NO174577B - Procedure for the manufacture of square tubes of coated steel bands - Google Patents

Procedure for the manufacture of square tubes of coated steel bands Download PDF

Info

Publication number
NO174577B
NO174577B NO902399A NO902399A NO174577B NO 174577 B NO174577 B NO 174577B NO 902399 A NO902399 A NO 902399A NO 902399 A NO902399 A NO 902399A NO 174577 B NO174577 B NO 174577B
Authority
NO
Norway
Prior art keywords
pipe
square tubes
profile
angles
folds
Prior art date
Application number
NO902399A
Other languages
Norwegian (no)
Other versions
NO902399D0 (en
NO902399L (en
NO174577C (en
Inventor
Lars Ingvar Ingvarsson
Original Assignee
Coil Processing Systems Cps
Ortic Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coil Processing Systems Cps, Ortic Ab filed Critical Coil Processing Systems Cps
Priority to NO902399A priority Critical patent/NO174577C/en
Publication of NO902399D0 publication Critical patent/NO902399D0/en
Publication of NO902399L publication Critical patent/NO902399L/en
Publication of NO174577B publication Critical patent/NO174577B/en
Publication of NO174577C publication Critical patent/NO174577C/en

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

Det har vist seg at tynnveggede firkantrør får stadig større anvendelse innen f.eks. bygge—, møbel— og bilindustrien. Rørene kan være enten kvadratiske eller mer eller mindre rektangulære i tverrsnittet. Med tynnveggede rør mener man her rør med godstykkelser opp til 3— 4 mm. Brukslengden varierer naturligvis innen vide grenser, men ut fra lagrings—, transport— og spillsynspunkt vil man naturligvis ha lange utgangsrør. It has been shown that thin-walled square tubes are increasingly used in e.g. construction, furniture and automotive industries. The pipes can be either square or more or less rectangular in cross-section. Thin-walled pipes here mean pipes with material thicknesses of up to 3-4 mm. The length of use naturally varies within wide limits, but from the point of view of storage, transport and play, you naturally want long output pipes.

Konvensjonelt fremstilles firkantrør ved bukking av stålbånd eller stålplater. I et første trinn formes båndet eller platen til et stort sett rundt rør med en åpning mellom de bukkede langsidene i rørets lengderetning på omtrent 2—3 ganger platetykkelsen. Denne åpningen fylles deretter ved hjelp av sveising, som oftest TIG—sveising. Denne sveisingen der forholdsvis så mye materiale skal tilføyes de tynne skjøtefugene er meget tidskrevende og bestemmer helt den høyeste hastigheten med hvilken røret kan fremstilles. Sveisen må naturligvis være av meget god kvalitet da anleggsflåtenes bredde ikke er større enn rørets godstykkelse. Etter sveisingen formes det runde røret til firkantrør ved fortsatt rulleforming. Conventionally, square tubes are produced by bending steel strips or steel plates. In a first step, the band or plate is shaped into a large set of round tubes with an opening between the bent long sides in the tube's longitudinal direction of approximately 2-3 times the plate thickness. This opening is then filled using welding, most often TIG welding. This welding, where relatively so much material must be added to the thin joints, is very time-consuming and completely determines the highest speed at which the pipe can be manufactured. The weld must of course be of very good quality, as the width of the construction raft is not greater than the thickness of the pipe. After welding, the round tube is formed into a square tube by continued roll forming.

Den største ulempen med den konvensjonelle fremstillingen er at man i forbindelse med sveisingen når opptil så høye temperaturer i området for skjøtene at et eventuelt overflatebelegg ødelegges, enten overflatebelegget består av metall, såsom f.eks. sink, aluminium, nikkel eller kopper, eller blandinger av disse eller industrielt malte flater. Med industrielt malte flater pleier man i denne forbindelse mene flater som er f.eks. overtrukket med PVC-plast, polyester eller akryl. The biggest disadvantage of the conventional production is that, in connection with the welding, temperatures reach such high temperatures in the area of the joints that any surface coating is destroyed, whether the surface coating consists of metal, such as e.g. zinc, aluminium, nickel or copper, or mixtures of these or industrially painted surfaces. Industrially painted surfaces in this context usually mean surfaces that are e.g. coated with PVC plastic, polyester or acrylic.

Belegget på utsiden av rørene kan naturligvis utbedres med mer eller mindre godt resultat, men utbedringen er dyr. Derimot har det vist seg nær sagt umulig å gjenopprette et godtagbart beskyttende belegg på rørets innside. Innsidene kan, avhengig av hva rørene skal benyttes til, utsettes for f.eks. luft som er mer eller mindre forurenset og fuktig, eller gjennomstrømmende medier som ødelegger et rør som har en beskyttelse som ikke er fullgod for formålet. Av denne grunn utsetter man iblant beleggingen til etter sveisingen, og da skjer den som oftest ved dobbeltbelegging. Dette er en kostbar og tidkrevende prosess, det er jo ovnenes dybde som bestemmer den maksimale rørlengden. The coating on the outside of the pipes can of course be improved with more or less good results, but the improvement is expensive. In contrast, it has proven almost impossible to restore an acceptable protective coating on the inside of the pipe. Depending on what the pipes are to be used for, the insides can be exposed to e.g. air that is more or less polluted and humid, or flowing media that destroys a pipe that has a protection that is not fully adequate for the purpose. For this reason, the coating is sometimes postponed until after welding, and then it most often occurs with double coating. This is an expensive and time-consuming process, as it is the depth of the furnace that determines the maximum pipe length.

Et annet synspunkt på fremstillingen av firkantrør er at man ut fra lagrings- og økonomisk synspunkt ønsker å starte med stålbånd med bestemt bredde, tykkelse og overflatebelegg ved slissing av bredere plateruller med tykkelse og flatebelegg som tilsvarer det ferdige rørets, og deretter i direkte sammenheng å forme og sammenføye røret og kappe det i hensiktsmessige lengder og til og med å utføre en viss etterbehandling. Another point of view on the production of square pipes is that, from a storage and economic point of view, you want to start with steel strips of a certain width, thickness and surface coating by slitting wider plate rolls with a thickness and surface coating corresponding to that of the finished pipe, and then in a direct connection to shaping and joining the pipe and cutting it to suitable lengths and even carrying out some finishing.

Det har nå overraskende vist seg at man kan kontinuerlig fremstille firkantrør fra stålbånd, f.eks. slisset fra brede håndruller med ønsket tykkelse og helt ferdigbehandlet flate ved å utbrede skjøtens anleggsflater, la møtende belegg smelte sammen etter en rask oppvarming med laseroppvarmere og samtidig bygge inn i røret slike spenninger at man får en holdbar skjøt og der skjøteområdets flatebelegg beholder sin beskyttende og utseendemessige effekt uten nevneverdig påvirkning. It has now surprisingly turned out that you can continuously produce square tubes from steel strips, e.g. slotted from wide hand rollers with the required thickness and a fully finished surface by spreading out the contact surfaces of the joint, allowing the facing coatings to fuse together after a rapid heating with laser heaters and at the same time building such stresses into the pipe that a durable joint is obtained and where the surface coating of the joint area retains its protective and appearance effect without significant impact.

Oppfinnelsen er presisert i kravene og forklares nærmere under henvisning til tegningen, der The invention is specified in the claims and explained in more detail with reference to the drawing, there

fig. 1 viser et firkantrør i perspektiv, og fig. 1 shows a square tube in perspective, and

fig. 2 viser et tverrsnitt av den kontinuerlig fremstilte rørprofilen i det øyeblikk som laseroppvarmingen settes inn. fig. 2 shows a cross-section of the continuously produced pipe profile at the moment when the laser heating is introduced.

Ved fremstilling av firkantrør 1 utgår man fra et stålbånd hvis tykkelse er lik det ferdige rørets 1 godstykkelse. Bredden gjøres lik rørets 1 omkrets samt med tillegg for de to nedbøyningene 5. Båndet bukkes deretter i en kontinuerlig rulleformingslengde som består av et antall motstilte rullepar, anordnet i grupper etter hverandre og slik at båndet systematisk formes til beregnet tverrsnitt på røret 1. For på hensiktsmessig måte å kunne varme opp de belegningsflater 13 som skal sammensmeltes ved laseroppvarming, samt deretter bygge inn de spenninger i det ferdige røret som hjelper til med å holde skjøten 4 sammen ved f.eks. bøye-påkjenninger på røret 1, former man først en hensiktsmessig profil 6. Bredden på profilens 6 bunndel 7 gjøres lik rørets 1 bunn 2, profilens 6 sidedeler 8, lik rørets 1 sider 3, og profilens 6 overdeler 9, lik halve bredden på rørets 1 bunn When manufacturing square pipe 1, one starts from a steel strip whose thickness is equal to the material thickness of the finished pipe 1. The width is made equal to the circumference of the pipe 1 plus an addition for the two deflections 5. The strip is then bent into a continuous roll forming length which consists of a number of opposed pairs of rolls, arranged in groups one after the other and so that the strip is systematically shaped to the calculated cross-section of the pipe 1. For on appropriate way to be able to heat up the coating surfaces 13 which are to be fused by laser heating, as well as then build in the stresses in the finished pipe which help to hold the joint 4 together by e.g. bending stresses on the pipe 1, an appropriate profile 6 is first formed. The width of the bottom part 7 of the profile 6 is made equal to the bottom 2 of the pipe 1, the side parts 8 of the profile 6 equal to the sides 3 of the pipe 1, and the upper part 9 of the profile 6 equal to half the width of the pipe 1 bottom

2. Profilens 6 bunnvinkler 11, det vil si vinklene mellom profilens 6 bunndel 7 og sidedeler 8 gjøres noe spiss, ned mot 70", og profilens 6 overdelsvinkler 12, det vil si vinklene mellom profilens 6 sidedeler 8 og overdeler 9, gjøres stumpe og stort sett like meget over 90° som bunnvinklene er under 9CT . Dog skal nedbukkingenes 5 underkanter 10 ligge an mot hverandre. Nedbukkingene 5 avslutter profilens 6 overdeler 9, og er bukket i rett vinkel (90°) ned fra disse. Bredden på nedbukkingene 5 avpasses slik at det oppnås tilstrekkelig sammenføyningsflate ved sammensmelting av flatebeleggene på deres mot hverandre vendende belegningsflater 13. Når ovennevnte profil 6 under den kontinuerlige formingen i rulleformingsanordningen er oppnådd, oppvarmes ovennevnte belegningsflater 13 til smelting eller i det minste deigaktig konsistens med en laserstråle rettet ned mot nedbøyningene 5. Med laser går oppvarmingen meget raskt og oppvarmingen kan konsentreres til nettopp de områder man har til hensikt å varme opp. Etter at hensiktsmessig konsistens suksessivt oppnås på de oppvarmede belegningsflåt-ene 13, fortsettes formingen av profilen 6 til firkantrørets 1 form i rulleformingsanordningen. Denne formingen går stort sett ut på å endre profilens 6 stumpe overdelsvinkler 12 til rette vinkler ved nedpressing av profilens 6 overdeler 9 mot rørets sentrum og med så mye overbrett av profilens 6 overdelsvinkler 12 at disse etter tilbakefjæring blir rette. Dersom man styrer prosessen likeformet, antar profilens 6 bunnvinkler 11 også naturligvis 90" vinkel. Men ved denne prosessen skjer ingen overbøying av disse vinklene, men en viss tilbakefjæringskraft oppnås som tilstreber å presse sammen de sammensmeltede flatene på nedbrettingene 5 som forsterker skjøtens 4 sammenholdende kraft. Dette har man spesielt nytte av dersom firkantrøret 1 utsettes for slike bøyepåkjenninger at det oppstår strekkrefter i firkantrørets 1 sammenføyde overside. 2. Profile 6's bottom angles 11, i.e. the angles between profile 6's bottom part 7 and side parts 8 are made somewhat sharp, down towards 70", and profile 6's upper part angles 12, i.e. the angles between profile 6's side parts 8 and top parts 9, are made obtuse and largely as much above 90° as the bottom angles are below 9CT. However, the lower edges 10 of the bends 5 must lie against each other. The bends 5 terminate the upper parts 9 of the profile 6, and are bent at a right angle (90°) down from these. The width of the bends 5 adjusted so that a sufficient joining surface is obtained by fusion of the surface coatings on their facing coating surfaces 13. When the above-mentioned profile 6 during the continuous forming in the roll forming device has been achieved, the above-mentioned coating surfaces 13 are heated to melting or at least dough-like consistency with a laser beam directed down towards the deflections 5. With a laser, the heating is very fast and the heating can be concentrated to precisely the areas you need purpose to warm up. After the appropriate consistency is successively achieved on the heated coating floats 13, the shaping of the profile 6 into the shape of the square tube 1 is continued in the roll forming device. This shaping basically consists of changing the obtuse upper part angles 12 of the profile 6 to right angles by pressing down the upper part 9 of the profile 6 towards the center of the tube and with so much folding of the upper part angles 12 of the profile 6 that they become straight after springing back. If the process is controlled uniformly, the bottom angles 11 of the profile 6 naturally also assume a 90" angle. But with this process, no overbending of these angles occurs, but a certain rebound force is achieved which tends to press together the fused surfaces of the folds 5 which reinforces the cohesive force of the joint 4 This is particularly useful if the square tube 1 is subjected to such bending stresses that tensile forces occur in the joined upper side of the square tube 1.

Claims (3)

1. Fremgangsmåte til fremstilling av tynnveggede, rettvinklede firkantrør (1) av overflatebelagt stålbånd i en kontinuerlig prosess, karakterisert ved at båndets tverrsnittsprofil suksessivt og symmetrisk formes mellom rullepar (1) til en plan bunndel (7) lik endelig rørbredde som går over via nedre hjørner med bunnvinkler (11) som er spisse til plane sidedeler (8) lik rørets (1) sider, at disse i sin tur går over med stump overdelsvinkel (12) i overdeler (9) hvis bredde er lik halve rørbredden og som hver avsluttes med plane nedbrettinger (5) i 90° vinkel til overdelene (9), og at bunnvinklene (11) og overdelsvinklene (12) på profilen (6) tilpasses slik at nedbrettingenes (5) nedre kanter (10) berører hverandre, at nedbrettingenes (5) mot hverandre stående belegningsflater (13) suksessivt oppvarmes ved hjelp av laseroppvarming til en slik temperatur at deres overflatebelegg smelter sammen ved den etterfølgende sammenpressingen da rørets (1) form samtidig fullbyrdes.1. Method for the production of thin-walled, right-angled square tubes (1) of surface-coated steel strip in a continuous process, characterized by the strip's cross-sectional profile being successively and symmetrically formed between pairs of rollers (1) into a flat bottom part (7) equal to the final pipe width which transitions via lower corners with bottom angles (11) which are pointed to flat side parts (8) similar to the sides of the pipe (1), that these in turn transition with an obtuse upper part angle (12) into upper parts (9) whose width is equal to half the pipe width and which each ends with a flat folds (5) at a 90° angle to the upper parts (9), and that the bottom angles (11) and upper part angles (12) of the profile (6) are adapted so that the lower edges (10) of the folds (5) touch each other, that the folds (5) opposing coating surfaces (13) are successively heated by means of laser heating to such a temperature that their surface coating melts together in the subsequent compression as the shape of the pipe (1) is simultaneously completed. 2. Fremgangsmåte til fremstilling'av firkantrør (1) ifølge krav 1, karakterisert ved at stålbåndene er belagt med et metallisk belegg vesentlig bestående av sink eller aluminium eller blandinger av disse.2. Method for the production of square tubes (1) according to claim 1, characterized in that the steel bands are coated with a metallic coating essentially consisting of zinc or aluminum or mixtures thereof. 3. Fremgangsmåte til fremstilling av firkantrør (1) ifølge krav 1 eller 2,karakterisert ved at stålbåndene er industrielt malt.3. Method for the production of square tubes (1) according to claim 1 or 2, characterized in that the steel bands are industrially painted.
NO902399A 1990-05-30 1990-05-30 Method of making square tubes of coated steel strip. NO174577C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO902399A NO174577C (en) 1990-05-30 1990-05-30 Method of making square tubes of coated steel strip.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO902399A NO174577C (en) 1990-05-30 1990-05-30 Method of making square tubes of coated steel strip.

Publications (4)

Publication Number Publication Date
NO902399D0 NO902399D0 (en) 1990-05-30
NO902399L NO902399L (en) 1991-12-02
NO174577B true NO174577B (en) 1994-02-21
NO174577C NO174577C (en) 1994-06-01

Family

ID=19893220

Family Applications (1)

Application Number Title Priority Date Filing Date
NO902399A NO174577C (en) 1990-05-30 1990-05-30 Method of making square tubes of coated steel strip.

Country Status (1)

Country Link
NO (1) NO174577C (en)

Also Published As

Publication number Publication date
NO902399D0 (en) 1990-05-30
NO902399L (en) 1991-12-02
NO174577C (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JP2005324255A (en) Method for manufacturing round steel tube
EP0026043B1 (en) Method of producing clad steel articles
US5730189A (en) Internally and externally enhanced wielded tube
EP0459988B1 (en) Method for manufacturing of square pipes from coated steel strips
JPS57105690A (en) Heat exchanger
CA2264820C (en) Method and device for joining flat products to be connected such that they overlap
NO174577B (en) Procedure for the manufacture of square tubes of coated steel bands
US5474639A (en) Method for manufacturing heat exchangers
GB2289234A (en) Internal high-pressure forming process and apparatus
US4479043A (en) Controlling the zone of longitudinally seam-welding split tubes
CA2133853C (en) Distortion free heat treated metal stampings
US20060073353A1 (en) Profiles or tubes consisting of flexibly rolled strip material
GB1570686A (en) Joining of polytetrafluoroethylene bodies
US3066389A (en) Fabrication of hollow articles
US848978A (en) Method of soldering sheet-metal plates.
JPH1052714A (en) Heat transfer tube with groove on inner surface and manufacture thereof
FI108925B (en) Method of manufacturing square pipe from coated sheet steel
TH33340A (en) Methods and tools for the manufacture of steel pipes
SU1328109A2 (en) Method of butt welding
KR930012266A (en) Method for welding tubular products of polyarylene sulfide and welded tubular structures
JPS59179223A (en) Method for bending metallic rod material and plate material lined with thermoplastic synthetic resin
SU1738543A1 (en) Method of manufacture of panel heat exchanger
RU2314184C1 (en) Welded beam production method
JP2984450B2 (en) High frequency induction heating upset joining method
JP2676329B2 (en) Method of thickening metal strip

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application