NO174489B - Voltage controlled oscillator - Google Patents

Voltage controlled oscillator Download PDF

Info

Publication number
NO174489B
NO174489B NO892575A NO892575A NO174489B NO 174489 B NO174489 B NO 174489B NO 892575 A NO892575 A NO 892575A NO 892575 A NO892575 A NO 892575A NO 174489 B NO174489 B NO 174489B
Authority
NO
Norway
Prior art keywords
connection
transistor
capacitor
resistor
collector
Prior art date
Application number
NO892575A
Other languages
Norwegian (no)
Other versions
NO892575D0 (en
NO892575L (en
NO174489C (en
Inventor
Wolfgang Zirwas
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO892575D0 publication Critical patent/NO892575D0/en
Publication of NO892575L publication Critical patent/NO892575L/en
Publication of NO174489B publication Critical patent/NO174489B/en
Publication of NO174489C publication Critical patent/NO174489C/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1221Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising multiple amplification stages connected in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

Oppfinnelsen angår en spenningsstyrt oscillator i henhold til innledningen av krav 1. The invention relates to a voltage-controlled oscillator according to the preamble of claim 1.

Spenningsstyrte oscillatorer av den i innledningen omtalte art er ålment kjent. Særlig på grunn av temperaturkoeffisientene til de frekvensbestemmende kondensatorer og de temperatur-avhengige parametervariasjoner til oscillatortransistoren fås det en temperaturavhengig oscillatorfrekvens. Ved oscil-latorfrekvenser på 1 GHz og ved temperaturdifferanser på ca. 70°C kan forstemningen av oscillatoren allerede utgjøre noen MHz. For å kompensere denne forstemning blir det på kjent måte innsatt en eller flere av de frekvensbestemmende kondensatorer med spesielt utvalgte negative temperaturkoeffisienter i kretsen for å minimere driften. Dermed fås imidlertid det problem at kondensatorene med forskjellige kapasitansverdier bare kan fås med et begrenset antall av temperaturkoeffisienter, slik at ikke vilkårlige og fremfor alt heller ingen vilkårlig store temperaturforløp kan kompenseres. Ytterligere problemer kan i den forbindelse fås ved at disse kondensatorer bare kan fås i få utførelser, slik at spesielt moderne teknologier som SMD-teknikken ikke alltid lar seg realisere, og dessuten er kondensatorer med negative temperaturkoeffisienter vesentlig dyrere enn slike som har positive temperatur-koef f isienter . Voltage-controlled oscillators of the kind mentioned in the introduction are widely known. In particular, due to the temperature coefficients of the frequency-determining capacitors and the temperature-dependent parameter variations of the oscillator transistor, a temperature-dependent oscillator frequency is obtained. At oscillator frequencies of 1 GHz and at temperature differences of approx. At 70°C, the pretuning of the oscillator can already amount to a few MHz. To compensate for this pretuning, one or more of the frequency-determining capacitors with specially selected negative temperature coefficients are inserted in the circuit in a known manner in order to minimize the operation. However, this results in the problem that the capacitors with different capacitance values can only be obtained with a limited number of temperature coefficients, so that no arbitrary and above all no arbitrarily large temperature variations can be compensated. Further problems can arise in this regard in that these capacitors can only be obtained in a few designs, so that especially modern technologies such as the SMD technique cannot always be realized, and furthermore capacitors with negative temperature coefficients are significantly more expensive than those with positive temperature coefficients f isients .

Videre viser US-PS nr. 2 945 187 en temperaturkompensert transistorforsterker hvor en i et forsterkertrinn på tomgang anordnet annet transistor er likestrømsmessig forbundet med kollektortilkoblingen på en første transistor. Kollektorstrøm-ningen til den for signalforsterkningen anordnede transistor holdes konstant, uavhengig av temperaturen, ved at den tempera-turavhengige kollektorstrømovertagelse skjer med den annen transistor. Forutsetningen for dette er at kollektorstrømmen forandrer seg jevnt med temperaturavhengigheten, slik at det for en optimal kompensasjon må anvendes mest mulig like transistorer. Furthermore, US-PS No. 2 945 187 shows a temperature-compensated transistor amplifier in which a second transistor arranged in an amplifier stage at idle is DC-connected to the collector connection of a first transistor. The collector current of the transistor arranged for the signal amplification is kept constant, regardless of the temperature, by the temperature-dependent collector current taking over with the other transistor. The prerequisite for this is that the collector current changes evenly with the temperature dependence, so that for optimal compensation, transistors that are as similar as possible must be used.

US-PS nr. 2 991 424 viser en kretsanordning med en forsterker-krets hvor det benyttes en forsterkertransistor som har karakteristikker av hvilke én konstant er avhengig av temperaturen, samt en kompensasjonskrets som benytter en ytterligere transistor som er anordnet utelukkende for å kompensere for virkningen av temperaturen på forsterkertransistoren. Denne forsterkerkobling benytter imidlertid ikke parallellkoblede kollektortilkoblinger med tanke på et funksjonelt samvirke, idet kollektortilkoblingene sammen er forbundet med en strømforsyningstilkobling. US-PS No. 2 991 424 shows a circuit arrangement with an amplifier circuit where an amplifier transistor is used which has characteristics of which one constant depends on the temperature, as well as a compensation circuit which uses a further transistor which is arranged exclusively to compensate for the effect of the temperature of the amplifier transistor. However, this amplifier connection does not use parallel-connected collector connections with a view to a functional cooperation, since the collector connections are connected together by a power supply connection.

Hensikten med den foreliggende oppfinnelse består følgelig i å finne en temperaturkompensasjon for en spenningsstyrt oscillator av den i innledningen omtalte art, ved hvilke det ikke er nødvendig å anvende frekvensbestemmende kondensatorer med spesielt utvalgte negative temperaturkoeffisienter. The purpose of the present invention is therefore to find a temperature compensation for a voltage-controlled oscillator of the kind mentioned in the introduction, in which it is not necessary to use frequency-determining capacitors with specially selected negative temperature coefficients.

I henhold til oppfinnelsen blir hensikten oppnådd ved en spenningsstyrt oscillator av den i innledningen omtalte art ved at oscillatoren er utført med de i karakteristikken til krav 1 angitte trekk. En særlig fordel ved løsningen i henhold til oppfinnelsen er at med denne kan det realiseres utførelses-teknikker som er vanlig for frekvensområder fra noen 100 MHz til ca. 1 GHz og at særlig også en monolittisk integrert løsning lett er mulig. Foretrukkede utførelser av den spenningsstyrte oscillator i henhold til oppfinnelsen er nærmere beskrevet i de uselvstendige krav. According to the invention, the purpose is achieved by a voltage-controlled oscillator of the kind mentioned in the introduction, in that the oscillator is made with the features specified in the characteristic of claim 1. A particular advantage of the solution according to the invention is that it can be used to realize execution techniques that are common for frequency ranges from some 100 MHz to approx. 1 GHz and that especially a monolithic integrated solution is easily possible. Preferred embodiments of the voltage-controlled oscillator according to the invention are described in more detail in the independent claims.

Oppfinnelsen skal i det følgende forklares nærmere i tilknyt-ning til et på tegningen vist utførelseseksempel. In the following, the invention will be explained in more detail in connection with an embodiment shown in the drawing.

Fig. 1 viser et kretsdiagram av en spenningsstyrt oscillator i Fig. 1 shows a circuit diagram of a voltage controlled oscillator i

henhold til oppfinnelsen. according to the invention.

Fig. 2 viser et utsnitt av kretsdiagrammet på fig. 1 med de Fig. 2 shows a section of the circuit diagram in fig. 1 with them

for temperaturkompensasjonen vesentlige komponenter. essential components for the temperature compensation.

På fig. 1 er det anordnet som oscillatortransistor Tl anordnet en NPN-transistor med en grensefrekvens i basiskobling på ca. 1 GHz. Basistilkoblingen på denne transistor er via en første motstand RI forbundet med en matespenningskilde -UB og dessuten er basistilkoblingen forbundet via en annen motstand R2 og en første kondensator Cl med referansepotensial. De to motstander RI, R2 utgjør en kjent basisspenningsdeler og ved den første kondensator Cl ligger basistilkoblingen vekselspenningsmessig på referansepotensial, slik at den første transistor Tl drives i basiskobling. Det frekvensbestemmende nettverk består på den ene side av seriekoblingen av den annen og tredje kondensator C2, C3 og på den annen side av induktansen LI, som via seriekoblingen av den sjette kondensator C6 og kapasitansdioden CD samt over seriekoblingen av den syvende kondensator C7 og den åttende kondensator C8 er forbundet med referansepotensial. Seriekoblingen av den sjette kondensator C6 og kapasitansdioden CD virker dermed som en avstemningsreaktans og for avstemning er kapasitansdioden CD forbundet over en motstand R6 med en styrespenningstilkobling UR som har en niende kondensator C9 parallellkoblet som filterkondensator. Samtidig kan den effektive avstemningskapasitans innstilles via åttende kondensator C8 som er utført som trimmer. Fra det felles koblingspunkt mellom den annen og tredje kondensator C2, C3 blir en del av oscillatorsignalet tilbakekoblet via en parallellkobling av en femte motstand R5 og en femte kondensator C5 til koblingspunktet mellom en tredje og en fjerde motstand R3, R4. Mens den annen tilkobling på den tredje motstand R3 er forbundet med emittertilkoblingen på den første transistor Tl, er den annen tilkobling på den fjerde motstand R4 forbundet med drivspenningskilden -UB. Drivspenningskilden befinner seg dermed i parallell med en filterkondensator CS. In fig. 1, an NPN transistor with a cut-off frequency in the base connection of approx. 1 GHz. The base connection of this transistor is via a first resistor RI connected to a supply voltage source -UB and furthermore the base connection is connected via another resistor R2 and a first capacitor Cl with reference potential. The two resistors RI, R2 constitute a known base voltage divider and at the first capacitor Cl the base connection is at reference potential in terms of alternating voltage, so that the first transistor Tl is operated in base connection. The frequency-determining network consists on one side of the series connection of the second and third capacitors C2, C3 and on the other side of the inductance LI, which via the series connection of the sixth capacitor C6 and the capacitance diode CD as well as via the series connection of the seventh capacitor C7 and the eighth capacitor C8 is connected to reference potential. The series connection of the sixth capacitor C6 and the capacitance diode CD thus acts as a tuning reactance and for tuning the capacitance diode CD is connected across a resistor R6 with a control voltage connection UR which has a ninth capacitor C9 connected in parallel as a filter capacitor. At the same time, the effective tuning capacitance can be adjusted via the eighth capacitor C8, which is designed as a trimmer. From the common connection point between the second and third capacitors C2, C3, part of the oscillator signal is fed back via a parallel connection of a fifth resistor R5 and a fifth capacitor C5 to the connection point between a third and a fourth resistor R3, R4. While the other connection of the third resistor R3 is connected to the emitter connection of the first transistor Tl, the other connection of the fourth resistor R4 is connected to the drive voltage source -UB. The drive voltage source is thus located in parallel with a filter capacitor CS.

For temperaturkompensasjon er kollektortilkoblingen på den første transistor Tl dessuten forbundet via en annen induktans L2 i form av en kvartbølgeledning med kollektortilkoblingen på en annen transistor T2, i hvilket tilfelle det dreier seg om en PNP-transistor for lavfrekvensområdet. Kollektortilkoblingene på de to transistorer er forbundet over en syvende motstand R7 med drivspenningskilden -UB og over en åttende motstand R8 med basistilkoblingen på den annen transistor T2 samt med en av en niende og tiende motstand R9, RIO dannet basisspenningsdeler. Emittertilkoblingen på den annen transistor T2 er forbundet direkte med referansepotensial, slik at transistoren T2 med forbundne komponenter utgjør et lavfrekvent forsterkertrinn i tomgang i emitterkobling og med motspenningskobling. Ved at kollektortilkoblingen på den annen transistor T2 vekselspenningsmessig ligger på referansepotensial er det ved koblingspunktet mellom den annen induktans L2 og kollektortilkoblingen på den annen transistor T2 tilkoblet en til oscillatorfrekvensen avstemt resonanskrets, hvis andre tilkobling befinner seg på referansepotensial. Resonanskretsen blir i den forbindelse dannet av en tredje induktans L2 i form av en konsentrert spole og en tiende kondensator CIO. For temperature compensation, the collector connection of the first transistor Tl is also connected via another inductance L2 in the form of a quarter-wave line with the collector connection of another transistor T2, in which case it is a PNP transistor for the low frequency range. The collector connections of the two transistors are connected via a seventh resistor R7 with the drive voltage source -UB and via an eighth resistor R8 with the base connection of the second transistor T2 as well as with one of a ninth and tenth resistor R9, RIO formed base voltage dividers. The emitter connection of the second transistor T2 is connected directly to the reference potential, so that the transistor T2 with connected components forms a low-frequency amplifier stage in idle mode in emitter connection and with reverse voltage connection. As the collector connection on the second transistor T2 is at the reference potential in terms of alternating voltage, a resonant circuit tuned to the oscillator frequency is connected at the connection point between the second inductance L2 and the collector connection on the second transistor T2, whose second connection is at the reference potential. In that connection, the resonant circuit is formed by a third inductance L2 in the form of a concentrated coil and a tenth capacitor CIO.

Utkoblingen av oscillatorsvingningen fra oscillatortrinnet skjer ved koblingspunktet mellom den annen og tredje kondensator C2, C3 og ved en der tilkoblet fjerde kondensator C4, hvis andre tilkobling er forbundet med basistilkoblingen på en tredje transistor T3. Med basistilkoblingen er det videre forbundet en av en ellevte og tolvte motstand Ril, R12 dannet basisspenningsdeler. Emittertilkoblingen på den tredje transistor T3 er forbundet via en fjortende motstand R4 med en som filterkondensator virkende ellevte kondensator Cll og med en femtende motstand R15, og den annen tilkobling på den femtende motstand R15 er forbundet til drivspenningskilden -UB. Kollektortilkoblingen på den tredje transistor T3 er forbundet over en trettende motstand R13 med referansepotensial og over en tolvte kondensator C12 med en utgangsklemme. The switching off of the oscillator oscillation from the oscillator stage takes place at the connection point between the second and third capacitors C2, C3 and at a fourth capacitor C4 connected there, the second connection of which is connected to the base connection of a third transistor T3. With the base connection, one of an eleventh and twelfth resistance Ril, R12 formed base voltage dividers is further connected. The emitter connection of the third transistor T3 is connected via a fourteenth resistor R4 to an eleventh capacitor Cll acting as a filter capacitor and to a fifteenth resistor R15, and the other connection of the fifteenth resistor R15 is connected to the drive voltage source -UB. The collector connection of the third transistor T3 is connected across a thirteenth resistor R13 with reference potential and across a twelfth capacitor C12 with an output terminal.

Til den videre forklaring av virkemåten til den spenningsstyrte oscillator på fig. 1 tjener det på fig. 2 viste prin-sippkoblingsskjerna hvor de frekvensbestemmende kapasitanser er slått sammen til kondensatoren C. Det kan sees at disse kapasitanser sammen med den avstemte første induktans utgjør en parallellsvingekrets som er forbundet med kollektortilkoblingen på den første transistor Tl, og dessuten er denne kollektortilkobling via den annen induktans L2 likespen-ningsmessig forbundet med kollektortilkoblingen på transistoren T2 i det nøytralt arbeidende forsterkertrinn. På grunn av temperaturavhengigheten til basisemitterdioden i transistoren T2 dannes ved kollektortilkoblingen på denne transistoren en temperaturavhengig spenning som samtidig utgjør kollektorspenningen på den første transistor Tl. Den på transistoren Tl påtrykte kollektoremitterspenning er dermed temperaturavhengig og forandrer på temperaturavhengig måte kapasitansen mellom emitter- og kollektortilkoblingen på denne transistor. Da denne kapasitans utgjør en del av den frekvensbestemmende kapasitans C, fås det ved egnet dimensjonering en temperaturkompensasjon ved en spenningstilbakeføring til kollektoren på oscillatortransistoren Tl. Dertil kan ved å forandre motkoblingen av transistoren T2, altså spesielt ved forandring av verdien til den åttende motstand R8, forandringen i kollektorspenningen til de to transistorer tilpasses over temperaturen på en gitt krets. Som særlig fordelaktig har det i den forbindelse vist seg at basisspenningen og dermed også emitterspenningen til oscillatortransistoren Tl ikke påvirkes av kompensasjons-kretsen og dermed ikke gir noen ytterligere temperaturbetinget nivåavhengighet av utgangssignalet. For the further explanation of the operation of the voltage-controlled oscillator in fig. 1 it serves in fig. 2 showed the principle connection core where the frequency-determining capacitances are combined to the capacitor C. It can be seen that these capacitances together with the tuned first inductance form a parallel swing circuit which is connected to the collector connection of the first transistor Tl, and furthermore this collector connection via the second inductance L2 directly connected to the collector connection of transistor T2 in the neutrally operating amplifier stage. Due to the temperature dependence of the base-emitter diode in the transistor T2, a temperature-dependent voltage is formed at the collector connection of this transistor, which at the same time constitutes the collector voltage of the first transistor Tl. The collector-emitter voltage impressed on the transistor Tl is thus temperature-dependent and changes the capacitance between the emitter and collector connection of this transistor in a temperature-dependent manner transistor. As this capacitance forms part of the frequency-determining capacitance C, a temperature compensation is obtained by suitable dimensioning by a voltage return to the collector of the oscillator transistor Tl. In addition, by changing the reverse connection of the transistor T2, i.e. especially by changing the value of the eighth resistor R8, the change in the collector voltage of the two transistors is adapted over the temperature of a given circuit. As particularly advantageous in this connection, it has been shown that the base voltage and thus also the emitter voltage of the oscillator transistor Tl is not affected by the compensation circuit and thus does not give any further temperature-related level dependence of the output signal.

Claims (6)

1. Spenningsstyrt oscillator, spesielt for frekvensområdet på fra noen 100 MHz til 1 GHz med minst én i en tilbakekobling-krets anordnet første transistor, hvis kollektortilkobling er forbundet med et frekvensbestemmende nettverk som inneholder minst en kapasitansdiode, en induktans og kondensatorer, karakterisert ved at kollektortilkoblingen på den første transistor (Tl) likestrømsmessig er parallellkoblet til en i et nøytralt arbeidende forsterkertrinn anordnet annen transistor (T2), at de parallellkoblede kollektortilkoblinger på de to transistorer (Tl, T2) er koblet via en felles kollektormotstand (R7) til en drivspenningskilde (-UB), at basistilkoblingen på den første transistor (Tl) er forbundet over en første motstand (RI) med drivspenningskilden (-UB) og over parallellkoblingen av den første kondensator (Cl) og en annen motstand (R2) med referansepotensial, at emittertilkoblingen på den første transistor (Tl) er forbundet over seriekoblingen av en tredje og en fjerde motstand (R3, R4) med drivspenningskilden (-UB), at kollektortilkoblingen på den første transistor (Tl) er forbundet over seriekoblingen av en annen og en tredje kondensator (C2, C3) med referansepotensial, at en av tilkoblingene på en fjerde og en femte kondensator (C4, C5) og en femte motstand er forbundet i koblingspunktet mellom den annen og tredje kondensator (C2, C3), at de andre tilkoblinger på den femte kondensator (C5) og den femte motstand (R5) er forbundet med det felles koblingspunkt mellom den tredje og fjerde motstand (R3, R4), at kollektortilkoblingen på den første transistor over en første induktans (LI) er forbundet med en tilkobling på en sjette og syvende kondensator (C6, C7), at den andre tilkobling på den sjette kondensator via en kapasitansdiode (CD) er forbundet med referansepotensial og via en sjette motstand (R6) med en styrespenningskilde (UR) hvortil en niende kondensator (C9) kan være parallellkoblet, at den andre tilkobling på den syvende kondensator (C7) over en åttende kondensator (C8) er forbundet med referansepotensial, at kollektortilkoblingen på den første transistor (Tl) dessuten over en annen induktans (L2) er forbundet med kollektortilkoblingen på den annen transistor (T2) og med en resonanskrets for oscillatorfrekvensen i form av en tiende kondensator (CIO) og en tredje induktans (L3), og at den annen tilkobling på resonanskretsen er lagt på referansepotensial.1. Voltage-controlled oscillator, especially for the frequency range of from some 100 MHz to 1 GHz with at least one first transistor arranged in a feedback circuit, the collector connection of which is connected to a frequency-determining network containing at least one capacitance diode, an inductance and capacitors, characterized in that the collector connection of the first transistor (Tl) in terms of direct current is connected in parallel to a second transistor (T2) arranged in a neutrally operating amplifier stage, that the parallel-connected collector connections of the two transistors (Tl, T2) are connected via a common collector resistor (R7) to a drive voltage source (-UB), that the base connection of the first transistor (Tl) is connected via a first resistor (RI) to the drive voltage source (-UB) and via the parallel connection of the first capacitor (Cl) and another resistor (R2) with reference potential, that the emitter connection of the first transistor (Tl) is connected across the series connection of a third and a fourth resistor ( R3, R4) with the drive voltage source (-UB), that the collector connection of the first transistor (Tl) is connected across the series connection of a second and a third capacitor (C2, C3) with reference potential, that one of the connections of a fourth and a fifth capacitor (C4, C5) and a fifth resistor are connected in the connection point between the second and third capacitor (C2, C3), that the other connections on the fifth capacitor (C5) and the fifth resistor (R5) are connected to the common connection point between the third and fourth resistors (R3, R4), that the collector connection of the first transistor over a first inductance (LI) is connected to a connection of a sixth and seventh capacitor (C6, C7), that the second connection of the sixth capacitor via a capacitance diode (CD) is connected to the reference potential and via a sixth resistor (R6) with a control voltage source (UR) to which a ninth capacitor (C9) can be connected in parallel, that the second connection on the seventh capacitor (C7) over an eight end capacitor (C8) is connected to the reference potential, that the collector connection of the first transistor (Tl) is also connected via another inductance (L2) to the collector connection of the second transistor (T2) and to a resonant circuit for the oscillator frequency in the form of a tenth capacitor (CIO) and a third inductance (L3), and that the other connection on the resonant circuit is placed at reference potential. 2. Spenningsstyrt oscillator i henhold til krav 1, karakterisert ved at den første transistor (Tl) har en grensefrekvens i basiskobling på minst 1 GHz.2. Voltage-controlled oscillator according to claim 1, characterized in that the first transistor (Tl) has a cut-off frequency in the base connection of at least 1 GHz. 3. Spenningsstyrt oscillator i henhold til krav 1, karakterisert ved at den annen transistor er en lavfrekvenstransistor.3. Voltage-controlled oscillator according to claim 1, characterized in that the second transistor is a low-frequency transistor. 4. Spenningsstyrt oscillator i henhold til krav 1, karakterisert ved at det nøytralt arbeidende forsterkertrinn er utført i emitterkobling med spennings-tilbakekobling og at emittertilkoblingen på den annen transistor (T2) i den forbindelse er direkte forbundet med referansepotensial og basistilkoblingen på denne transistor (T2) over en åttende motstand (R8) med kollektortilkoblingen samt over en niende motstand (R9) med drivspenningskilden (-UB) og over en tiende motstand (RIO) med referansepotensial.4. Voltage-controlled oscillator according to claim 1, characterized in that the neutrally working amplifier stage is made in emitter connection with voltage feedback and that the emitter connection on the second transistor (T2) is in that connection directly connected to the reference potential and the base connection on this transistor (T2 ) across an eighth resistor (R8) with the collector connection as well as across a ninth resistor (R9) with the drive voltage source (-UB) and across a tenth resistor (RIO) with the reference potential. 5. Spenningsstyrt oscillator i henhold til krav 1, karakterisert ved at det som annen induktans (L2) er anordnet en til oscillatorens svingefrekvens avstemt kvartbølgeledning.5. Voltage-controlled oscillator according to claim 1, characterized in that a quarter-wave line tuned to the oscillation frequency of the oscillator is arranged as the second inductance (L2). 6. Spenningsstyrt oscillator i henhold til krav 1, karakterisert ved at den annen tilkobling på den fjerde kondensator (C4) er koblet til tilkoblingen på et ytterligere forsterkertrinn på hvis utgang den genererte oscillatorsvingning has.6. Voltage-controlled oscillator according to claim 1, characterized in that the second connection on the fourth capacitor (C4) is connected to the connection on a further amplifier stage at the output of which the generated oscillator oscillation is present.
NO892575A 1988-07-25 1989-06-21 Voltage controlled oscillator NO174489C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3825238A DE3825238A1 (en) 1988-07-25 1988-07-25 Voltage-controlled oscillator

Publications (4)

Publication Number Publication Date
NO892575D0 NO892575D0 (en) 1989-06-21
NO892575L NO892575L (en) 1990-01-26
NO174489B true NO174489B (en) 1994-01-31
NO174489C NO174489C (en) 1994-05-11

Family

ID=6359506

Family Applications (1)

Application Number Title Priority Date Filing Date
NO892575A NO174489C (en) 1988-07-25 1989-06-21 Voltage controlled oscillator

Country Status (3)

Country Link
CH (1) CH677711A5 (en)
DE (1) DE3825238A1 (en)
NO (1) NO174489C (en)

Also Published As

Publication number Publication date
NO892575D0 (en) 1989-06-21
NO892575L (en) 1990-01-26
DE3825238A1 (en) 1990-02-01
CH677711A5 (en) 1991-06-14
NO174489C (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5231361A (en) Voltage controlled push-push oscillator with parallel resonant tank circuits
JPH08148933A (en) Voltage controlled oscillator
KR960016733B1 (en) Oscillation circuit
US5440276A (en) Voltage controlled oscillating circuit for preventing a load pulling
US7248127B2 (en) Crystal oscillator
US5805028A (en) Temperature-compensating piezo-oscillator
US5025229A (en) Voltage-controlled oscillator using a surface elastic wave resonator
US4010428A (en) Transistor oscillator utilizing clapp circuit configuration for operation in the microwave band
JP3522283B2 (en) Oscillator device with variable frequency
US4630004A (en) Dielectric resonator stabilized microstrip oscillator
US3428916A (en) Compensated crystal oscillators
NO174489B (en) Voltage controlled oscillator
US20040189412A1 (en) Temperature compensated piezoelectric oscillator and electronic device using the same
US3958190A (en) Low harmonic crystal oscillator
US4520326A (en) Single-stage oscillator having low-impedance feedback port
SE325933B (en)
US4888566A (en) Temperature compensated stable duty cycle crystal oscillator apparatus
JP2001326532A (en) Oscillator
US4107625A (en) Transistor crystal oscillator which may be paired for generating a beat frequency
US3745480A (en) Oscillator circuit for several frequency ranges having plural feedback paths
JP3387278B2 (en) Temperature compensated piezoelectric oscillator
GB2069788A (en) Improvements in or relating to tuneable quartz overtone oscillators
JPH03131104A (en) Voltage controlled oscillator
KR100640518B1 (en) Low frequency voltage controlled oscillator
US5012205A (en) Balanced spurious free oscillator