NO175782B - Process for the preparation and purification of amphiphilic proteins in aggregate form produced in cells and their use - Google Patents

Process for the preparation and purification of amphiphilic proteins in aggregate form produced in cells and their use Download PDF

Info

Publication number
NO175782B
NO175782B NO885738A NO885738A NO175782B NO 175782 B NO175782 B NO 175782B NO 885738 A NO885738 A NO 885738A NO 885738 A NO885738 A NO 885738A NO 175782 B NO175782 B NO 175782B
Authority
NO
Norway
Prior art keywords
cells
proteins
aggregated
detergent
stated
Prior art date
Application number
NO885738A
Other languages
Norwegian (no)
Other versions
NO175782C (en
NO885738L (en
NO885738D0 (en
Inventor
Johann Eibl
Friedrich Dorner
Original Assignee
Immuno Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immuno Ag filed Critical Immuno Ag
Publication of NO885738D0 publication Critical patent/NO885738D0/en
Publication of NO885738L publication Critical patent/NO885738L/en
Publication of NO175782B publication Critical patent/NO175782B/en
Publication of NO175782C publication Critical patent/NO175782C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16211Human Immunodeficiency Virus, HIV concerning HIV gagpol
    • C12N2740/16222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

Proteins produced in cells collect together to form particulate aggregates. The invention relates to the reversible conversion of said aggregated proteins into morphological forms I, II and III which differ from one another, depending on the presence or absence of a non-denaturing detergent. The invention also relates to a process for the isolation and purification of said aggregated forms of proteins produced in cells.

Description

Oppfinnelsen angår en fremgangsmåte til isolering og rensing av oppløselige, amfifile proteiner som er fremstilt i celler og deres anvendelse. The invention relates to a method for isolating and purifying soluble, amphiphilic proteins produced in cells and their use.

Alle fysiologisk aktive celler produserer proteiner som de trenger for opprettholdelse av sine livsfunksjoner. De syntetiserte proteiner har forskjellige oppgaver. Noen virker som enzymer, dvs. de katalyserer stoffskiftereaksjonen i cellen. Andre tjener til å avstemme livsløpet av den organisme som cellen tilhører, og atter andre danner cellestrukturen. Proteiner som fremstilles i disse celler, kan likevel ha antigene virkninger på andre organismer, dvs. de induserer immunreaksjoner i disse organismer. Også vira er levende vesener som f.eks. i sin kapsel inneholder proteiner som kan virke som antigener. All physiologically active cells produce proteins that they need to maintain their vital functions. The synthesized proteins have different tasks. Some act as enzymes, i.e. they catalyze the metabolic reaction in the cell. Others serve to coordinate the life course of the organism to which the cell belongs, and still others form the cell structure. Proteins produced in these cells can nevertheless have antigenic effects on other organisms, i.e. they induce immune reactions in these organisms. Viruses are also living beings such as e.g. in its capsule contains proteins that can act as antigens.

Anvisningene for proteinsyntesen befinner seg i cellenes gener, som også kan anses som arvestoffets funksjonelle enheter. Det er idag en godt behersket teknikk å forandre den genetiske utrustning av en celle, f.eks. en bakterie, idet man overfører et gen f.eks. fra en dyre- eller menneske-celle til en annen celle, fortrinnsvis en bakteriecelle. Bakterien syntetiserer da også det protein som det fremmede, innføyde gen koder for. Et av de mest kjente eksempler er det i den menneskelige bukspytt-kjertel produserte insulin, hvis genetiske informasjon ble overført til bakterien Escherichia coli. The instructions for protein synthesis are found in the cells' genes, which can also be considered the functional units of the genetic material. It is today a well-controlled technique to change the genetic equipment of a cell, e.g. a bacterium, transferring a gene e.g. from an animal or human cell to another cell, preferably a bacterial cell. The bacterium then also synthesizes the protein that the foreign, inserted gene codes for. One of the most famous examples is insulin produced in the human pancreas, whose genetic information was transferred to the bacterium Escherichia coli.

Både de naturlige proteiner og de proteiner som fremstilles ved geneteknisk manipulering av celler, blir enten ført ut av cellen gjennom et overløp eller hoper seg opp i cellen og blir deretter ved kjente metoder isolert og eventuelt oppløst etter at cellen er brutt opp. For disse fremgangsmåter blir der som regel etter bestemte fraksjonerings- og renseforbehandlings-trinn anvendt detergenter, som må avstemmes meget spesifikt for isolering og rensing av de enkelte proteiner. Det er nå som før et problem i henhold til teknikkens stand å finne de riktige detergenter for isolering og rensing av de ønskede proteiner. Det var derfor en hensikt med oppfinnelsen å tilveiebringe fremgangsmåter ved hvis hjelp proteiner fremstilt i fysiologisk aktive celler kan isoleres og renses, og herunder opprettholde eller forbedre proteinenes biologiske aktivitet. Both the natural proteins and the proteins produced by genetic manipulation of cells are either carried out of the cell through an overflow or accumulate in the cell and are then isolated by known methods and possibly dissolved after the cell has been broken up. For these methods, as a rule, after certain fractionation and purification pretreatment steps, detergents are used, which must be coordinated very specifically for the isolation and purification of the individual proteins. It is now as before a problem according to the state of the art to find the right detergents for isolating and purifying the desired proteins. It was therefore an aim of the invention to provide methods by means of which proteins produced in physiologically active cells can be isolated and purified, and thereby maintain or improve the proteins' biological activity.

Denne hensikt ble oppnådd ved at der ble skaffet proteiner som foreligger i en første, tilnærmet kuleformet, eventuelt elektronoptisk synlig, aggregert, elektroforetisk ikke-mobil form I i fravær av detergenter, i en annen, løs, eventuelt elektronoptisk synlig, aggregert, elektroforetisk ikke-mobil form II i nærvær av en første, ikke-denaturerende detergent, og i en elektronoptisk ikke-synlig, elektroforetisk mobil form III i nærvær av en annen, ikke-denaturerende detergent, og at de nevnte former I,II og III er reversibelt overførbare i hverandre avhengig av nærværet eller fraværet av de nevnte detergenter. This purpose was achieved by obtaining proteins that exist in a first, approximately spherical, possibly electron-optically visible, aggregated, electrophoretically non-mobile form I in the absence of detergents, in a second, loose, possibly electron-optically visible, aggregated, electrophoretically not -mobile form II in the presence of a first, non-denaturing detergent, and in an electron-optically non-visible, electrophoretic mobile form III in the presence of a second, non-denaturing detergent, and that said forms I, II and III are reversible transferable in each other depending on the presence or absence of the aforementioned detergents.

Ved isoleringsfremgangsmåter for proteiner har det overraskende vist seg at amfifile proteiner ved anvendelse av ikke-denaturerende detergenter ikke foreligger i sin monomere form, men i aggregerte former, som helt overraskende oppviser fordelaktige egenskaper. I fravær av en ikke-denaturerende detergent oppviser de aggregerte former en kompakt struktur som her skal betegnes som aggregert form I. I denne form er partikkelen best egnet til fjerning av forurensninger som setter seg på overflaten av disse partikler. Den kompakte form av partiklene sikrer herunder en viss beskyttelse mot denaturering av de aktive sentra, det være seg enzymatisk aktive sentra eller epitoper som forårsaker immunreaksjoner. Likevel er også de kompakte partikler bioaktive i den aggregerte form I, men ikke elektroforetisk mobile. In isolation procedures for proteins, it has surprisingly been shown that amphiphilic proteins, when non-denaturing detergents are used, are not present in their monomeric form, but in aggregated forms, which quite surprisingly exhibit advantageous properties. In the absence of a non-denaturing detergent, the aggregated forms exhibit a compact structure which will be referred to here as aggregated form I. In this form, the particle is best suited for removing contaminants that settle on the surface of these particles. The compact form of the particles also ensures a certain protection against denaturation of the active centers, be it enzymatically active centers or epitopes that cause immune reactions. Nevertheless, the compact particles are also bioactive in the aggregated form I, but not electrophoretically mobile.

I nærvær av en ikke-denaturerende detergent lar den kompakte kuleformede form I av det aggregerte protein seg overføre i en mer eller mindre luftig form, som under en isolerings- og renseprosess oppviser den fordel at forurensninger som gjennom overgangen av form I til form II blir lettere tilgjengelig, kan fjernes. I form II av de aggregerte proteiner blir overraskende proteinenes biologiske aktivitet forsterket. Det viser seg for eksempel at immunogenisiteten av det isolerte protein øker, når den biologiske egenskap av de isolerte proteiner ligger i proteinenes immuniserende antigenisitet. De biologisk aktive proteiner eller eventuelt også deler av disse proteiner, som oppviser en biologisk aktivitet, er således aktive, særlig i den utvidede form, og egner seg i denne skylignende form av de ovenfor angitte grunner særlig godt til rensing av proteinet for bestanddeler som er innesluttet i den aggregerte form. In the presence of a non-denaturing detergent, the compact globular form I of the aggregated protein allows itself to be transferred into a more or less airy form, which during an isolation and purification process exhibits the advantage that contaminants which through the transition from form I to form II become more easily accessible, can be removed. In form II of the aggregated proteins, the proteins' biological activity is surprisingly enhanced. It turns out, for example, that the immunogenicity of the isolated protein increases, when the biological property of the isolated proteins lies in the proteins' immunizing antigenicity. The biologically active proteins or possibly also parts of these proteins, which exhibit a biological activity, are thus active, especially in the expanded form, and are suitable in this cloud-like form for the reasons stated above particularly well for purifying the protein for components that are contained in the aggregated form.

Proteinet i den aggregerte form II er likeledes elektroforetisk ikke-mobilt. The protein in the aggregated form II is likewise electrophoretically non-mobile.

Det spesielt overraskende ved de partikkelformede aggregerte proteiner som fås fremstilt ifølge oppfinnelsen, er det forhold at de aggregerte former I og II er reversibelt overførbare i hverandre, avhengig av fraværet eller nærværet av en første ikke-denaturerende detergent. Med de beskrevne partikkelformede aggregerte proteiner blir således et meget godt egnet kompleks gjort tilgjengelig, som på grunn av reversibiliteten av overføringen av de forskjellige former I og II av disse aggregater i hverandre i betraktning av en enklere renseprosess, en forbedret lagringsmulighet så vel som en øket virksomhet av den biologiske aktivitet av de isolerte proteiner oppviser enorme fordeler. What is particularly surprising about the particulate aggregated proteins that can be produced according to the invention is the fact that the aggregated forms I and II are reversibly transferable into each other, depending on the absence or presence of a first non-denaturing detergent. With the described particulate aggregated proteins, a very suitable complex is thus made available, which due to the reversibility of the transfer of the different forms I and II of these aggregates into each other in consideration of a simpler purification process, an improved storage possibility as well as an increased activity of the biological activity of the isolated proteins exhibits enormous advantages.

Når en annen ikke-denaturerende detergent tilsettes kontrollert, kan proteinet overføres fra den aggregerte form II til den monomere form III av proteinene, samtidig som også denne tilstand fullstendig uventet er reversibel når den annen, ikke-denaturerende detergent fjernes. Avhengig av henholdsvis fraværet eller nærværet av de ikke-denaturerende detergenter kan proteiner som skal isoleres fra fysiologisk aktive celler, kontrollert og manipulerbart reversibelt overføres til en hvilken som helst ønsket form som er optimal for det tilsiktede fremgangsmåtetrinn resp. anvendelsesmåte. When another non-denaturing detergent is added in a controlled manner, the protein can be transferred from the aggregated form II to the monomeric form III of the proteins, while this condition is also completely unexpectedly reversible when the other, non-denaturing detergent is removed. Depending on the absence or presence respectively of the non-denaturing detergents, proteins to be isolated from physiologically active cells can be controlled and manipulably reversibly transferred into any desired form that is optimal for the intended method step resp. method of application.

For lagringen resp. en dosert, eventuelt ønsket, redusert biologisk aktivitet av de isolerte proteiner foretrekkes en aggregert form I med tilnærmet kuleformet struktur. Kuleformen beskytter videre eventuelt i rengjøringstrinn mulige sensitive aktive sentre mot mulige denaturerende behandlingstrinn. For the storage or a dosed, possibly desired, reduced biological activity of the isolated proteins, an aggregated form I with an approximately spherical structure is preferred. The spherical shape further protects possible sensitive active centers in the cleaning step against possible denaturing treatment steps.

Den aggregerte form II vil alt etter behandlingens varighet og konsentrasjonen av en ikke-denaturerende detergent oppvise en tilnærmet skylignende (luftig) struktur. Alt etter ut-foldingsgraden kan proteinet underkastes ytterligere rensetrinn for fjerning av slike forurensninger som kan stamme fra f.eks. de vertsceller og vektorsystemer som anvendes ved fremstillingen av proteinene. Den biologiske aktivitet av proteinene blir økt. Depending on the duration of the treatment and the concentration of a non-denaturing detergent, the aggregated form II will exhibit an approximately cloud-like (airy) structure. Depending on the degree of unfolding, the protein can be subjected to further purification steps for the removal of such impurities which may originate from e.g. the host cells and vector systems used in the production of the proteins. The biological activity of the proteins is increased.

Så vel den kuleformede aggregerte form I som den skylignende aggregerte form II kan gjøres elektronoptisk synlig når det produserte enkeltprotein oppviser en molekylvekt som utgjør minst 10 000 Dalton. Når det imidlertid f.eks. ved genetisk manipulasjon, bare blir uttrykt bestemte antigen-determinanter som utgjør proteiner med få aminosyrer, kan også de aggregerte, mer proteinholdige former I og II ligge under hva som er elektronoptisk synlig. Both the globular aggregated form I and the cloud-like aggregated form II can be made electron-optically visible when the single protein produced exhibits a molecular weight of at least 10,000 Daltons. When, however, e.g. by genetic manipulation, only certain antigen determinants are expressed that make up proteins with few amino acids, the aggregated, more protein-rich forms I and II can also lie below what is electron-optically visible.

Fortrinnsvis foreligger de i form I og II aggregerte, elektroforetisk ikke-mobile proteiner i en renhet på 8 0%, fortrinnsvis 98%, dvs. at de aggregerte former I og II inneholder de ønskede proteiner i forholdsmessig homogen ansamling. Preferably, the aggregated, electrophoretically non-mobile proteins in forms I and II are present in a purity of 80%, preferably 98%, i.e. that the aggregated forms I and II contain the desired proteins in relatively homogeneous accumulation.

Aggregeringen av proteinene inne i cellene finner fortrinnsvis sted når proteinene er ekspresjonsprodukter av genetisk manipulerte celler og særlig når produktene overproduseres i disse celler med kjente metoder. Overproduksjonen kan finne sted ved at enten flere vektorer som inneholder det gen som uttrykker det ønskede protein, foreligger, eller ved at særlig sterke promotorer er koblet foran de tilsvarende gener. Når det med hensyn til de uttrykte proteiner dreier seg om slike som er oppløselige i cellen, agglomererer disse til de beskrevne kuleformede partikler. The aggregation of the proteins inside the cells preferably takes place when the proteins are expression products of genetically manipulated cells and especially when the products are overproduced in these cells using known methods. The overproduction can take place by either several vectors containing the gene expressing the desired protein being present, or by particularly strong promoters being linked in front of the corresponding genes. When the expressed proteins are soluble in the cell, these agglomerate into the spherical particles described.

De proteiner som uttrykkes av de genetisk manipulerte vertsceller, oppviser fortrinnsvis en antigenfunksjon. Disse proteiner er foretrukne prosjekter for den genmanipulerte ekspresjon av proteiner når levende vaksiner skal tilveiebringes resp. en tilsvarende aktiv immunisering via antigenene er tilsiktet. Det dreier seg herunder særlig om kappeproteiner hos patogene vira, det være seg humanpatogene eller dyrepatogene vira. The proteins expressed by the genetically manipulated host cells preferably exhibit an antigenic function. These proteins are preferred projects for the genetically engineered expression of proteins when live vaccines are to be provided or a correspondingly active immunization via the antigens is intended. This particularly concerns coat proteins of pathogenic viruses, be they human pathogenic or animal pathogenic viruses.

Fortrinnsvis dreier det seg med hensyn til de isolerte proteiner om glykoproteiner, f.eks. glykoproteinet GP 160 av HIV eller et overflateantigen av hepatitt-B-viruset. Genene for ekspresjon av de respektive proteiner kan f.eks. uttrykkes gjennom en Vaccinia-virusvektor i et pattedyrcellesystem. Fremgangsmåten til innsetting av spesifike gener i Vaccinia-virusvektorer er beskrevet av Mackett et al. (J. Virol, 49, s. 857-846, 1984). På en måte som er i og for seg kjent, blir det fremmede gen først satt inn i en plasmidvektor på nedstrømsiden av et Vaccinia-transkripsjonskontrollelement (7,5 K-promotor). Dette kimære gen i det rekombinante plasmid flankeres av Vaccinia-sekvenser som koder for det virale tymidinkinasegen (TK). Plasmidet blir deretter innført i celler, som tidligere var blitt infisert med en vill-type-Vaccinia-virus (stamme WR). Rekombinasjonen finner deretter sted i TK-området, som er homologt for såvel det virale DNA som plasmidet og tillater innsetning av det kimære gen i Vaccinia-virusets genom. Det rekombinante virus som fås på denne måte, oppviser fenotypen TK~. Det er således ikke lenger i stand til å produsere thymidinkinase og vokser i selektivmedium som inneholder 5-bromdeoksyuridin. På denne måte kan en fremstille rekombinante Vaccinia-virus som hver for seg bærer gener som produserer proteinene, eventuelt i over-produksjon, som deretter i de beskrevne pattedyrceller agglomererer til de beskrevne aggregerte former som inneholder en rekke av de enkelte proteiner. Liknende ekspresjonssystemer er kjent for andre antigene proteiner. F.eks. er der blitt konstruert enkelte Vaccinia-virus-rekombinanter som koder for overflateantigenene av hepatitt-B-virus. For dette formål ble hepatitt-B-virus-overflateantigenene uttrykt under de regulato-riske mekanismer av Vaccinia-viruset, idet der ble anvendt et antall Vaccinia-spesifikke promotorer med det mål å øke ekspresjonsnivået for de fremmede gener. Man har videre fremstilt Vaccinia-virus-rekombinanter som uttrykker mer enn et hepatitt-B-virusgen. Preferably, the isolated proteins are glycoproteins, e.g. the glycoprotein GP 160 of HIV or a surface antigen of the hepatitis B virus. The genes for expression of the respective proteins can e.g. is expressed through a Vaccinia virus vector in a mammalian cell system. The procedure for inserting specific genes into Vaccinia virus vectors is described by Mackett et al. (J. Virol, 49, pp. 857-846, 1984). In a manner known per se, the foreign gene is first inserted into a plasmid vector downstream of a Vaccinia transcriptional control element (7.5 K promoter). This chimeric gene in the recombinant plasmid is flanked by Vaccinia sequences that encode the viral thymidine kinase (TK) gene. The plasmid is then introduced into cells previously infected with a wild-type Vaccinia virus (strain WR). The recombination then takes place in the TK region, which is homologous to both the viral DNA and the plasmid and allows insertion of the chimeric gene into the genome of the Vaccinia virus. The recombinant virus obtained in this way exhibits the phenotype TK~. It is thus no longer able to produce thymidine kinase and grows in selective medium containing 5-bromodeoxyuridine. In this way, recombinant Vaccinia viruses can be produced that each carry genes that produce the proteins, possibly in overproduction, which then agglomerate in the described mammalian cells into the described aggregated forms that contain a number of the individual proteins. Similar expression systems are known for other antigenic proteins. E.g. certain Vaccinia virus recombinants have been constructed that code for the surface antigens of hepatitis B virus. For this purpose, the hepatitis B virus surface antigens were expressed under the regulatory mechanisms of the Vaccinia virus, using a number of Vaccinia-specific promoters with the aim of increasing the expression level of the foreign genes. Vaccinia virus recombinants have also been produced which express more than one hepatitis B virus gene.

Generelt skal der på dette punkt, med hensyn til fremstilling av rekombinante ekspresjonssystemer for geneteknisk fremstilling av ønskede proteiner, henvises til Winnacker, E.L. (Gene und Klone, eine Einfuhrung in die Gentechnologie, VCH-Ver-lagsgesellschaft mbH, Weinheim, 1984). In general, at this point, with regard to the production of recombinant expression systems for the genetic engineering production of desired proteins, reference should be made to Winnacker, E.L. (Gene und Klone, eine Einfuhrung in die Gentechnologie, VCH-Ver-lagsgesellschaft mbH, Weinheim, 1984).

Den biologiske funksjon av de proteiner som er uttrykt i de nevnte celler, og som kan foreligge i aggregerte former som kan inneholde mange proteiner, kan fortrinnsvis være en enzymatisk funksjon. Særlig i den aggregerte form II blir der observert en forsterket enzymatisk funksjon, som kan henge sammen med at de enzymatisk aktive sentre i den luftige, aggregerte form II ligger fritt, men at der likevel foreligger en romlig sammenheng mellom alle enzymatisk aktive proteiner, slik at sannsyneligheten for sammentreff mellom de produkter som skal omsettes ved den enzymatiske aktivitet av proteinene med de enzymatisk aktive områder økes. The biological function of the proteins which are expressed in the aforementioned cells, and which may exist in aggregated forms which may contain many proteins, may preferably be an enzymatic function. Particularly in the aggregated form II, an enhanced enzymatic function is observed, which may be related to the fact that the enzymatically active centers in the airy, aggregated form II are free, but that there is nevertheless a spatial connection between all enzymatically active proteins, so that the probability of coincidence between the products to be converted by the enzymatic activity of the proteins with the enzymatically active regions is increased.

Funksjonen til ovennevnte protein kan belyses ved det enzymatiske protein for blodkoaguleringsfaktor VIII. Den genetekniske fremstilling av F VIII er beskrevet flere ganger i teknikkens stand. De i partikkelform agglomererte proteiner kan fortrinnsvis bindes til en ytterligere substans, særlig et høymolekylært protein, ved konjugasjon, hvorved en forbedring med hensyn til stabilitet, aktivitet, in-vivo-gjenvinning og biologisk halveringstid for proteinet oppnås. Et eksempel på en slik konjugasjon mellom ønskede proteiner og ytterligere høymolekylære substanser er fremstillingen av blodkoaguleringsfaktor VIII med den fra Willebrands faktor. The function of the above-mentioned protein can be elucidated by the enzymatic protein for blood coagulation factor VIII. The genetic engineering of F VIII has been described several times in the state of the art. The proteins agglomerated in particle form can preferably be bound to a further substance, in particular a high molecular weight protein, by conjugation, whereby an improvement with regard to stability, activity, in-vivo recovery and biological half-life of the protein is achieved. An example of such a conjugation between desired proteins and additional high molecular weight substances is the production of blood coagulation factor VIII with that from Willebrand's factor.

De i partikkelform aggregerte proteiner foreligger fortrinnsvis The proteins aggregated in particle form are preferably present

i eukaryote celler, særlig dyreceller eller menneskeceller. in eukaryotic cells, especially animal cells or human cells.

I denne forbindelse er det særlig foretrukket å uttrykke de ønskede proteiner i primære cellekulturer eller Veroceller utvunnet fra cellelinjer, CHO-celler eller primære kylling-embryoblastceller. De nevnte vertsceller foretrekkes som ekspresjonssystemer, da her allerede de modifikasjoner som finner sted etter translasjonen, foreligger på den måte som er ønskelig i sluttproduktet, f.eks. glykosyleringen av de uttrykte proteiner. Disse glykosylerte proteiner klumper seg deretter sammen til partikkelform som kan anta den beskrevne sfæriske form I resp. den luftige form II etter behandling med en første, ikke-denaturerende detergent og etter behandling med en annen ikke-denaturerende detergent kan overføres i en tredje aggregert form III. In this connection, it is particularly preferred to express the desired proteins in primary cell cultures or Vero cells obtained from cell lines, CHO cells or primary chicken embryoblast cells. The aforementioned host cells are preferred as expression systems, since here already the modifications that take place after the translation are present in the way that is desirable in the final product, e.g. the glycosylation of the expressed proteins. These glycosylated proteins then clump together into particle form which can assume the described spherical form I resp. the airy form II after treatment with a first non-denaturing detergent and after treatment with a second non-denaturing detergent can be transferred into a third aggregated form III.

Veroceller er særlig foretrukket til fremstilling av glykoprotein 160 av HIV, slik det er beskrevet ovenfor. Dette cellesystem ble valgt, da det har en forholdsvis hurtig vekstrate og er særlig godt tilpasset fremstillingen av menneskelige vaksiner. Infeksjonen av Verocellene med et rekombinant Vaccinia-virus, som inneholder et gen som uttrykker det ønskede protein som skal isoleres i henhold til fremgangsmåten, resulterer i normal syntese av det ønskede protein, glykosylering av dette samt eventuelle viderebehandlingstrinn. Ved anvendelse av et dobbelt-infeksjonssystem med to rekombinanter kan mengden av det ønskede protein økes betraktelig. Dette system inneholder en rekombinant som uttrykker polymera-sen av fag T7 under styring av p7.5-promotoren av Vaccinia. Denne rekombinant blir infisert sammen med en rekombinant som inneholder T7-promotoren og glykoprotein-160-genet av HIV. T7-promotoren er en meget sterk promotor og sikrer et høyt ekspresjonsnivå, f.eks. en ca. 10-dobbelt mengde av det ønskede protein. Vero cells are particularly preferred for the production of glycoprotein 160 of HIV, as described above. This cell system was chosen, as it has a relatively fast growth rate and is particularly well adapted to the production of human vaccines. The infection of the Vero cells with a recombinant Vaccinia virus, which contains a gene expressing the desired protein to be isolated according to the method, results in normal synthesis of the desired protein, its glycosylation as well as any further processing steps. By using a double-infection system with two recombinants, the amount of the desired protein can be increased considerably. This system contains a recombinant expressing the polymerase of phage T7 under the control of the Vaccinia p7.5 promoter. This recombinant is co-infected with a recombinant containing the T7 promoter and the glycoprotein-160 gene of HIV. The T7 promoter is a very strong promoter and ensures a high expression level, e.g. an approx. 10-fold amount of the desired protein.

En alminnelig oversikt over de tallrike muligheter for å anvende bestemte vektorer for rekombinasjonen av de ønskede gener og formere disse vektorer i ønskede celler og fremstille de av fremmedgenene uttrykte proteiner, finnes eksempelvis i Genetic Engineering, 3, Academic Press, redigert av Robert Williamson, (1982) eller i Spektrum der Wissenschaft, Industrielle Mikrobiologie (1985). A general overview of the numerous possibilities for using specific vectors for the recombination of the desired genes and propagating these vectors in desired cells and producing the proteins expressed by the foreign genes can be found, for example, in Genetic Engineering, 3, Academic Press, edited by Robert Williamson, ( 1982) or in Spektrum der Wissenschaft, Industrielle Mikrobiologie (1985).

De ikke-denaturerende detergenter, hvis fravær eller nærvær i vesentlig grad virker inn på forekomsten av de fra de fysologiske aktive celler isolerte proteiner i innbyrdes forskjellige aggregerte former eller i monomer form, er fortrinnsvis en bestemt ionisk, ikke-ionisk eller zwitterionisk detergent. Det er innen proteinkjemien resp. ved proteinrense-metoder et kjent problem at valget av detergent for gjenvinnin-gen av det ønskede protein i på den ene side meget ren form og på den andre side i biologisk aktiv tilstand, hver gang represenrere en utfordring. Det har nå overraskende vist seg at de ovennevnte krav til en proteinrensemetode kan tilfredsstil-les fullt ut ved anvendelse av ikke-denaturerende detergenter av bestemt ionisk, ikke-ionisk eller zwitterionisk art, samtidig som dessuten den uventede konfigurasjonsendring av de sammenhopede proteiner som foreligger i disse proteinproduse-rende celler, i forbløffende grad optimalt oppfyller de nevnte krav. Som tidligere nevnt blir særlig i den aggregerte form II, det vil si den luftige eller fnokklignende konfigurasjon, den i det enkelte protein iboende biologiske aktivitet enten denne er av enzymatisk eller antigen natur, tydelig forsterket. The non-denaturing detergents, the absence or presence of which significantly affects the occurrence of the proteins isolated from the physiologically active cells in mutually different aggregated forms or in monomeric form, is preferably a specific ionic, non-ionic or zwitterionic detergent. It is within protein chemistry or with protein purification methods, a known problem is that the choice of detergent for the recovery of the desired protein in, on the one hand, a very pure form and, on the other hand, in a biologically active state, each time represents a challenge. It has now surprisingly been shown that the above-mentioned requirements for a protein purification method can be fully satisfied by the use of non-denaturing detergents of a specific ionic, non-ionic or zwitterionic nature, at the same time that the unexpected change in configuration of the aggregated proteins present in these protein-producing cells, to an astonishing degree, optimally meet the aforementioned requirements. As previously mentioned, particularly in the aggregated form II, that is to say the airy or fluff-like configuration, the biological activity inherent in the individual protein, whether this is of an enzymatic or antigenic nature, is clearly enhanced.

En foretrukket, ikke-ionisk detergent er oktylglykosid eller et av derivatene av denne detergent, fortrinnsvis i konsentrasjoner på 0,25-5%, særlig 1%. A preferred non-ionic detergent is octyl glycoside or one of the derivatives of this detergent, preferably in concentrations of 0.25-5%, especially 1%.

Likeså foretrukket er anvendelse av en detergent av saltet av gallesyre samt et av dens derivater, fortrinnsvis detergenten deoksycholat (DOC), som er særlig egnet i sammenheng med isoleringen og rensingen av den kuleformede konfigurasjon av mange proteiner av glykoprotein 160 av HIV, både når dette renses under anvendelse av det ovenfor angitte detergent i konsentrasjoner på 0,25-5%, fortrinnsvis 1%, og også når deoksycholatet benyttes ved anvendelse av GP 160, f.eks. i Equally preferred is the use of a detergent of the salt of bile acid as well as one of its derivatives, preferably the detergent deoxycholate (DOC), which is particularly suitable in connection with the isolation and purification of the globular configuration of many proteins of glycoprotein 160 of HIV, both when this is cleaned using the above-mentioned detergent in concentrations of 0.25-5%, preferably 1%, and also when the deoxycholate is used when using GP 160, e.g. in

forbindelse med aluminiumhydroksid. compound with aluminum hydroxide.

Det ikke-denaturerende detergent som det foretrekkes å anvende for overføringen av de aggregerte proteiner fra form II til den monomere form III, er en zwitterionisk detergent fra ZWITTERGENT-rekken, likeledes i konsentrasjoner på 0,25-5%, fortrinnsvis 1%. ZWITTERGENT<R->detergenter er syntetiske zwitterioniske detergenter som er blitt kjent som sulfobetainer og har følgende generelle strukturformel: The non-denaturing detergent that is preferred to be used for the transfer of the aggregated proteins from form II to the monomeric form III is a zwitterionic detergent from the ZWITTERGENT series, likewise in concentrations of 0.25-5%, preferably 1%. ZWITTERGENT<R->detergents are synthetic zwitterionic detergents that have become known as sulfobetaines and have the following general structural formula:

Proteinene i den aggregerte form I egner seg, som tidligere angitt, særlig godt for den stabile lagring av proteinene. De kan imidlertid også anvendes for de ønskede biokjemiske omsetninger eller reaksjoner, da også de sammenhopede proteiner i den aggregerte form I oppviser biologisk aktivitet. The proteins in the aggregated form I are, as previously stated, particularly suitable for the stable storage of the proteins. However, they can also be used for the desired biochemical reactions or reactions, as the aggregated proteins in the aggregated form I also exhibit biological activity.

Anvendelsen av proteinene i den aggregerte form II finner fortrinnsvis sted for å forsterke proteinets biologiske funksjon. The use of the proteins in the aggregated form II preferably takes place to enhance the protein's biological function.

En hvilken som helst aggregert form av proteinene egner seg for en terapeutisk, profylaktisk eller diagnostisk anvendelse, både i de beskrevne kuleformede, fnokkaktige eller monomere former og i de ovenfor beskrevne konjugerte former med ytterligere høymolekylære proteiner. Any aggregated form of the proteins is suitable for a therapeutic, prophylactic or diagnostic application, both in the described globular, tuft-like or monomeric forms and in the above-described conjugated forms with additional high molecular weight proteins.

En anvendelse av det aggregerte protein ligger i å oppnå An application of the aggregated protein lies in obtaining

stoffer til kvalitativ påvisning og kvantitativ bestemmelse av slike stoffer i kroppsvæsker. substances for qualitative detection and quantitative determination of such substances in body fluids.

Den foreliggende oppfinnelse angår en fremgangsmåte til isolering og rensing av en rekke proteiner bestående partikler, som i avhengighet av nærvær eller fravær av en ikke-denaturerende detergent foreligger i morfologisk forskjellige konfigura-sjoner, som de kan overføres reversibelt mellom, som produseres i celler, fortrinnsvis genetisk manipulerte celler, idet de på overflaten forekommende forurensninger av de proteiner som foreligger i den første aggregerte form I, i et første rensetrinn fjernes, proteinene deretter ved anvendelse av et ikke-denaturerende detergent overføres i en annen aggregert form II, de i denne aggregerte form II tilgjengelig forurensninger fjernes i et annet rensetrinn, proteinene ved tilsetning av en annen, ikke-denaturerende detergent gjøres overførbare i en monomer form III og proteinene ved fjerning av de ikke-denaturerende detergenter igjen blir reversibelt overførbare i de aggregerte former I og II. The present invention relates to a method for the isolation and purification of a number of particles consisting of proteins, which, depending on the presence or absence of a non-denaturing detergent, exist in morphologically different configurations, between which they can be transferred reversibly, which are produced in cells, preferably genetically manipulated cells, in which the surface contaminants of the proteins present in the first aggregated form I are removed in a first purification step, the proteins are then, by using a non-denaturing detergent, transferred into another aggregated form II, those in this aggregated form II available contaminants are removed in another purification step, the proteins by adding another, non-denaturing detergent are made transferable in a monomeric form III and the proteins by removal of the non-denaturing detergents again become reversibly transferable in the aggregated forms I and II .

De enorme fordeler ved denne fremgangsmåte er i det vesentlige drøftet ovenfor og ligger i den reversible overførbarhet av de forskjellige aggregerte former av proteinet i hverandre. The enormous advantages of this method are essentially discussed above and lie in the reversible transferability of the different aggregated forms of the protein to each other.

Den tilnærmet kuleformede form I tillater som følge av den kompakte anordning av proteinene for eksempel en lettere første rensing av for eksempel mediebestanddeler fra overflaten av de tilnærmet kuleformede proteinagglomerater. Når deretter det annet rensetrinn på forurensninger som i den aggregerte form I er særdeles lett tilgjengelige som følge av utvidelser, er avsluttet, kan man igjen reversibelt fremstille den aggregerte form I ved uttrekning av den ikke-denaturerende detergent. I denne form ligger de f.eks. aktive sentre av proteinene spesielt godt beskyttet i det indre av de kuleformede proteinagglomerater, slik at en særdeles god lagring av proteinene i den aggregerte form I er mulig. Som allerede nevnt har den aggregerte form II foruten fordelene med hensyn til lettere rensing av cellebestanddeler av vertscellen, som proteinene uttrykkes i, resp. av vektorene, som rekombinativt inneholder genet for de isolerte proteiner, den ytterligere fordel at den biologiske aktivitet av proteinene kan forsterkes vesentlig som følge av den romlige nærhet av mange aktive sentre i den spesielle aggregerte tilstand av proteinet. As a result of the compact arrangement of the proteins, the approximately spherical form I allows, for example, an easier initial cleaning of, for example, media constituents from the surface of the approximately spherical protein agglomerates. When the second cleaning step of contaminants which are particularly easily accessible in the aggregated form I as a result of expansions has then been completed, the aggregated form I can again be produced reversibly by extracting the non-denaturing detergent. In this form, they are e.g. active centers of the proteins particularly well protected in the interior of the spherical protein agglomerates, so that a particularly good storage of the proteins in the aggregated form I is possible. As already mentioned, the aggregated form II has, in addition to the advantages with regard to easier purification of cellular components of the host cell, in which the proteins are expressed, resp. of the vectors, which recombinantly contain the gene for the isolated proteins, the further advantage that the biological activity of the proteins can be significantly enhanced as a result of the spatial proximity of many active centers in the special aggregated state of the protein.

Alt etter forsøksarrangement blir celler eller cellemembraner avsentrifugert og ekstrahert med en bufferoppløsning som inneholder en ikke-denaturerende detergent samt et proteasehindrende system, eller (når den nevnte høymolekylære substans avgis fra cellene i overløpet) overløpet blandet med det ikke-denaturerende detergent og det proteasehindrende system, idet den ikke-denaturerende detergent, f.eks. deoksycholat (DOC), foreligger i konsentrasjoner på 0,25-5%, fortrinnsvis 1%. Depending on the experimental arrangement, cells or cell membranes are centrifuged and extracted with a buffer solution containing a non-denaturing detergent and a protease-inhibiting system, or (when the aforementioned high-molecular-weight substance is released from the cells in the overflow) the overflow mixed with the non-denaturing detergent and the protease-inhibiting system , as the non-denaturing detergent, e.g. deoxycholate (DOC), present in concentrations of 0.25-5%, preferably 1%.

Når det dreier seg om rensing og isolering, blir de således oppnådde oppløsninger oppkonsentrert og skilt fra ikke-hydrokarbonholdige forurensninger av et glykoprotein ved hjelp av lektiner som er koblet til en faststoffgrunnmasse. Den brukte, ikke-denaturerende detergent har ved dette skritt i tillegg til den egenskap å overføre stoffet i form II, evnen til å hindre en uspesifik adsorpsjon. Elueringen utføres med glykosider. When it comes to purification and isolation, the solutions thus obtained are concentrated and separated from non-hydrocarbon-containing contaminants by a glycoprotein with the help of lectins which are linked to a solid matrix. In this step, the non-denaturing detergent used has, in addition to the property of transferring the substance in form II, the ability to prevent non-specific adsorption. The elution is carried out with glycosides.

Et ytterligere vesentlig rensetrinn kan oppnås ved spesiell binding av den for-rensede høymolekylære substans til en immunadsorpsjonskolonne. Etter tilstrekkelig vasking med en buffer blir der eluert med et chaotropt middel, f.eks. urea eller KSCN (2-8 M, fortrinnsvis 3M). Ved direkte etterfølgende dialyse mot en buffer blir stoffet overført i partikkelform I. Dersom det er nødvendig, blir den høymolekylære substans overført i den monomere form II ved hjelp av en bestemt zwitterionisk detergent og renset ved ionevekslerkromatografi. Ved dialyse mot en detergentfri buffer blir de aggregerte former II eller I igjen fremstilt fra den monomere form III. De forskjellige aggregerte former i de beskrevne celle-produserte proteiner kan gjøres elektronmikroskopisk synlige. A further essential purification step can be achieved by special binding of the pre-purified high molecular weight substance to an immunoadsorption column. After sufficient washing with a buffer, elution is carried out with a chaotropic agent, e.g. urea or KSCN (2-8 M, preferably 3M). With direct subsequent dialysis against a buffer, the substance is transferred in particle form I. If necessary, the high molecular weight substance is transferred in monomeric form II with the help of a specific zwitterionic detergent and purified by ion exchange chromatography. By dialysis against a detergent-free buffer, the aggregated forms II or I are again produced from the monomeric form III. The different aggregated forms in the described cell-produced proteins can be made electron microscopically visible.

Oppfinnelsen skal illustreres i detalj ved hjelp av de følgende The invention shall be illustrated in detail by means of the following

figurer og eksempler. figures and examples.

Fig. 1 viser et elektronmikroskopisk fotografi av glykoproteinet 160 i Tris-buffer ved 278 640 gangers forstørrelse. Fig. 1 shows an electron microscopic photograph of glycoprotein 160 in Tris buffer at 278,640 times magnification.

Proteinene foreligger i den kompakte, aggregerte kuleform I. The proteins exist in the compact, aggregated globular form I.

Fig. 2 viser et elektronmikroskopisk fotografi av glykoproteinet 160 fra HIV i en buffer som inneholder 1% DOC. Fig. 2 shows an electron microscopic photograph of the glycoprotein 160 from HIV in a buffer containing 1% DOC.

Proteinene foreligger i den luftige, fnokkaktige aggregerte form II. The proteins exist in the airy, tuft-like aggregated form II.

Eksempel 1 Example 1

Isolering og rensing av glykoprotein 160 fra HIV. Isolation and purification of glycoprotein 160 from HIV.

Isoleringen og rensingen av glykoprotein 160 fra HIV fant sted etter følgende skjema: 1. Genteknisk manipulerte Veroceller, som produserer glyprotein 160 av HIV, ble sentrifugert ved en ønsket densitet. 2. Den pellet som ble utvunnet ved sentrifugering, ble resuspendert i TBS pH 7,4 pluss 1 mM CuS04 + 0,5 mM ZnCl2. 3. Den resuspenderte pellet ble underkastet en ekstraksjon med 50 mM Tris-HCl pH 8,3, 1% DOC og 1 mM CuS04 + 0,5 mM ZnCl2. Suspensjonen ble karet ved sentrifugering i 30 min. ved 25°C. 4. Den ovenpåflytende væske ble underkastet lentil/lektin kromatografi, hvor man adsorberte de ønskede proteiner på en søyle og vasket med DOC-buffer. Proteinene ble eluert med 5% metylglykosid i en vaskebuffer. 5. Eluatet fra lektinkolonnen ble fortynnet i en Tween-buffer. Deretter fulgte en adsorpsjon på en immunaffinitets-kromatografikolonne, som ble vasket med TBS-Tween og TBS. En DNA- og RNA-behandling fulgte. Der ble eluert med 3M KSCN og dialysert mot detergentfrie buffere. 6. Det dialyserte eluat ble justert med 1% Zwittergent og 5% betain og deretter adsorbert på en mono-Q-grunnmasse som ioneveksler og deretter eluert med en KSCN-gradient og dialysert mot en buffer. 7. En annen lentil/lektin-kromatografi med adsorpsjon og vasking med detergentfri buffer ble utført. Elueringen ble utført med 5% metylglykosid, fulgt av en dialyse mot TBS. Ved dette fremgangsmåtetrinn fant der sted en konsentre-ring av proteinet. The isolation and purification of glycoprotein 160 from HIV took place according to the following scheme: 1. Genetically manipulated Vero cells, which produce glycoprotein 160 of HIV, were centrifuged at a desired density. 2. The pellet recovered by centrifugation was resuspended in TBS pH 7.4 plus 1 mM CuSO 4 + 0.5 mM ZnCl 2 . 3. The resuspended pellet was subjected to an extraction with 50 mM Tris-HCl pH 8.3, 1% DOC and 1 mM CuSO 4 + 0.5 mM ZnCl 2 . The suspension was cleared by centrifugation for 30 min. at 25°C. 4. The supernatant liquid was subjected to lentil/lectin chromatography, where the desired proteins were adsorbed on a column and washed with DOC buffer. The proteins were eluted with 5% methylglycoside in a wash buffer. 5. The eluate from the lectin column was diluted in a Tween buffer. This was followed by adsorption on an immunoaffinity chromatography column, which was washed with TBS-Tween and TBS. A DNA and RNA treatment followed. There was eluted with 3M KSCN and dialyzed against detergent-free buffers. 6. The dialyzed eluate was adjusted with 1% Zwittergent and 5% betaine and then adsorbed on a mono-Q matrix as an ion exchanger and then eluted with a KSCN gradient and dialyzed against a buffer. 7. Another lentil/lectin chromatography with adsorption and washing with detergent-free buffer was performed. The elution was performed with 5% methylglycoside, followed by a dialysis against TBS. At this method step, a concentration of the protein took place.

Eksempel 2 Example 2

Med glykoproteiner (GP) 160 av HIV renset ved den fremgangsmåte som er beskrevet i eksempel 1, ble der utført en virkningsprøve som viser den immunogene virkning av glykoprotein 160 i kompakt, kuleform I samt i luftig, fnokkaktig form II. With glycoproteins (GP) 160 of HIV purified by the method described in example 1, an efficacy test was carried out which shows the immunogenic effect of glycoprotein 160 in compact, globular form I as well as in airy, fluffy form II.

For hver vaksine ble der fremstilt 5 fortynninger med henholdsvis lOjug, 2,5/ig, 0,625/zg, 0,158/ng og 0,04 /xg GP 160 pr. ml. 10 BALBc-mus ble subkutant immunisert med hver fortynning. For hver vaksineart trengtes det derfor 50 dyr. I det foreliggende forsøk ble fire forskjellige adsorpsjonsmetoder utprøvet. 1. GP 160 + 0,2% A1(0H)3 2. [GP 160 + 0,25% DOC] + 0,2% A1(0H)3 3. [GP 160 + 0,25% DOC] + [0,2% A1(0H)3 + 0,25% DOC] For each vaccine, 5 dilutions were prepared with respectively 10 µg, 2.5 µg, 0.625 µg, 0.158 µg and 0.04 µg GP 160 per ml. 10 BALBc mice were subcutaneously immunized with each dilution. For each vaccine type, 50 animals were therefore needed. In the present experiment, four different adsorption methods were tested. 1. GP 160 + 0.2% A1(0H)3 2. [GP 160 + 0.25% DOC] + 0.2% A1(0H)3 3. [GP 160 + 0.25% DOC] + [ 0.2% A1(0H)3 + 0.25% DOC]

4. [GP 160 + 0,25% DOC] + [0,2% Al(OH)3) vasket] 4. [GP 160 + 0.25% DOC] + [0.2% Al(OH)3) washed]

Alle dyrene ble immunisert subkutant med 1 ml, og etter seks uker ble hvert dyr tappet for blod. Serumet fra hvert dyr ble undersøkt med anti-HIV ELISA (SORIN) for nærvær av antistoffer mot GP 160, idet den effektive dose 50 av GP 160 for hver vaksineart ble beregnet ved hjelp av de reagerende dyr ved den kjente Spearman-Kaerber metode. All animals were immunized subcutaneously with 1 ml, and after six weeks each animal was bled. The serum from each animal was examined with anti-HIV ELISA (SORIN) for the presence of antibodies against GP 160, the effective dose 50 of GP 160 for each vaccine type being calculated using the reacting animals by the known Spearman-Kaerber method.

Resultater Results

1. I-V 10 ug GP 160/ml + 0,2% Al(OH)3 s.c. 1. I-V 10 ug GP 160/ml + 0.2% Al(OH)3 s.c.

2. VI-X 10 /ig GP 160/ml + DOC + 0,2% Al (OH) 3 s.c. 2. VI-X 10 /ig GP 160/ml + DOC + 0.2% Al (OH) 3 s.c.

ED50: 3,3 /ug/ml GP 160 ED50: 3.3 /ug/ml GP 160

3. XI-XV 10 /zg GP 160/ml + DOC + DOC-Al(OH)3 s.c. 3. XI-XV 10 /zg GP 160/ml + DOC + DOC-Al(OH)3 s.c.

ED50: 1,09 ng/ ial GP 160ED50: 1.09 ng/ial GP 160

4. XVI-XX 10 ixg GP 160/ml + DOC + Al(OH)3 vasket s.c. 4. XVI-XX 10 ixg GP 160/ml + DOC + Al(OH)3 washed s.c.

Resultatet av forsøket med virkningen av glykoprotein 160 av HIV viser den forskjellige immunogenitet overfor glykoprotein 160 avhengig av den aggregerte form. ED50-verdien, som betegner den mengde av den anvendte substans hvor 50% av de vaksinerte dyr serokonverterer, reduseres betraktelig når detergenten DOC foreligger. I nærvær av detergenten DOC foreligger glykoproteinet 160 i den aggregerte form II, hvor den antigene epitop på den ene side ligger fritt og på den andre side henger sammen i rommet, slik at en forsterket immunrespons fås. The result of the experiment with the effect of glycoprotein 160 of HIV shows the different immunogenicity towards glycoprotein 160 depending on the aggregated form. The ED50 value, which denotes the quantity of the substance used at which 50% of the vaccinated animals seroconvert, is reduced considerably when the detergent DOC is present. In the presence of the detergent DOC, the glycoprotein 160 is present in the aggregated form II, where the antigenic epitope on the one hand is free and on the other hand hangs together in space, so that an enhanced immune response is obtained.

Oppfinnelsen er vist med hensyn til glykoprotein 160 av HIV som et eksempel. Den er imidlertid på ingen måte begrenset til dette protein. The invention is illustrated with respect to glycoprotein 160 of HIV as an example. However, it is by no means limited to this protein.

Claims (8)

1. Fremgangsmåte til isolering og rensing av glykoprotein GP 160 av HIV produsert i celler, karakterisert ved at de forurensninger som befinner seg på overflaten, i et første rensetrinn fjernes fra GP 160 som foreligger i en første aggregert form I, at GP 160 under anvendelse av en ikke-denaturerende detergent valgt fra bestemte ikke-ioniske eller zwitterioniske detergenter deretter blir overført til en andre aggregert form II, og at i denne aggregerte form II blir tilgjengelige forurensninger fjernet i et andre rensetrinn og eventuelt at ved tilsetning av en andre, ikke-denaturerende detergent blir GP 160 overført til en monomer form III, og at dette ved fjerning av den ikke-denaturerende detergent igjen er reversibelt overførbart til den aggregerte form I eller II.1. Method for isolating and purifying glycoprotein GP 160 of HIV produced in cells, characterized in that the contaminants that are on the surface are removed in a first cleaning step from GP 160 which is in a first aggregated form I, that GP 160 using a non-denaturing detergent selected from certain non-ionic or zwitterionic detergents is then transferred to a second aggregated form II, and that in this aggregated form II available contaminants are removed in a second cleaning step and possibly that by adding a second, non-denaturing detergent, GP 160 is transferred to a monomeric form III, and that this by removal of the non-denaturing detergent is again reversibly transferable to the aggregated form I or II. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at der som den første, ikke-ioniske detergent anvendes oktylglukosid eller et derivat av dette, fortrinnsvis i en konsentrasjon på 0,25-5 %, særlig 1 %, og at der som den andre zwitterioniske detergent anvendes en fra rekken ZWITTERGENT, fortrinnsvis i en konsentrasjon på 0,25-5 %, særlig 1 %.2. Method as stated in claim 1, characterized in that octylglucoside or a derivative thereof is used as the first, non-ionic detergent, preferably in a concentration of 0.25-5%, especially 1%, and that as the other zwitterionic detergent is used one from the ZWITTERGENT range, preferably in a concentration of 0.25-5%, especially 1%. 3. Fremgangsmåte som angitt i krav l, karakterisert ved at der som detergent anvendes et salt av gallesyre eller et derivat av dette, fortrinnsvis deoksycholat (DOC), fortrinnsvis i en konsentrasjon på 0,25-5 %, særlig 1 %.3. Method as stated in claim 1, characterized in that a salt of bile acid or a derivative thereof, preferably deoxycholate (DOC), preferably in a concentration of 0.25-5%, especially 1%, is used as detergent. 4. Fremgangsmåte som angitt i krav 1, karakterisert ved at den reversible overføring av de aggregerte former I, II og III blir gjen-nomført flere ganger for renseformål.4. Method as stated in claim 1, characterized in that the reversible transfer of the aggregated forms I, II and III is carried out several times for purification purposes. 5. Fremgangsmåte som angitt i krav 1, karakterisert ved at GP 160 er et ekspre-sjonsprodukt av genteknisk manipulerte celler, særlig slike som overproduserer proteinene.5. Method as stated in claim 1, characterized in that GP 160 is an expression product of genetically engineered cells, especially those that overproduce the proteins. 6. Fremgangsmåte som angitt i et av kravene 1 eller 5, karakterisert ved at cellene er eukaryote, fortrinnsvis dyreceller eller humane celler.6. Method as stated in one of claims 1 or 5, characterized in that the cells are eukaryotic, preferably animal cells or human cells. 7. Fremgangsmåte som angitt i krav 6, karakterisert ved at cellene fås fra primære cellekulturer eller fra cellelinjer, særlig Veroceller, CHO-celler eller primære kyllingembryo-fibroblastceller.7. Method as stated in claim 6, characterized in that the cells are obtained from primary cell cultures or from cell lines, in particular Vero cells, CHO cells or primary chicken embryo fibroblast cells. 8. Anvendelse av glykoprotein GP 160 fra HIV i form II for å oppnå stoffer til kvalitativ påvisning eller kvantitativ bestemmelse in vitro av de nevnte stoffer i kroppsvæsker.8. Use of glycoprotein GP 160 from HIV in form II to obtain substances for qualitative detection or quantitative determination in vitro of the said substances in body fluids.
NO885738A 1987-12-23 1988-12-23 Process for the preparation and purification of amphiphilic proteins in aggregate form produced in cells and their use NO175782C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87119172A EP0321606B1 (en) 1987-12-23 1987-12-23 Cellular amphipatic proteins in aggregated forms, and procedure for the production and purification of these proteins

Publications (4)

Publication Number Publication Date
NO885738D0 NO885738D0 (en) 1988-12-23
NO885738L NO885738L (en) 1989-06-26
NO175782B true NO175782B (en) 1994-08-29
NO175782C NO175782C (en) 1994-12-07

Family

ID=8197541

Family Applications (1)

Application Number Title Priority Date Filing Date
NO885738A NO175782C (en) 1987-12-23 1988-12-23 Process for the preparation and purification of amphiphilic proteins in aggregate form produced in cells and their use

Country Status (8)

Country Link
EP (1) EP0321606B1 (en)
JP (1) JP2656098B2 (en)
AT (1) ATE95188T1 (en)
DE (1) DE3787654D1 (en)
DK (1) DK628188A (en)
ES (1) ES2059355T3 (en)
FI (2) FI96864C (en)
NO (1) NO175782C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672895B1 (en) * 1991-02-15 1995-05-12 Transgene Sa PROCESS FOR THE PURIFICATION OF A HIGHLY GLYCOSYLATED PROTEIN.
FR2692898B1 (en) * 1992-06-30 1995-06-02 Centre Nat Rech Scient Method for obtaining membrane proteins, and use of these proteins for diagnostic or vaccination purposes.
US5914390A (en) * 1997-05-12 1999-06-22 Celtrix Pharmaceuticals, Inc. Methods for increasing yields of recombinant proteins
DE19939246A1 (en) * 1999-08-19 2001-02-22 Phasys Gmbh M Refolding membrane proteins into their native or active form comprises solubilizing the protein in a first detergent and replacing the first detergent with a second detergent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233700A (en) * 1984-12-24 1986-10-17 ジエネンテク,インコ−ポレイテツド Molecularly cloned aids related polypeptide
CN86100979A (en) * 1985-02-07 1986-12-17 史密丝克莱恩贝克曼公司 The preparation method of malaria vaccine
US4734362A (en) * 1986-02-03 1988-03-29 Cambridge Bioscience Corporation Process for purifying recombinant proteins, and products thereof
JPS62198627A (en) * 1986-02-26 1987-09-02 Biseibutsu Kagaku Kenkyusho:Kk Aujesky's disease solubilizing antigen vaccine

Also Published As

Publication number Publication date
FI96864B (en) 1996-05-31
ATE95188T1 (en) 1993-10-15
FI97058B (en) 1996-06-28
NO175782C (en) 1994-12-07
EP0321606B1 (en) 1993-09-29
ES2059355T3 (en) 1994-11-16
DK628188D0 (en) 1988-11-10
NO885738L (en) 1989-06-26
FI97058C (en) 1996-10-10
JP2656098B2 (en) 1997-09-24
FI953141A0 (en) 1995-06-22
DE3787654D1 (en) 1993-11-04
JPH02798A (en) 1990-01-05
NO885738D0 (en) 1988-12-23
FI885629A0 (en) 1988-12-02
FI96864C (en) 1996-09-10
EP0321606A1 (en) 1989-06-28
FI885629A (en) 1989-06-24
FI953141A (en) 1995-06-22
DK628188A (en) 1989-06-24

Similar Documents

Publication Publication Date Title
Kim et al. One-step chromatographic purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae
EA022841B1 (en) Production of heterologous polypeptides in microalgae, microalgal extracellular bodies, compositions, and methods of making and uses thereof
JPH09500538A (en) High level expression, purification and regeneration of Neisseria meningitidis outer membrane group B porin protein
SK217292A3 (en) Vaccine containing a pc protein useful in prevention of lyme disease, method of b.burgdorferi protein purification, diagnostic agent detecting b.burgdorferi antigens and method of detecting b.burgdorferi antigenes in humoralis
JPH0450294B2 (en)
US9868762B2 (en) Method for purifying virus-like particles (VLP)
EP0252588A2 (en) Process for the isolation and purification of P. falciparum CS protein expressed in recombinant E. coli, and its use as a vaccine
KR102457556B1 (en) Means and methods for the treatment of HSV
NO175782B (en) Process for the preparation and purification of amphiphilic proteins in aggregate form produced in cells and their use
JPS62500072A (en) Protein purification method
CN111378017B (en) Subunit F protein of peste des petits ruminants virus and preparation method and application thereof
CN112402598A (en) General subunit vaccine for riemerella anatipestifer infection
Carrascosa et al. Production and purification of recombinant African swine fever virus attachment protein p12
JPH10508479A (en) Production of recombinant peptides as natural hydrophobic peptide analogs
KR20130136883A (en) A novel method for purifying long-acting human growth hormone
JP2866134B2 (en) Functional polypeptide
TWI776048B (en) Recombinant protein for preventing swine fever virus infection and composition and cell comprising the same.
CN111808202B (en) Clostridium perfringens gene engineering subunit vaccine, preparation method and application thereof
CN114891121B (en) Bivalent virus-like particle vaccine for resisting PEDV and PRV and preparation method thereof
CN112592410B (en) Canine adenovirus gene engineering subunit vaccine, preparation method and application thereof
JPH08505389A (en) Method for purifying and refolding FG glycoprotein of human RS virus
US20240050559A1 (en) Method of making virus-like particle
HU210606A9 (en) Cellular amphipathical proteins in aggregated forms and process for isolating and purifying these proteins
CN117462666B (en) Immune composition product for preventing or treating varicella-zoster virus related diseases and preparation method thereof
JPH02500640A (en) A method of producing a polypeptide of interest in a host organism transformed with a recombinant DNA comprising a nucleic acid sequence encoding the polypeptide and a protein with affinity for the sugar. Applications, especially in the production of vaccine compositions