. The fluffy material was fed to the hammer mill at a rate of 3.5 g/s. The bicomponent and CTMP fibers, none of which were more than 12 mm long, could both pass large

sett intakte gjennom nettinghullene i hammermøllen. Fibrerings-prosessen krevet et energiforbruk på 117 MJ/tonn for blandingen av CTMP + 6% tokomponent-fibrer, mens fibrering av CTMP-fluff alene krevet 98 MJ/tonn. put intact through the mesh holes in the hammer mill. The fiberization process required an energy consumption of 117 MJ/ton for the mixture of CTMP + 6% two-component fibers, while fiberization of CTMP fluff alone required 98 MJ/ton.

Den fibrerte blanding ble deretter dannet til en fluff-kake ved hjelp av standard laboratorieutstyr for puteforming. The fibrous mixture was then formed into a fluff cake using standard laboratory pad forming equipment.

Det dunaktige materiale ble deretter termofestet ved behandling i en laboratorieovn med varmluft ved en temperatur i området 110-130°C (som målt fra luftstrømmen straks etter passasje gjennom prøven) i en periode på 5 s. I løpet av termofesteprosessen ble den lavtsmeltende overtrekkskomponent av tokomponent-fibrene smeltet og smeltet sammen med andre tokomponent-fibrer og noen av CTMP-fibrene, mens den høyt-smeltende komponent av tokomponent-fibrene forble intakt. Den høytsmeltende komponent av tokomponent-fibrene dannet en understøttende tredimensjonal grunnmasse i det absorberende materiale og gav det forbedrede egenskaper med hensyn til forbedret puteintegritet (nettverkstyrke) og bibeholdelse av fasong. Resultatene av målinger av puteintegritet er vist i tabell 1. Forsøksputen som ble formet i et SCAN-C 33 standard prøvestykke-formingsapparat veide 1 g og hadde en diameter på 50 mm. Forsøket ble utført med et Instron® strekktesteapparat med et PFI-måleapparat. The fluffy material was then thermoset by processing in a laboratory oven with hot air at a temperature in the range of 110-130°C (as measured from the air flow immediately after passage through the sample) for a period of 5 s. During the thermosetting process, the low-melting coating component of the bicomponent fibers melted and fused with other bicomponent fibers and some of the CTMP fibers, while the high-melting component of the bicomponent fibers remained intact. The high-melting component of the two-component fibers formed a supportive three-dimensional matrix in the absorbent material and gave it improved properties in terms of improved pad integrity (network strength) and shape retention. The results of pad integrity measurements are shown in Table 1. The test pad formed in a SCAN-C 33 standard specimen forming apparatus weighed 1 g and had a diameter of 50 mm. The test was carried out with an Instron® tensile tester with a PFI measuring device.

EKSEMPEL 3 EXAMPLE 3

Forskjellige permanent hydrofile, termofestbare syntetiske tokomponent-fibrer ble fremstilt ved anvendelse av stort sett den samme fremgangsmåte som i eksempel 1. Kjernekomponenten i fibrene bestod av polypropylen som beskrevet i eksempel 1, og vektforholdet mellom overtrekk/kjerne-komponentene i fibrene var 50:50. Det overflateaktive middel var det samme som det som ble anvendt i eksempel 1 og ble anvendt i samme mengde på 1% regnet på den samlede vekt av tokomponent-fibrene. De andre egenskaper av fibrene var som følger: Various permanently hydrophilic, thermosetting synthetic bicomponent fibers were prepared using substantially the same method as in Example 1. The core component of the fibers consisted of polypropylene as described in Example 1, and the weight ratio of the coating/core components of the fibers was 50:50 . The surfactant was the same as that used in example 1 and was used in the same amount of 1% calculated on the total weight of the two-component fibers. The other properties of the fibers were as follows:

EKSEMPEL 4 EXAMPLE 4

Laboratorieforsøk på forsøksputer omfattende forskjellige syntetiske tokomponent-fibrer Laboratory tests on test cushions comprising different synthetic two-component fibres

Prøver av dunaktig materiale (fluff) ble fremstilt ved å følge stort sett fremgangsmåten i henhold til eksempel 2, idet de fibrer som er beskrevet i eksempel 3, ble anvendt som de syntetiske tokomponent-fibrer. Fluff-prøver ble fremstilt omfattende 94 vektprosent skandinavisk gran-CTMP-masse og 6 vektprosent av de respektive syntetiske fibrer. Dessuten ble prøver inneholdende 3%, 4,5%, 9% og 12% (regnet på vekt) av den syntetiske fiber fremstilt med fibrer 1 og 2. Som en referanse-prøve ble fluffprøver fremstilt ved bruk av 100% CTMP-masse. Samples of fluffy material (fluff) were prepared by largely following the procedure according to example 2, the fibers described in example 3 being used as the synthetic two-component fibers. Fluff samples were prepared comprising 94% by weight Scandinavian spruce CTMP pulp and 6% by weight of the respective synthetic fibers. Also, samples containing 3%, 4.5%, 9% and 12% (by weight) of the synthetic fiber were prepared with fibers 1 and 2. As a reference sample, fluff samples were prepared using 100% CTMP pulp.

Blandingsark ble fremstilt ved at CTMP-fibrer og de syntetiske fibrer først ble blandet i vann i en British disintegrator som i eksempel 2. Blandingsarkene ble deretter våtpresset til en konstant tykkelse (romvekt =1,5 cm<3>/g) og tørket på en tørketrommel ved en temperatur på 60°C. Der var ingen vanske-ligheter ved fremstillingen av blandingsarkene selv med de lengste syntetiske fibrer. Blandingsarkene ble deretter fibrert i en Kanas H-101 hammermølle som i eksempel 2 ved anvendelse av en 12 mm netting og en omdreiningshastighet på 4500 omdr./min. Blend sheets were produced by first mixing CTMP fibers and the synthetic fibers in water in a British disintegrator as in example 2. The blend sheets were then wet-pressed to a constant thickness (bulk weight = 1.5 cm<3>/g) and dried on a tumble dryer at a temperature of 60°C. There were no difficulties in the production of the composite sheets even with the longest synthetic fibres. The blend sheets were then fiberized in a Kanas H-101 hammer mill as in Example 2 using a 12 mm mesh and a rotational speed of 4500 rpm.

Fiberknute-innholdet (knot content) av den dunaktige masse ble bestemt ved bruk av et SCAN-C 38 fiberknute-prøveapparat. De lengste fibrer (prøve nr. 3) hadde en tendens til å danne bunter i fiberknute-prøveapparatet, slik at testen ikke kunne fullføres i dette tilfelle. Det ble funnet at fiberknute-innholdet av dunaktig masse inneholdende 6% syntetiske fibrer med en lengde på 6 mm (prøver nr. 1 og 4) bare var 1%, mens fiberknute-innholdet av dunaktig masse inneholdende 6% syntetiske fibrer med en lengde på 12 mm (prøver nr. 2 og 5) var noe høyere, henholdsvis 4% og 7%. The knot content of the fluffy pulp was determined using a SCAN-C 38 fiber knot tester. The longest fibers (Sample No. 3) tended to form bundles in the fiber knot tester, so the test could not be completed in this case. It was found that the fiber knot content of downy pulp containing 6% synthetic fibers with a length of 6 mm (Samples No. 1 and 4) was only 1%, while the fiber knot content of downy pulp containing 6% synthetic fibers with a length of 12 mm (samples no. 2 and 5) was somewhat higher, 4% and 7% respectively.

Forsøksputer med en vekt på 1 g ble dannet ved bruk av et SCAN puteformingsapparat. Test pads weighing 1 g were formed using a SCAN pad forming apparatus.

Termofesting ble utført ved en temperatur på 170°C, da denne temperatur var funnet å være egnet i preliminære forsøk. Oppvarmingstider på 1, 2 og 4 s ble opprinnelig testet. Oppvarmingstiden på ls gav det beste samlede resultat, og denne tid ble brukt i de endelige forsøk. Thermosetting was carried out at a temperature of 170°C, as this temperature was found to be suitable in preliminary trials. Heating times of 1, 2 and 4 s were initially tested. The heating time of ls gave the best overall result, and this time was used in the final tests.

Puteintegritet av forsøksputene ble målt som beskrevet i eksempel 2. Resultatene av disse målinger er gitt i tabell 2, hvor verdiene for nettverkstyrke er midlere verdier basert på 10 prøver. Pad integrity of the test pads was measured as described in example 2. The results of these measurements are given in table 2, where the values for network strength are mean values based on 10 samples.

Det kan ses fra tabell 2 at den tørre nettverkstyrke øket betydelig etter termofesting som et resultat av innlemmelsen av de syntetiske tokomponent-fibrer i henhold til oppfinnelsen. Prøver 1 og 2 var tilbøyelige til å ha en noe bedre ytelse enn de andre i så henseende. En sammenligning av resultatene for prøve 1 (6%) med resultatene for prøve 4 viser at krusede fibrer er bedre enn ikke-krusede fibrer. Den våte nettverkstyrke av prøveputene ble også øket ved innlemmelsen av de syntetiske fibrer, men økningen var ikke så stor som for den tørre nettverkstyrke. Prøve 1 og 2 var tilbøyelige til å skaffe en forbedring i den våte nettverkstyrke selv før termofesting. It can be seen from Table 2 that the dry network strength increased significantly after thermosetting as a result of the incorporation of the synthetic two-component fibers according to the invention. Samples 1 and 2 tended to perform somewhat better than the others in this respect. A comparison of the results for sample 1 (6%) with the results for sample 4 shows that crimped fibers are better than non-crimped fibers. The wet network strength of the test pads was also increased by the incorporation of the synthetic fibers, but the increase was not as great as for the dry network strength. Samples 1 and 2 tended to provide an improvement in the wet network strength even before thermosetting.

Det ble således vist at innlemmelsen av forholdsvis små mengder av de syntetiske tokomponent-fibrer ifølge oppfinnelsen skaffer en betydelig økning i styrken av de absorberende puter etter termofesting sammenlignet med lignende puter uten de syntetiske fibrer. It was thus shown that the incorporation of relatively small amounts of the synthetic two-component fibers according to the invention provides a significant increase in the strength of the absorbent pads after thermosetting compared to similar pads without the synthetic fibers.

EKSEMPEL 5 EXAMPLE 5

Syntetiske tokomponent-fibrer i henhold til oppfinnelsen ble fremstilt som fibrer 1 og 2 ifølge eksempel 3, med den unntagelse at de hadde en finhet på 1,7 dtex. Fibrene ble brukt til å fremstille prøveputer hvor cellulosefibrene besto av enten skandinavisk gran-CTMP-masse (fluff-kvalitet) eller bleket, ubehandlet skandinavisk kraftmasse (Storå Fluff UD 14320) ved anvendelse av den samme fremgangsmåte som i eksempel 4. Referanseprøver inneholdende enten 100% CTMP eller 100% kraftmasse ble også fremstilt. Synthetic two-component fibers according to the invention were produced as fibers 1 and 2 according to example 3, with the exception that they had a fineness of 1.7 dtex. The fibers were used to produce test pads where the cellulose fibers consisted of either Scandinavian spruce CTMP pulp (fluff quality) or bleached, untreated Scandinavian kraft pulp (Storå Fluff UD 14320) using the same method as in example 4. Reference samples containing either 100 % CTMP or 100% kraft pulp was also prepared.

Nettverkstyrken for prøveputene ble målt som beskrevet ovenfor. Resultatene er angitt i tabell 3, hvor verdiene for nettverkstyrke er gjennomsnitt basert på 10 prøver. The network strength of the test pads was measured as described above. The results are shown in Table 3, where the values for network strength are averages based on 10 samples.

Den tørre nettverkstyrke av kraft-forsøksputene var høyere enn for CTMP-prøvene før termofesting. Verdiene var imidlertid nesten de samme etter termofesting. Nettverkstyrken etter termofesting ble betydelig øket ved innlemmelse av selv små mengder av de syntetiske fibrer og ble tilnærmet fordoblet ved tilsetningen av 6% syntetiske fibrer, sammenlignet med referanse-forsøksputene som omfattet bare CTMP- eller kraftmasse-f ibrer. Den våte nettverkstyrke av kraft-forsøksputene var noe høyere enn for CTMP-forsøksputene, både før og etter termofesting. Både de 12 mm og 6 mm syntetiske fibrer gav en forbedring i våt nettverkstyrke både for CTMP- og kraftmasse-puter etter termofesting. Forskjellen i våtstyrke mellom puter som har syntetiske fibermengder på mellom 3 og 9% var forholdsvis liten i alle tilfeller. The dry network strength of the force test pads was higher than that of the CTMP samples before thermosetting. However, the values were almost the same after thermosetting. The network strength after thermosetting was significantly increased by the incorporation of even small amounts of the synthetic fibers and was almost doubled by the addition of 6% synthetic fibers, compared to the reference test pads that included only CTMP or kraft pulp fibers. The wet network strength of the kraft test pads was somewhat higher than that of the CTMP test pads, both before and after thermosetting. Both the 12 mm and 6 mm synthetic fibers provided an improvement in wet network strength for both CTMP and kraft pulp pads after thermosetting. The difference in wet strength between cushions that have synthetic fiber amounts of between 3 and 9% was relatively small in all cases.

Ved å sammenligne resultatene av målingene av nettverkstyrke for CTMP-putene i dette eksempel med resultatene fra prøvene 1 og 2 i eksempel 4 ovenfor kan det ses at en noe høyere nettverkstyrke ble oppnådd i de fleste tilfeller ved bruk av de litt tykkere syntetiske fibrer i eksempel 4, som hadde en finhet på 2,2 dtex. By comparing the results of the network strength measurements for the CTMP pads in this example with the results from samples 1 and 2 in Example 4 above, it can be seen that a somewhat higher network strength was achieved in most cases using the slightly thicker synthetic fibers in Example 4, which had a fineness of 2.2 dtex.

Claims (16)

1. Termofestbar, hydrofil syntetisk tokomponent-fiber til bruk ved blanding av en dunaktig masse (fluff pulp), omfattende en indre kjernekomponent og en ytre overtrekkskomponent, hvor - kjernekomponenten omfatter et polyalken eller en polyester, - overtrekkskomponenten omfatter et polyalken, og - kjernekomponenten har et høyere smeltepunkt enn overtrekks komponenten , karakterisert ved at fiberen er permanent stort sett hydrofil pga. innlemmelse i overtrekkskomponenten av fra 0,1-5%, regnet på den samlede vekt av fiberen, av et overflateaktivt middel, f.eks. en fettsyreester av glycerol, et fettsyreamid, en polyglykolester, et polyetoksylert amid, et annet ikke-ionisk overflateaktivt middel, et kationisk overflateaktivt middel eller en blanding av de ovenfor angitte og/eller andre forbindelser som normalt anvendes som emul-ger ingsmidler, overflateaktive midler eller detergenter, og at fiberen har en lengde på 3-24 mm.1. Thermosetting, hydrophilic synthetic two-component fiber for use when mixing a fluffy mass (fluff pulp), comprising an inner core component and an outer coating component, where - the core component comprises a polyalkene or a polyester, - the coating component comprises a polyalkene, and - the core component has a higher melting point than overcoating the component, characterized by the fact that the fiber is permanently largely hydrophilic due to incorporation in the coating component of from 0.1-5%, calculated on the total weight of the fiber, of a surface-active agent, e.g. a fatty acid ester of glycerol, a fatty acid amide, a polyglycol ester, a polyethoxylated amide, another non-ionic surfactant, a cationic surfactant or a mixture of the above and/or other compounds normally used as emulsifiers, surfactants or detergents, and that the fiber has a length of 3-24 mm. 2. Syntetisk tokomponent-fiber som angitt i krav 1, karakterisert ved at den har en lengde på 5-20 mm, fortrinnsvis 6-18 mm, særlig tilnærmet 6 mm eller tilnærmet 12 mm.2. Synthetic two-component fiber as stated in claim 1, characterized in that it has a length of 5-20 mm, preferably 6-18 mm, especially approximately 6 mm or approximately 12 mm. 3. Syntetisk tokomponent-fiber som angitt i krav 1 eller 2, karakterisert ved at det overflateaktive middel er blitt innlemmet i overtrekkskomponenten i en mengde på 0,5-2% regnet på den samlede vekt av fiberen.3. Synthetic two-component fiber as stated in claim 1 or 2, characterized in that the surface-active agent has been incorporated into the coating component in an amount of 0.5-2% calculated on the total weight of the fiber. 4. Syntetisk tokomponent-fiber som angitt i et av kravene 1-3, karakterisert ved at overtrekkskomponenten omfatter en (etylvinylacetat)- eller (etylenakryl-syre)-kopolymer, eller en annen hydrofil kopolymer eller hydrofil polymer, særlig hvor fiberen fortrinnsvis omfatter 0,1-5%, særlig 0,5-2% vinylacetat eller akrylsyre regnet på den samlede vekt av fiberen.4. Synthetic two-component fiber as specified in one of claims 1-3, characterized in that the coating component comprises an (ethyl vinyl acetate) or (ethylene acrylic acid) copolymer, or another hydrophilic copolymer or hydrophilic polymer, in particular where the fiber preferably comprises 0 .1-5%, especially 0.5-2% vinyl acetate or acrylic acid calculated on the total weight of the fiber. 5. Syntetisk tokomponent-fiber som angitt i et av kravene 1-4, karakterisert ved at smeltepunktet for kjernekomponenten er minst 150°C og smeltepunktet for overtrekkskomponenten er 140°C eller lavere, eller at smeltepunktet for kjernekomponenten er minst 210°C og smeltepunktet for overtrekkskomponenten er 170°C eller lavere.5. Synthetic two-component fiber as specified in one of claims 1-4, characterized in that the melting point of the core component is at least 150°C and the melting point of the covering component is 140°C or lower, or that the melting point of the core component is at least 210°C and the melting point for the coating component is 170°C or lower. 6. Syntetisk tokomponent-fiber som angitt i et av kravene 1-5, karakterisert ved at overtrekkskomponenten omfatter et polyalken, f.eks. høytetthetspoly-etylen, lavtetthetspolyetylen, lineært lavtetthetspolyetylen, polypropylen, poly(1-buten) eller kopolymerer eller blandinger av disse, og kjernekomponenten omfatter et høytsmeltende polyalken, f.eks. polypropylen eller poly(4-metyl-l-penten), eller en polyester, f.eks. poly(etylen-tereftalat), poly-(butylen-tereftalat) eller poly(1,4-cykloheksylen-dimetylen-tereftalat) , eller kopolymerer eller blandinger av disse.6. Synthetic two-component fiber as stated in one of claims 1-5, characterized in that the covering component comprises a polyalkene, e.g. high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, poly(1-butene) or copolymers or mixtures thereof, and the core component comprises a high melting polyalkene, e.g. polypropylene or poly(4-methyl-1-pentene), or a polyester, e.g. poly(ethylene terephthalate), poly(butylene terephthalate) or poly(1,4-cyclohexylene dimethyl terephthalate), or copolymers or mixtures thereof. 7. Syntetisk tokomponent-fiber som angitt i et av kravene 1-6, karakterisert ved at den har en finhet på 1-7 dtex, typisk 1,5-5 dtex, fortrinnsvis 1,7-3,3 dtex og helst 1,7-2,2 dtex.7. Synthetic two-component fiber as stated in one of claims 1-6, characterized in that it has a fineness of 1-7 dtex, typically 1.5-5 dtex, preferably 1.7-3.3 dtex and preferably 1, 7-2.2 dtex. 8. Syntetisk tokomponent-fiber som angitt i et av kravene 1-7, karakterisert ved at den er blitt teksturert til et nivå på 0-10 krusninger pr. cm, fortrinnsvis 0-4 krusninger pr. cm.8. Synthetic two-component fiber as stated in one of claims 1-7, characterized in that it has been textured to a level of 0-10 ripples per cm, preferably 0-4 ripples per cm. 9. Fremgangsmåte til fremstilling av en termofestbar, hydrofil syntetisk tokomponent-fiber av typen overtrekk-og-kjerne for bruk ved blanding av dunaktig masse, hvor fibrene har en overtrekkskomponent som omfatter et polyalken og en kjernekomponent som omfatter et polyalken eller en polyester og som har et høyere smeltepunkt enn overtrekkskomponenten, karakterisert ved- smelting av bestanddelene av kjerne- og overtrekks-komponentene, - innlemmelse av fra 0,1-5%, regnet på den samlede vekt av fiberen av et overflateaktivt middel, f.eks. en fettsyreester av glycerol, et fettsyreamid, en polyglykolester, et polyetoksylert amid, et annet ikke-ionisk overflateaktivt middel, et kationisk overflateaktivt middel eller en blanding av de ovenfor angitte og/eller andre forbindelser som normalt anvendes som emulgeringsmidler, overflateaktive midler eller detergenter i overtrekkskomponenten, - spinning av den lavtsmeltende overtrekkskomponent og den høytsmeltende kjernekomponent til en spunnet bunt av tokomponent-filamenter, - strekking av bunten av filamenter, - fortrinnsvis krusning av fibrene, - tørking og fiksering av fibrene, og - kapping av fibrene til en lengde på 3-24 mm.9. Process for the production of a thermosetting, hydrophilic synthetic two-component fiber of the cover-and-core type for use when mixing down-like pulp, where the fibers have a cover component comprising a polyalkene and a core component comprising a polyalkene or a polyester and which has a higher melting point than the coating component, characterized by melting of the constituents of the core and coating components, - incorporation of from 0.1-5%, calculated on the total weight of the fiber, of a surfactant, e.g. a fatty acid ester of glycerol, a fatty acid amide, a polyglycol ester, a polyethoxylated amide, another non-ionic surfactant, a cationic surfactant or a mixture of the above and/or other compounds which are normally used as emulsifiers, surfactants or detergents in the coating component, - spinning the low-melting coating component and the high-melting core component into a spun bundle of two-component filaments, - stretching the bundle of filaments, - preferably crimping the fibers, - drying and fixing the fibers, and - cutting the fibers to a length of 3-24 mm. 10. Fremgangsmåte som angitt i krav 19, karakterisert ved at fibrene kappes til en lengde på 5-20 mm, fortrinnsvis 6-18 mm, særlig tilnærmet 6 mm eller tilnærmet 12 mm.10. Method as stated in claim 19, characterized in that the fibers are cut to a length of 5-20 mm, preferably 6-18 mm, especially approximately 6 mm or approximately 12 mm. 11. Fremgangsmåte som angitt i krav 9 eller 10, karakterisert ved at det overflateaktive middel innlemmes i overtrekkskomponenten i en mengde på 0,5-2%, regnet på den samlede vekt av fiberen.11. Method as stated in claim 9 or 10, characterized in that the surfactant is incorporated into the coating component in an amount of 0.5-2%, calculated on the total weight of the fiber. 12. Fremgangsmåte som angitt i krave 9-11, karakterisert ved at fibrenes overtrekkskomponent omfatter en (etylvinylacetat)- eller (etylenakryl-syre)-kopolymer eller en annen hydrofil kopolymer eller polymer, idet fiberen fortrinnsvis omfatter 0,1-5%, og særlig 0,5-2% vinylacetat eller akrylsyre regnet på den samlede vekt av fiberen.12. Method as stated in claims 9-11, characterized in that the fibers' coating component comprises an (ethyl vinyl acetate) or (ethylene acrylic acid) copolymer or another hydrophilic copolymer or polymer, the fiber preferably comprising 0.1-5%, and in particular 0.5-2% vinyl acetate or acrylic acid calculated on the total weight of the fiber. 13. Fremgangsmåte som angitt i et av kravene 9-12, karakterisert ved at smeltepunktet for kjernekomponenten er minst 150°C og smeltepunktet for overtrekkskomponenten er 140°C eller lavere, eller at smeltepunktet for kjernekomponenten er minst 210°C og smeltepunktet for overtrekkskomponenten er 170°C eller lavere.13. Method as stated in one of claims 9-12, characterized in that the melting point of the core component is at least 150°C and the melting point of the coating component is 140°C or lower, or that the melting point of the core component is at least 210°C and the melting point of the coating component is 170°C or lower. 14. Fremgangsmåte som angitt i et av kravene 9-13, karakterisert ved at overtrekkskomponenten omfatter et polyalken, f.eks. høytetthetspolyetylen, lavtetthetspolyetylen, lineært lavtetthetspolyetylen, polypropylen, poly(1-buten) eller kopolymerer eller blandinger av disse, og hvor kjernekomponenten omfatter et høytsmeltende polyalken, f.eks. polypropylen eller poly(4-metyl-1-penten) eller en polyester, f.eks. poly(etylen-tereftalat), poly(butylen-tereftalat) eller poly(1,4-cykloheksylen-dimetylen-tereftalat) eller kopolymerer eller blandinger av disse.14. Method as stated in one of claims 9-13, characterized in that the coating component comprises a polyalkene, e.g. high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, poly(1-butene) or copolymers or mixtures thereof, and where the core component comprises a high-melting polyalkene, e.g. polypropylene or poly(4-methyl-1-pentene) or a polyester, e.g. poly(ethylene terephthalate), poly(butylene terephthalate) or poly(1,4-cyclohexylene dimethyl terephthalate) or copolymers or mixtures thereof. 15. Fremgangsmåte som angitt i et av kravene 9-14, karakterisert ved at bunten av filamenter strekkes ved anvendelse av en separat (off-line) strekkprosess, særlig ved anvendelse av et strekkforhold fra 2,5:1 til 4,5:1 og fortrinnsvis fra 3,0:1 til 4,0:1.15. Method as set forth in one of claims 9-14, characterized in that the bundle of filaments is stretched by using a separate (off-line) stretching process, in particular by using a stretching ratio from 2.5:1 to 4.5:1 and preferably from 3.0:1 to 4.0:1. 16. Fremgangsmåte som angitt i et av kravene 9-15, karakterisert ved at fibrene strekkes til en finhet på 1-7 dtex, typisk 1,5-5 dtex, fortrinnsvis 1,7-3,3 dtex, og helst 1,7-2,2 dtex, og fortrinnsvis tekstureres til et nivå på 0-10 krusninger pr. cm, helst 0-4 krusninger pr. cm.16. Method as stated in one of claims 9-15, characterized in that the fibers are stretched to a fineness of 1-7 dtex, typically 1.5-5 dtex, preferably 1.7-3.3 dtex, and preferably 1.7 -2.2 dtex, and preferably textured to a level of 0-10 ripples per cm, preferably 0-4 ripples per cm.
NO904763A 1988-05-05 1990-11-01 Synthetic two-component fiber and process for its preparation NO177192C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK245488A DK245488D0 (en) 1988-05-05 1988-05-05 SYNTHETIC FIBER AND PROCEDURES FOR PRODUCING THEREOF
PCT/DK1989/000102 WO1989010989A1 (en) 1988-05-05 1989-05-02 Bicomponent synthetic fibre and process for producing same

Publications (4)

Publication Number Publication Date
NO904763D0 NO904763D0 (en) 1990-11-01
NO904763L NO904763L (en) 1991-01-07
NO177192B true NO177192B (en) 1995-04-24
NO177192C NO177192C (en) 1995-08-02

Family

ID=8112485

Family Applications (1)

Application Number Title Priority Date Filing Date
NO904763A NO177192C (en) 1988-05-05 1990-11-01 Synthetic two-component fiber and process for its preparation

Country Status (20)

Country Link
US (1) US5456982A (en)
EP (1) EP0340763B1 (en)
JP (1) JPH03504144A (en)
KR (1) KR960015656B1 (en)
CN (1) CN1037555A (en)
AT (1) ATE112593T1 (en)
AU (1) AU626554B2 (en)
BR (1) BR8907420A (en)
CA (1) CA1334047C (en)
CS (1) CS274637B2 (en)
DE (2) DE68918627T2 (en)
DK (1) DK245488D0 (en)
ES (1) ES2012024T3 (en)
FI (1) FI905450A0 (en)
MX (1) MX15943A (en)
NO (1) NO177192C (en)
NZ (1) NZ228981A (en)
PT (1) PT90447A (en)
RU (1) RU2079585C1 (en)
WO (1) WO1989010989A1 (en)

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437418A (en) * 1987-01-20 1995-08-01 Weyerhaeuser Company Apparatus for crosslinking individualized cellulose fibers
DE3826075A1 (en) * 1988-07-30 1990-02-01 Hoechst Ag 1-OLEFIN ISO BLOCK POLYMER AND METHOD FOR THE PRODUCTION THEREOF
US5160582A (en) * 1989-06-07 1992-11-03 Chisso Corporation Cellulose-based, inflammable, bulky processed sheets and method for making such sheets
JP2754262B2 (en) * 1989-10-02 1998-05-20 チッソ株式会社 Processable fiber and molded article using the same
US5167764A (en) * 1990-07-02 1992-12-01 Hoechst Celanese Corporation Wet laid bonded fibrous web
US5307796A (en) * 1990-12-20 1994-05-03 Minnesota Mining And Manufacturing Company Methods of forming fibrous filtration face masks
DK132191D0 (en) * 1991-07-05 1991-07-05 Danaklon As FIBERS AND MANUFACTURING THEREOF
US5269994A (en) * 1992-04-10 1993-12-14 Basf Corporation Nonwoven bonding technique
GB9217177D0 (en) * 1992-08-13 1992-09-23 Du Pont Process for the production of fluff pulp
GB2269603A (en) * 1992-08-14 1994-02-16 Du Pont Process for the production of fluff pulp
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5405682A (en) 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
JP3155368B2 (en) * 1992-09-16 2001-04-09 花王株式会社 Absorbent articles
CA2092604A1 (en) * 1992-11-12 1994-05-13 Richard Swee-Chye Yeo Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US5482772A (en) 1992-12-28 1996-01-09 Kimberly-Clark Corporation Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith
DE4321560A1 (en) * 1993-06-29 1995-01-12 Danubia Petrochem Deutschland Polyolefin yarn and fabric
US5605739A (en) * 1994-02-25 1997-02-25 Kimberly-Clark Corporation Nonwoven laminates with improved peel strength
US5780155A (en) * 1994-08-11 1998-07-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
US6001752A (en) * 1994-08-11 1999-12-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
US5597645A (en) * 1994-08-30 1997-01-28 Kimberly-Clark Corporation Nonwoven filter media for gas
EP0789612B1 (en) * 1994-10-31 2002-09-04 Kimberly-Clark Worldwide, Inc. High density nonwoven filter media
AU3827995A (en) * 1994-11-10 1996-06-06 Weyerhaeuser Company Densified cellulose fiber pads and method of making the same
US5763334A (en) 1995-08-08 1998-06-09 Hercules Incorporated Internally lubricated fiber, cardable hydrophobic staple fibers therefrom, and methods of making and using the same
US5709735A (en) * 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5663286A (en) * 1995-11-09 1997-09-02 H.B. Fuller Licensing And Financing, Inc. Nonwoven web comprising water soluble polyamides and articles constructed therefrom
US6060638A (en) 1995-12-22 2000-05-09 Kimberly-Clark Worldwide, Inc. Matched permeability liner/absorbent structure system for absorbent articles and the like
WO1997033841A1 (en) * 1996-02-29 1997-09-18 Owens Corning Bicomponent glass and polymer fibers made by rotary process
CN1220710A (en) 1996-03-29 1999-06-23 赫尔克里士公司 Polypropylene fibers and items made therefrom
US5985193A (en) * 1996-03-29 1999-11-16 Fiberco., Inc. Process of making polypropylene fibers
US5685758A (en) * 1996-04-12 1997-11-11 National Starch And Chemical Investment Holding Corporation Hot melt adhesive compositions with improved wicking properties
US6296936B1 (en) 1996-09-04 2001-10-02 Kimberly-Clark Worldwide, Inc. Coform material having improved fluid handling and method for producing
US6017832A (en) * 1996-09-04 2000-01-25 Kimberly-Clark Worldwide, Inc. Method and composition for treating substrates for wettability
US6204208B1 (en) 1996-09-04 2001-03-20 Kimberly-Clark Worldwide, Inc. Method and composition for treating substrates for wettability and skin wellness
DE19640726A1 (en) * 1996-10-02 1998-04-23 Braun Ag Bristle for a toothbrush
US5843067A (en) * 1996-11-04 1998-12-01 The Procter & Gamble Company Absorbent article having a containment cuff
US5820973A (en) 1996-11-22 1998-10-13 Kimberly-Clark Worldwide, Inc. Heterogeneous surge material for absorbent articles
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US5843063A (en) 1996-11-22 1998-12-01 Kimberly-Clark Worldwide, Inc. Multifunctional absorbent material and products made therefrom
EP0852268B1 (en) * 1996-12-04 2002-08-21 Fibertech Group, Inc. Absorbent articles having improved separator layer
US6043168A (en) * 1997-08-29 2000-03-28 Kimberly-Clark Worldwide, Inc. Internal and topical treatment system for nonwoven materials
US6410138B2 (en) 1997-09-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Crimped multicomponent filaments and spunbond webs made therefrom
US5876840A (en) * 1997-09-30 1999-03-02 Kimberly-Clark Worldwide, Inc. Crimp enhancement additive for multicomponent filaments
US6500337B1 (en) 1998-06-29 2002-12-31 The Procter & Gamble Company Device for oil removal and transport
US6225243B1 (en) * 1998-08-03 2001-05-01 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven fabric prepared from bi-component filaments
EP1143057B1 (en) * 1998-09-01 2010-02-17 Teijin Fibers Limited Nonwoven fabric and production method thereof, production device used for the method
AR021138A1 (en) * 1998-11-13 2002-06-12 Kimberly Clark Co A FABRIC COMPOUND TREATED TO ABSORBENT AZAR AND THE ABSORBENT ARTICLE THAT INCLUDES IT
US6368609B1 (en) 1999-04-12 2002-04-09 Kimberly-Clark Worldwide, Inc. Absorbent structure including a thin, calendered airlaid composite and a process for making the composite
ES2229811T3 (en) 1998-12-10 2005-04-16 Kimberly-Clark Worldwide, Inc. ABSORBENT BODY THAT INCLUDES A CALANDRATED COMPOSITE MATERIAL, OF LOW THICKNESS, PNEUMATICALLY APPLIED AND PROCESS FOR THE MANUFACTURE OF SUCH MATERIAL.
CN1090259C (en) * 1998-12-16 2002-09-04 三井化学株式会社 Composite-fiber nonwoven fabric
US6696373B2 (en) * 1999-01-08 2004-02-24 Bba Nonwovens Simpsonville, Inc. Durable hydrophilic nonwoven webs and articles formed therefrom
DE60032735T2 (en) 1999-01-08 2007-11-08 Ahlstrom Mount Holly Springs, Llc PERMANENT HYDROPHILIC, NON-WOVEN MAT FOR RECHARGEABLE ALKALINE BATTERIES
US6458456B1 (en) * 1999-03-22 2002-10-01 Technology Innovations, Llc Composite fiber for absorptive material construction
US20020192829A1 (en) * 1999-03-22 2002-12-19 Technology Innovations, Llc Composite fiber for absorptive material with sensor
US6441267B1 (en) 1999-04-05 2002-08-27 Fiber Innovation Technology Heat bondable biodegradable fiber
US6509092B1 (en) 1999-04-05 2003-01-21 Fiber Innovation Technology Heat bondable biodegradable fibers with enhanced adhesion
US6706946B1 (en) 1999-05-14 2004-03-16 The Procter & Gamble Company Disposable absorbent article having hydrophobic topsheet and improved liquid handling performance
US7033340B1 (en) 1999-05-14 2006-04-25 The Procter & Gamble Company Disposable absorbent article having reduced impact on surface tension of acquired liquid
US6635801B1 (en) 1999-05-14 2003-10-21 The Procter & Gamble Company Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling
US6461729B1 (en) * 1999-08-10 2002-10-08 Fiber Innovation Technology, Inc. Splittable multicomponent polyolefin fibers
AU774541B2 (en) 1999-12-21 2004-07-01 Kimberly-Clark Worldwide, Inc. Fine denier multicomponent fibers
US20010041876A1 (en) * 1999-12-23 2001-11-15 Creagan Christopher Cosgrove Superabsorbent and nonwoven composites for personal care products
WO2001047567A2 (en) * 1999-12-27 2001-07-05 Kimberly-Clark Worldwide, Inc. Fibers providing controlled active agent delivery
SE515510C2 (en) * 2000-01-21 2001-08-20 Fiberduk Ab Process for producing nonwoven fabric and nonwoven fabric produced therewith and process for producing a layer composite and the layer composite produced therewith
US6632504B1 (en) 2000-03-17 2003-10-14 Bba Nonwovens Simpsonville, Inc. Multicomponent apertured nonwoven
ES2338295T3 (en) * 2000-09-13 2010-05-06 Homatherm Ag MOLDING ELEMENT IN PLATE FORM BASED ON NATURAL FIBERS AND PROCEDURE FOR MANUFACTURING.
US6488670B1 (en) 2000-10-27 2002-12-03 Kimberly-Clark Worldwide, Inc. Corrugated absorbent system for hygienic products
CA2428286A1 (en) * 2000-11-10 2002-05-16 Bki Holding Corporation Crosslinked cellulose fibers
US7888275B2 (en) * 2005-01-21 2011-02-15 Filtrona Porous Technologies Corp. Porous composite materials comprising a plurality of bonded fiber component structures
US6753081B1 (en) * 2001-02-21 2004-06-22 Forta Corporation Fiber reinforcement material, products made therefrom, and method for making the same
US7168232B2 (en) * 2001-02-21 2007-01-30 Forta Corporation Fiber reinforcement material, products made thereform, and method for making the same
JP4288157B2 (en) * 2001-07-17 2009-07-01 ダウ グローバル テクノロジーズ インコーポレイティド Two-component elastic fiber and two-component elastic fiber and method for producing cellulosic structures therefrom
CA2458525A1 (en) * 2001-10-05 2003-04-17 Filtrona Richmond, Inc. Medium for isolating, detecting, separating or purifying chemical and biological substances
WO2003052190A1 (en) * 2001-12-13 2003-06-26 Kimberly-Clark Worldwide, Inc. Fully activated bicomponent web with absorbents
US20030114067A1 (en) * 2001-12-18 2003-06-19 Matela David Michael Coform nonwoven web and method of making same
WO2003097353A1 (en) * 2002-05-15 2003-11-27 Ahlstrom Windsor Locks Llc Improved abrasion resistance of nonwovens
US7018945B2 (en) 2002-07-02 2006-03-28 Kimberly-Clark Worldwide, Inc. Composition and method for treating fibers and nonwoven substrates
US6881375B2 (en) * 2002-08-30 2005-04-19 Kimberly-Clark Worldwide, Inc. Method of forming a 3-dimensional fiber into a web
US6896843B2 (en) * 2002-08-30 2005-05-24 Kimberly-Clark Worldwide, Inc. Method of making a web which is extensible in at least one direction
DE10244778B4 (en) * 2002-09-26 2006-06-14 Trevira Gmbh Eccentric polyester-polyethylene bicomponent fiber
US20040121675A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worklwide, Inc. Treatment of substrates for improving ink adhesion to the substrates
US7226880B2 (en) 2002-12-31 2007-06-05 Kimberly-Clark Worldwide, Inc. Breathable, extensible films made with two-component single resins
DE10307174B4 (en) * 2003-02-20 2017-05-24 Reifenhäuser GmbH & Co. KG Maschinenfabrik Multilayer monofilament
WO2004098270A1 (en) * 2003-05-01 2004-11-18 Bki Holding Corporation Improved hydroponic growth medium
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
PL1646667T3 (en) * 2003-07-11 2008-03-31 Dow Global Technologies Inc Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorment product
US7008888B2 (en) * 2003-07-24 2006-03-07 E. I. Du Pont De Nemours And Company Multiple component spunbond web
US7932196B2 (en) 2003-08-22 2011-04-26 Kimberly-Clark Worldwide, Inc. Microporous stretch thinned film/nonwoven laminates and limited use or disposable product applications
US20050136773A1 (en) * 2003-12-22 2005-06-23 Kimberly-Clark Worldwide, Inc. Treated nonwoven material
US7297226B2 (en) 2004-02-11 2007-11-20 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20050245158A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Multicomponent fibers and nonwoven fabrics and surge management layers containing multicomponent fibers
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
PL2308579T3 (en) 2004-11-05 2016-06-30 Donaldson Co Inc Aerosol separator
US8021457B2 (en) 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US7465684B2 (en) * 2005-01-06 2008-12-16 Buckeye Technologies Inc. High strength and high elongation wipe
WO2006084282A2 (en) 2005-02-04 2006-08-10 Donaldson Company, Inc. Aerosol separator
EP1707657A1 (en) * 2005-03-31 2006-10-04 M &amp; J Fibretech A/S Process for producing elastic and/or water degradable webs from composite filaments
BRPI0612326A2 (en) 2005-04-01 2010-11-03 Buckeye Technologies Inc nonwoven material, nonwoven panel, thermal insulating construction, sound attenuating laminate, attenuating laminated panel, package for an object, process for producing a nonwoven material, process for providing sound attenuation or thermal insulation, article molded thermal insulator, vehicle insulating article, sound attenuating insulating article, molded article, nonwoven structure, process for the production of a nonwoven structure, and motor vehicle
US8236385B2 (en) 2005-04-29 2012-08-07 Kimberly Clark Corporation Treatment of substrates for improving ink adhesion to the substrates
JP2009507141A (en) * 2005-09-01 2009-02-19 セラーズ・アブソーベント・マテリアルズ・インコーポレーテッド Method and apparatus for forming a non-woven dry deposition crepe material
JP2009517554A (en) * 2005-11-28 2009-04-30 ユニヴァーシティ・オヴ・デラウェア Process for producing polyolefin microfiber by electrospinning and produced fiber
CA2637256C (en) * 2006-01-18 2014-07-08 Buckeye Technologies Inc. Tacky allergen trap and filter medium, and method for containing allergens
US20070196420A1 (en) * 2006-02-17 2007-08-23 Dwyer Clifford J Fibers and yarns useful for constructing graft materials
CN101652168A (en) 2007-02-22 2010-02-17 唐纳森公司 Filter element and method thereof
EP2125149A2 (en) 2007-02-23 2009-12-02 Donaldson Company, Inc. Formed filter element
RU2444583C2 (en) * 2007-09-03 2012-03-10 Ска Хайджин Продактс Аб Multicomponent fibre
DE102007048422A1 (en) * 2007-10-09 2009-04-16 Homatherm Ag Wood fiber thermal insulation material and method for its production
RU2396379C2 (en) * 2007-12-10 2010-08-10 Общество С Ограниченной Ответственностью "Си Айрлайд" Synthetic fibre for three-dimensional reinforcement of cement product and method of preparing said fibre (versions), cement product containing dispersed synthetic fibre and method of preparing said cement product
WO2009079234A2 (en) * 2007-12-14 2009-06-25 Schlumberger Canada Limited Methods of treating subterranean wells using changeable additives
CN101903616A (en) * 2007-12-14 2010-12-01 普拉德研究及开发股份有限公司 The method of contact and/or processing subsurface formations
EP2231390A4 (en) * 2007-12-14 2012-12-05 3M Innovative Properties Co Fiber aggregate
CN101903453B (en) * 2007-12-14 2013-11-06 普拉德研究及开发股份有限公司 Proppants and uses thereof
JP5094555B2 (en) * 2008-05-23 2012-12-12 キヤノン株式会社 Ink tank
JP5181027B2 (en) * 2008-08-25 2013-04-10 三井化学株式会社 Fiber, non-woven fabric and its use
DE102008039720B4 (en) * 2008-08-26 2012-09-13 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Process for the production of wood fiber insulation boards "
DE202008017741U1 (en) * 2008-10-11 2010-05-12 Trevira Gmbh Superabsorbent bicomponent fiber
US9144625B2 (en) * 2008-11-27 2015-09-29 Speciality Fibres And Materials Ltd. Cellulose ethylsulfonate-based absorbent material
US9221963B2 (en) * 2008-11-27 2015-12-29 Speciality Fibres And Materials Ltd. Absorbent material
US9885154B2 (en) 2009-01-28 2018-02-06 Donaldson Company, Inc. Fibrous media
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
JP5535555B2 (en) * 2009-08-27 2014-07-02 Esファイバービジョンズ株式会社 Thermal adhesive composite fiber and non-woven fabric using the same
KR101117626B1 (en) 2009-10-07 2012-02-29 한국생산기술연구원 Polymer membrane for battery, method of preparing same and battery including same
AU2010329094B2 (en) * 2009-12-09 2016-04-21 Toray Industries, Inc. Method for producing long fiber nonwoven fabric
IT1397899B1 (en) * 2010-01-26 2013-02-04 Dieffenbacher Gmbh & Co Kg PROCEDURE AND UNIT OF CALIBRATION AND WELDING FOR THE PRODUCTION OF INSULATING PANELS OR OF ACOUSTIC INSULATION OR OF A FLEXIBLE SEMI-FINISH FOR THE NEXT PROCESSING IN HOT PRESSES.
CN102373578B (en) 2010-08-18 2014-09-17 扬光绿能股份有限公司 Non-woven fabric and manufacturing method thereof, generating device and generating method for gas fuel
WO2012024576A1 (en) 2010-08-20 2012-02-23 The Procter & Gamble Company Absorbent article and components thereof having improved softness signals, and methods for manufacturing
US10639212B2 (en) 2010-08-20 2020-05-05 The Procter & Gamble Company Absorbent article and components thereof having improved softness signals, and methods for manufacturing
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
CN101974795A (en) * 2010-11-04 2011-02-16 滁州友林科技发展有限公司 Polyolefin composite fiber
EP2463092B2 (en) 2010-12-02 2016-11-16 International Automotive Components Group GmbH Interior cladding component for a motor vehicle
MX353338B (en) 2010-12-08 2018-01-09 Georgia Pacific Nonwovens Llc Dispersible nonwoven wipe material.
CN103339304B (en) * 2011-02-02 2016-04-06 大和纺控股株式会社 Manifest crimpiness composite short fiber and manufacture method, fiber aggregate and hygienic article
US20130089747A1 (en) * 2011-05-20 2013-04-11 William Maxwell Allen, Jr. Fibers of Polymer-Wax Compositions
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
JP6026783B2 (en) * 2012-06-05 2016-11-16 Oci株式会社 Meat packaging sheet and meat packaging casing
EP2711754A1 (en) * 2012-09-20 2014-03-26 Draka Comteq B.V. Water-swellable element for optical-fiber cables
JP6024915B2 (en) * 2013-03-28 2016-11-16 Jnc株式会社 Nonwoven fabric and products obtained using the same
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
KR101498577B1 (en) * 2013-07-10 2015-03-05 한국생산기술연구원 Cushioning article for automobile interior
MX360502B (en) 2013-11-15 2018-11-06 Georgia Pacific Nonwovens Llc Dispersible nonwoven wipe material.
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9580845B2 (en) * 2014-06-09 2017-02-28 The Procter & Gamble Company Nonwoven substrate comprising fibers comprising an engineering thermoplastic polymer
EP3215089B1 (en) 2014-11-06 2018-08-22 The Procter and Gamble Company Methods for making patterned apertured webs
WO2016073724A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Crimped fiber spunbond nonwoven webs / laminates
MY191179A (en) * 2015-08-12 2022-06-04 Sumitomo Seika Chemicals Apparatus for manufacturing absorbent body
MY183581A (en) * 2015-08-12 2021-02-26 Sumitomo Seika Chemicals Method for manufacturing absorbent body
CA3011355A1 (en) 2016-01-12 2017-07-20 Georgia-Pacific Consumer Products Lp Nonwoven cleaning substrate
CA3011367C (en) 2016-01-12 2023-08-08 Georgia-Pacific Nonwovens LLC Nonwoven cleaning substrate
TW201739603A (en) * 2016-01-27 2017-11-16 歐拓管理股份公司 Sound absorbing liner for the engine bay of a vehicle and sound absorbing trim part having the same
CN106087249A (en) * 2016-08-24 2016-11-09 长兴恒月无纺布有限公司 A kind of production technology of the sub-light non-woven fabrics of mask
US10278485B2 (en) * 2016-09-01 2019-05-07 Colgate-Palmolive Company Oral care implement and filament therefor
KR101866776B1 (en) * 2016-09-02 2018-07-23 삼성염직(주) Process Of Producing High Tenacity Polyolefin Filament Having Exellent Color Property And Process Of Producing Fabrics Using Thereby
US20190376011A1 (en) 2017-01-12 2019-12-12 Georgia-Pacific Nonwovens LLC Nonwoven material for cleaning and sanitizing surfaces
US20190367851A1 (en) 2017-01-12 2019-12-05 Georgia-Pacific Nonwovens LLC Nonwoven material for cleaning and sanitizing surfaces
WO2018132684A1 (en) 2017-01-12 2018-07-19 Georgia-Pacific Nonwovens LLC Nonwoven material for cleaning and sanitizing surfaces
MX2019008885A (en) * 2017-01-26 2019-12-05 Jiffy Int As Wood fibers for enhanced binding in growing media.
EP4335420A2 (en) 2017-02-16 2024-03-13 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
EP3606487B1 (en) 2017-04-03 2022-07-06 Georgia-Pacific Mt. Holly LLC Multi-layer unitary absorbent structures
US11806976B2 (en) * 2017-09-27 2023-11-07 Glatfelter Corporation Nonwoven material with high core bicomponent fibers
CA3075802A1 (en) 2017-09-27 2019-04-04 Georgia-Pacific Nonwovens LLC Nonwoven air filtration medium
CN110621273B (en) * 2017-10-03 2022-02-22 花王株式会社 Method for producing absorbent
JP7027102B2 (en) * 2017-10-03 2022-03-01 花王株式会社 Absorber manufacturing method and absorber manufacturing equipment
WO2019152638A1 (en) 2018-01-31 2019-08-08 Georgia-Pacific Nonwovens LLC Modified cellulose-based natural binder for nonwoven fabrics
ES2925308T3 (en) 2018-03-12 2022-10-14 Georgia Pacific Mt Holly Llc Non-woven material with high-core bicomponent fibers
US20220053991A1 (en) 2018-09-19 2022-02-24 Georgia-Pacific Mt. Holly Llc Unitary nonwoven material
WO2020068151A1 (en) 2018-09-26 2020-04-02 Georgia-Pacific Nonwovens LLC Latex-free and formaldehyde-free nonwoven fabrics
CN111528524A (en) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 Aerial fog dispersing device with liquid guide element
CA3142316A1 (en) 2019-05-30 2020-12-03 Georgia-Pacific Mt. Holly Llc Low-runoff airlaid nonwoven materials
CN110387640A (en) * 2019-06-21 2019-10-29 爹地宝贝股份有限公司 A kind of fluorescent nonwoven fabric and preparation method thereof for health product
CN114945715B (en) 2019-08-08 2023-11-10 格拉特费尔特公司 Dispersible nonwoven materials including CMC-based binders
JP2022543328A (en) 2019-08-08 2022-10-11 グラットフェルター・コーポレイション Low dust airlaid nonwoven material
JP2023503774A (en) 2019-09-18 2023-02-01 ジョージア パシフィック マウント ホリー エルエルシー absorbent nonwoven material
US20220411969A1 (en) * 2019-12-03 2022-12-29 Fibervisions Lp Fibers, composite materials formed with such fibers, and methods for forming such composite materials
CN111519275B (en) * 2020-04-16 2022-07-08 天津工业大学 Sheath-core structure composite fiber and nonwoven fabric comprising same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584339A (en) * 1969-07-14 1971-06-15 Chisso Corp Spinneret for both composite and ordinary fibers
DE2254898C3 (en) * 1971-11-22 1985-08-29 Mitsubishi Chemical Industries Ltd., Tokio/Tokyo Process for the production of fibers and the use of these fibers
JPS5212830B2 (en) * 1972-11-25 1977-04-09
US4189338A (en) * 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
JPS5410262B2 (en) * 1973-08-17 1979-05-02
JPS5277703A (en) * 1975-12-23 1977-06-30 Sharp Corp Push button device
JPS5374129A (en) * 1976-12-13 1978-07-01 Chisso Corp Heat-bonding composite fibers having go crimp and their
NZ185412A (en) * 1976-10-20 1980-03-05 Chisso Corp Heat-adhesive compsite fibres based on propylene
JPS5584420A (en) * 1978-12-20 1980-06-25 Chisso Corp Method of making side by side conjugate fiber with no crimp
US4425126A (en) * 1979-12-28 1984-01-10 Johnson & Johnson Baby Products Company Fibrous material and method of making the same using thermoplastic synthetic wood pulp fibers
DE3202485A1 (en) * 1981-01-29 1982-09-16 Akzo Gmbh, 5600 Wuppertal HETEROFIL FIBER AND NONWOVEN PRODUCED THEREOF, AND METHOD FOR THEIR PRODUCTION
US4732809A (en) * 1981-01-29 1988-03-22 Basf Corporation Bicomponent fiber and nonwovens made therefrom
IT1151747B (en) * 1982-04-27 1986-12-24 Montedison Spa TWO-COMPONENT SYNTHETIC FIBERS SUITABLE TO REPLACE CELULOSIC FIBERS IN PAPER AND EXTRA-PAPER FIELDS, AND PROCEDURE FOR THEIR PREPARATION
JPS599255A (en) * 1982-06-29 1984-01-18 チッソ株式会社 Heat adhesive nonwoven fabric
JPS5943118A (en) * 1982-08-31 1984-03-10 Chisso Corp Foamed polyolefin fiber and its manufacture
US4622089A (en) * 1983-02-28 1986-11-11 Johnson & Johnson Products, Inc. Method of making blister pad adhesive bandage
US4458042A (en) * 1983-03-21 1984-07-03 Hercules Incorporated Absorbent material
JPS6021908A (en) * 1983-07-14 1985-02-04 Chisso Corp Manufacture of composite monofilament
US4578414A (en) * 1984-02-17 1986-03-25 The Dow Chemical Company Wettable olefin polymer fibers
US4655877A (en) * 1984-08-28 1987-04-07 Mitsui Petrochemical Industries, Ltd. Absorbent web structure
JPS61201015A (en) * 1985-03-01 1986-09-05 Teijin Ltd Thermally bondable conjugated yarn
JPS6269822A (en) * 1985-09-19 1987-03-31 Chisso Corp Heat bondable conjugate fiber
JPS62250278A (en) * 1986-04-24 1987-10-31 株式会社クラレ Heat-adhesive fiber
DE3782275T2 (en) * 1986-05-31 1993-03-04 Unitika Ltd POLYOLEFIN FLEECE AND METHOD FOR PRODUCING THE SAME.
JPH0819570B2 (en) * 1986-09-12 1996-02-28 チッソ株式会社 Heat-bondable composite fiber and method for producing the same
JPS6392723A (en) * 1986-10-06 1988-04-23 Unitika Ltd Wettable composite fiber and nonwoven cloth made thereof
US5231122A (en) * 1988-04-11 1993-07-27 Faricerca S.P.A. Fibrous composition for absorbent pads, a method for the manufacture of an absorbent material from such a composition, and an absorbent material produced by the method
IT1219196B (en) * 1988-04-11 1990-05-03 Faricerca Spa FIBROUS COMPOSITION FOR ABSORBENT MATTRESSES METHOD OF MANUFACTURE OF AN ABSORBENT MATERIAL STARTING FROM SUCH COMPOSITION AND ABSORBENT MATERIAL PRODUCED BY SUCH METHOD
CA2017782A1 (en) * 1989-06-01 1990-12-01 James H. Harrington Rewettable polyolefin fiber and corresponding nonwovens

Also Published As

Publication number Publication date
NO904763D0 (en) 1990-11-01
KR960015656B1 (en) 1996-11-20
MX15943A (en) 1994-02-28
CA1334047C (en) 1995-01-24
CS276789A2 (en) 1991-01-15
ES2012024T3 (en) 1994-12-01
DE68918627T2 (en) 1995-02-16
ES2012024A4 (en) 1990-03-01
DK245488D0 (en) 1988-05-05
CS274637B2 (en) 1991-09-15
PT90447A (en) 1989-11-30
ATE112593T1 (en) 1994-10-15
BR8907420A (en) 1991-04-30
WO1989010989A1 (en) 1989-11-16
DE340763T1 (en) 1990-05-23
AU626554B2 (en) 1992-08-06
NO904763L (en) 1991-01-07
RU2079585C1 (en) 1997-05-20
NO177192C (en) 1995-08-02
JPH03504144A (en) 1991-09-12
EP0340763B1 (en) 1994-10-05
EP0340763A1 (en) 1989-11-08
KR900702098A (en) 1990-12-05
AU3732289A (en) 1989-11-29
CN1037555A (en) 1989-11-29
NZ228981A (en) 1991-06-25
DE68918627D1 (en) 1994-11-10
FI905450A0 (en) 1990-11-02
US5456982A (en) 1995-10-10

Similar Documents

Publication Publication Date Title
NO177192B (en) Synthetic two-component fiber and process for its preparation
US5476711A (en) Fiber blending system
US5437418A (en) Apparatus for crosslinking individualized cellulose fibers
US6670035B2 (en) Binder fiber and nonwoven web
US4902463A (en) Elastic absorbent and process for production thereof
US4483897A (en) Non-woven fabric
HU215911B (en) Absorbent structures containing solidified fibres and super-absorption materials
US20030118814A1 (en) Absorbent structures having low melting fibers
US6436325B1 (en) Process of making cellulose based fiber
EP0095917A1 (en) Hydrophilic microfibrous absorbent webs, methods for their manufacture and use thereof in disposable absorbent articles
JPH09310259A (en) Ultrafine fiber nonwoven fabric
RU2224831C2 (en) Nonwoven material of superabsorptive fiber, method for producing the same, disposable absorptive products
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JPH03269199A (en) Bulky pulp sheet and production thereof
JP2765947B2 (en) Bulky paper
DK167228B1 (en) Synthetic bicomponent fibres and method for the manufacture thereof
JP2001032139A (en) Latently crimpable conjugate fiber and nonwoven fabric using the same
JPS6392723A (en) Wettable composite fiber and nonwoven cloth made thereof
GB2269603A (en) Process for the production of fluff pulp
JP2555177B2 (en) Bulky paper and manufacturing method thereof
JPH03241087A (en) Method for making bulky paper
WO1994004736A1 (en) Process for the production of a fluff pulp
JPH02279154A (en) Facing material for hygienic material
MXPA99008903A (en) Cellulose-binding fibres