NO170744B - DEVICE FOR SUSPENSING THE PARTS IN A CHAMBER RING OVEN FOR CARBON CONTAINING BLOCKS - Google Patents

DEVICE FOR SUSPENSING THE PARTS IN A CHAMBER RING OVEN FOR CARBON CONTAINING BLOCKS Download PDF

Info

Publication number
NO170744B
NO170744B NO882522A NO882522A NO170744B NO 170744 B NO170744 B NO 170744B NO 882522 A NO882522 A NO 882522A NO 882522 A NO882522 A NO 882522A NO 170744 B NO170744 B NO 170744B
Authority
NO
Norway
Prior art keywords
styrene
molecular weight
catalyst
polymerization
suspensing
Prior art date
Application number
NO882522A
Other languages
Norwegian (no)
Other versions
NO882522L (en
NO882522D0 (en
NO170744C (en
Inventor
Bernard Boffa
Christian Dreyer
Original Assignee
Pechiney Aluminium
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Aluminium filed Critical Pechiney Aluminium
Publication of NO882522D0 publication Critical patent/NO882522D0/en
Publication of NO882522L publication Critical patent/NO882522L/en
Publication of NO170744B publication Critical patent/NO170744B/en
Publication of NO170744C publication Critical patent/NO170744C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • F16L55/12Means for stopping flow from or in pipes or hoses by introducing into the pipe a member expandable in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/02Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge of multiple-chamber type with permanent partitions; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • F27D2007/026Dampers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Baking, Grill, Roasting (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Tunnel Furnaces (AREA)

Description

Fremgangsmåte for fremstilling av polystyren med høy klarhet og slagstyrke. Process for the production of polystyrene with high clarity and impact strength.

Oppfinnelsen vedrører fremstilling av polystyren. The invention relates to the production of polystyrene.

Set er funnet mange forskjellige anvendelser for polystyren i industrien. En av de viktige anvendelser er anvendelsen .som industriell støpeharpiks. Vanligvis har styrenharpikser som frembringer klare støpesammensetninger, lav slagfasthet. Polystyren med høy slagfasthet har blitt fremstilt på forskjellige mater, innbefattet podepolymerer og blandinger som nødvendiggjør anvendelse av relativt store mengder gummi, og hvor alle, når de støpes, danner ugjennomsiktige eller slørede produkter. Many different applications have been found for polystyrene in industry. One of the important uses is the use as an industrial casting resin. Generally, styrene resins that produce clear casting compositions have low impact strength. High impact polystyrene has been produced in a variety of materials, including graft polymers and blends which necessitate the use of relatively large amounts of rubber, all of which, when molded, form opaque or hazy products.

Styren er oppløselig i alifatiske hydrokarbon-løsnings-midler, som heksan, pentan, petroleter o.l. Polystyren er ikke oppløselig i disse løsningsmidler. Forsøk på å polymerisere styren i slike løsningsmidler, resulterer i en polymer som kleber seg til utstyret og fremkommer som store kuler, hvilket gjør slik polymerisering kommersielt upraktisk. Styrene is soluble in aliphatic hydrocarbon solvents, such as hexane, pentane, petroleum ether and the like. Polystyrene is not soluble in these solvents. Attempts to polymerize styrene in such solvents result in a polymer that sticks to the equipment and appears as large globules, making such polymerization commercially impractical.

Det særegne ved den foreliggende oppfinnelse fremgår av patentkravet. The peculiarity of the present invention appears from the patent claim.

Polymeriseringen i følge denne oppfinnelse utføres i slike alifatiske løsningsmidler som nevnt ovenfor. Det tilsettes som et suspenderingsmiddel en liten mengde polymer som er oppløselig i det anvendte løsningsmiddel, f.eks. en polymer eller sampolymer av et dien som inneholder 4 til 6 karbonatomer, slik som 1,3-polybutadien, polypiperylen, polyisopren, poly-1,3-(2,3-dimetylbutadien) og poly-1,3-(2-metylpentådien) eller en sampolymer av minst 50# av en slik dien med styren, alfametylstyren, para-metylstyren eller andre hydrokarbon-monomerer som fører til en polymer som er opp-løselig i hydrokarbon-løsningsmidlet ved den anvendte temperatur, Selv om de foretrukne suspensjonsmidler er oppregnet ovenfor, er det mulig å anvende polymer eller sampolymerer av olefiniske hydrokarboner som inneholder fra 2 til 10 karbonatomer og som er oppløselige i det alifatiske hydrokarbon-løsningsmiddel ved den anvendte temperatur. Slike poly- The polymerization according to this invention is carried out in such aliphatic solvents as mentioned above. A small amount of polymer is added as a suspending agent which is soluble in the solvent used, e.g. a polymer or copolymer of a diene containing 4 to 6 carbon atoms, such as 1,3-polybutadiene, polypiperylene, polyisoprene, poly-1,3-(2,3-dimethylbutadiene) and poly-1,3-(2-methylpentadiene) ) or a copolymer of at least 50% of such a diene with styrene, alpha-methylstyrene, para-methylstyrene or other hydrocarbon monomers which results in a polymer which is soluble in the hydrocarbon solvent at the temperature used, although the preferred suspending agents are enumerated above, it is possible to use polymer or copolymers of olefinic hydrocarbons containing from 2 to 10 carbon atoms and which are soluble in the aliphatic hydrocarbon solvent at the temperature used. Such poly-

merer omfatter polyisobutylen, polypropylen, polybuten, etylen-propylen-sampolymerer, isobutylen-isopren-sampolymerer, isobutylen-styren-sampolymerer o.l. Anvendelsen av små mengder av slike polymere suspensjonsmidler gjør det mulig å fremstille polystyren i form av partikler med en størrelse som er lett filtrerbar. Ved å variere mengden og molekylvekten til suspensjonsmidlet, oppnås ikke-vandige suspensjoner av partikler som raskt bunnfelles og lett kan sentrifugeres eller filtreres. more include polyisobutylene, polypropylene, polybutene, ethylene-propylene copolymers, isobutylene-isoprene copolymers, isobutylene-styrene copolymers and the like. The use of small amounts of such polymeric suspending agents makes it possible to produce polystyrene in the form of particles with a size that is easily filterable. By varying the amount and molecular weight of the suspending agent, non-aqueous suspensions of particles are obtained which quickly settle and can be easily centrifuged or filtered.

Vanligvis vil partikkelstørrelsen i suspensjonen øke ettersom molekylvekten til suspensjonsmidlet avtar, og vanligvis vil molekylvekten til det polymere suspensjonsmiddel være over 1500, eiden materialer med lavere molekylvekter vanligvis ikke gir den ønskede suspensjon. Partikkelstørrelsen vil avta ettersom mengden av det spesielle suspensjonsmiddel som anvendes, øker, d.v.s. enten øke konsentrasjonen av suspensjonsmidlet i oppløsningsmidlet eller øke mengden pr. 100 deler styren. Vanligvis vil det anvendes fra 0,0 5 til 3 vektdeler suspensjonsmiddel pr. 100 deler monomer. Mengden av suspensjonsmidlet som anvendes, vil være bestemmende for størrelsen av de dannede partikler. Desto mer effektivt suspensjonsmidlet er, desto mindre mengde trengs det for å fremstille den ønskede suspensjon. Generally, the particle size in the suspension will increase as the molecular weight of the suspending agent decreases, and usually the molecular weight of the polymeric suspending agent will be above 1500, since materials with lower molecular weights will not usually provide the desired suspension. The particle size will decrease as the amount of the particular suspending agent used increases, i.e. either increase the concentration of the suspending agent in the solvent or increase the quantity per 100 parts styrene. Usually from 0.05 to 3 parts by weight of suspension agent will be used per 100 parts monomer. The quantity of the suspending agent used will determine the size of the particles formed. The more effective the suspending agent is, the smaller amount is needed to produce the desired suspension.

De mettede alifatiske hydrokarboner som inneholder fra 3 The saturated aliphatic hydrocarbons containing from 3

til 15 karbonatomer, er de foretrukne løsningsmidler for prosessen, og de omfatter propan, butan, isobutan, pentan, isopentan, neopentan, heksan, isoheksan, neoheksan, 2,3-dimetylbutan, heptan, isoheptan, oktan, isooktan, nonan, isononan, dekan, undekan, dodekan, trimetyldodekan og blandinger av hvilke som helst av disse. I de tilfeller hvor polystyren skal isoleres fra suspensjonen, er løsnings-midlene med lavere kokepunkt å foretrekke. to 15 carbon atoms, are the preferred solvents for the process and they include propane, butane, isobutane, pentane, isopentane, neopentane, hexane, isohexane, neohexane, 2,3-dimethylbutane, heptane, isoheptane, octane, isooctane, nonane, isononane, decane, undecane, dodecane, trimethyldodecane and mixtures of any of these. In cases where polystyrene is to be isolated from the suspension, the solvents with a lower boiling point are preferable.

Alkyl- eller aryl-litium- katalysatorer kan anvendes. Disse omfatter etyllitium, butyllitium, amyllitium, heksyllitium, 2-etylheksyl-litium, n-dekaheksyllitium, trimetylendilitium, tetrametylendilitium, pentametylendilitium, fenyllitium, tolyllitium, xylyllitium, naftyllitium etc. Alkyl or aryl lithium catalysts can be used. These include ethyllithium, butyllithium, amyllithium, hexyllithium, 2-ethylhexyllithium, n-decahexyllithium, trimethylenedilithium, tetramethylenedilithium, pentamethylenedilithium, phenyllithium, tolyllitium, xylyllithium, naphthyllithium etc.

Monomer-løsningsmiddel-blandingen må i det vesentlige være fri for forurensinger som kan reagere med katalysatoren og øde-legge dens aktivitet. De skadelige forurensinger består vanligvis av vann, luft eller forbindelser som inneholder aktive hydrogenatomer, slik som fenyl- eller alkyl-acetylener, alko-holer, fenoler, noen karbonylforbindelser o.l. Når disse materialer er tilstede vil noe katalysator reagere med dem og blir ødelagt. Det må således brukes et overskudd av katalysator når slike forurensninger er tilstede. The monomer-solvent mixture must be essentially free of contaminants that can react with the catalyst and destroy its activity. The harmful pollutants usually consist of water, air or compounds containing active hydrogen atoms, such as phenyl or alkyl acetylenes, alcohols, phenols, some carbonyl compounds and the like. When these materials are present, some catalyst will react with them and be destroyed. An excess of catalyst must therefore be used when such contaminants are present.

En av metodene for å oppnå den ønskede renhet av styren-monomeren og det løsningsmiddel som kreves for alkyl- eller aryl-litium-katalysatorer, er å føre en løsning av disse to gjennom en kolonne som inneholder aktivert aluminiumoksyd. Den resulterende oppløsning har en tilstrekkelig lav grad One method of achieving the desired purity of the styrene monomer and solvent required for alkyl or aryl lithium catalysts is to pass a solution of these two through a column containing activated alumina. The resulting solution has a sufficiently low degree

av forurensninger til å kunne virke tilfredsstillende ved prosessen. De små mengder av forurensninger, slike som vann, luft eller forskjellige karbonyl-forbindelser som blir til-bake etter denne behandling, kan fjernes av en liten mengde av den anioniske katalysator som anvendes. of contaminants to be able to work satisfactorily in the process. The small amounts of impurities, such as water, air or various carbonyl compounds that remain after this treatment, can be removed by a small amount of the anionic catalyst used.

Molekylvekten til suspenderingsmidlet kan være så lav som omkring 1500, men kan også være høyere slik som 15.000 eller mye høyere. Det er ingen kritisk øvre grense for molekylvekten. Større mengder av høymolekylære gummier kan frem-bringe ugjennomsiktighet i produktet. The molecular weight of the suspending agent can be as low as about 1500, but can also be higher such as 15,000 or much higher. There is no critical upper limit for the molecular weight. Larger amounts of high molecular weight gums can produce opacity in the product.

Temperaturene i eksemplene er illustrative, og de temperatur-er som det er kjent å anvende ved polymerisering med de respektive klasser av katalysatorer, kan anvendes. En polymer iseringstemperatur i området fra -100°C til + 250°C er tilfredsstillende, i avhengighet av de spesielle betingelser, som lett vil forstås av en fagmann på området. The temperatures in the examples are illustrative, and the temperatures which are known to be used in polymerization with the respective classes of catalysts can be used. A polymerization temperature in the range from -100°C to +250°C is satisfactory, depending on the particular conditions, which will be readily understood by a person skilled in the art.

Egenskapene til polyetyren-harpikser som oppnås ved denne prosess og deretter sprøytestøpes, er avhengig av molekylvekten til polystyrenen. Denne kan lett måles ved å måle viskositeten av en 1# oppløsning av polymeren i toluen. Relative viskositetar på mellom 1,5 og 3,0 gir de mest tilfredsstillende resultater. Dersom viskositeten er lavere enn 1,5, har produktet redusert slagfasthet. Dersom den er over 3,0 er det ytterst vanskelig å sprøytestøpe produktet på en tilfredsstillende måte. Polystyrener med slike molekylvekter har, når de fremstilles med et alkyl- eller aryl-litium som katalysator, høy slagfasthet. The properties of polyethylene resins obtained by this process and then injection molded depend on the molecular weight of the polystyrene. This can easily be measured by measuring the viscosity of a 1# solution of the polymer in toluene. Relative viscosities of between 1.5 and 3.0 give the most satisfactory results. If the viscosity is lower than 1.5, the product has reduced impact resistance. If it is above 3.0, it is extremely difficult to injection mold the product in a satisfactory manner. Polystyrenes with such molecular weights, when produced with an alkyl or aryl lithium as a catalyst, have high impact strength.

Metoder til å regulere molekylvekten til styren-hårpisk-produktet, avhenger av den spesielle katalysator som anvendes. Vanligvia vil en økning i katalysatorkonsentrasjonen redu-sere molekylvekten. Ved polymeriseringer hvor det anvendes en alkyl- eller aryl-litium-katalysator, er molekylvekten ganske følsom overfor mengden av katalysator som anvendes og overfor forurensninger som er tilstede i oppløsningen som skal polymeriseres. Set bør da anvendes tilstrekkelig organo-litium-forbindelse til å tilveiebringe mellom omkring 0,10 og omkring 1,0 milliatomer aktivt litium pr. 100 gram monomer, i tillegg til den mengde av katalysator som trengs til å fjerne de siste rester av skadelige forurensainger. Set er vanligvis ønskelig å anvende tilstrekkelig med slik katalysator for å tilveiebringe et slikt overskudd på mellom 0,2 og 0,6 milliatomer aktivt litium pr. 100 gram monomer, for å fremstille styren-harpikser i det ønskede viskoistets-område for sprøytestøping. Methods of regulating the molecular weight of the styrene whip product depend on the particular catalyst used. Usually, an increase in the catalyst concentration will reduce the molecular weight. In polymerizations where an alkyl or aryl lithium catalyst is used, the molecular weight is quite sensitive to the amount of catalyst used and to contaminants present in the solution to be polymerized. Sufficient organo-lithium compound should then be used to provide between about 0.10 and about 1.0 milliatoms of active lithium per 100 grams of monomer, in addition to the amount of catalyst needed to remove the last remnants of harmful contaminants. It is usually desirable to use enough of such a catalyst to provide such an excess of between 0.2 and 0.6 milliatoms of active lithium per 100 grams of monomer, to produce styrene resins in the desired viscosity range for injection molding.

Fremstilling av harpikser med høy slagfasthet som vesentlig er polystyren og som ikke krever nærvær av relativt store mengder av høymolekylære gummier, er ikke tidligere kjent. Nærværet av de relativt store mengder høymolekylær gummi i harpiksene med høy slagfasthet, og som, er kjent i industrien, resulterer i en vesentlig nedsettelse av modul og hårdhet for harpiksen og ødelegger likeledes dens klarhet. Harpikser med høy slagfasthet som er fremstilt i samsvar med denne oppfinnelse, kan fremstilles med en bøyningsmodul på over 28.100 The production of resins with high impact strength which are essentially polystyrene and which do not require the presence of relatively large amounts of high molecular weight rubbers is not previously known. The presence of the relatively large amounts of high molecular weight rubber in the high impact resins, which, as is known in the industry, results in a significant reduction in the modulus and hardness of the resin and likewise destroys its clarity. High impact resins made in accordance with this invention can be made with a flexural modulus in excess of 28,100

p p

kg/cm og en hårdhet på M-skalaen på over 50, og har en klarhet som ikke er oppnåelig ved tidligere kjente fremgangsmåter. Klarheten av materialene er vanskelig å definere kvantitativt siden mye avhenger av tykkelsen på prøvene og støpeforholdene. Materialprøver som er fremstilt ved metoder ifølge denne oppfinnelse er blitt dannet slik at det er mulig å lese skrift kg/cm and a hardness on the M scale of over 50, and has a clarity that cannot be achieved by previously known methods. The clarity of the materials is difficult to define quantitatively since much depends on the thickness of the samples and the casting conditions. Material samples produced by methods according to this invention have been formed so that it is possible to read writing

gjennom så meget som 1 tommes tykke prøver av sprøytestøpt material. . Egenskapene for de oppnådde polymerer kan forandres slik som det har vært vanlig ved visse prosesser ved fremstilling av kommersielle produkter med høy slagfasthet, som å tilblande en gummiaktig polymer, men denne teknikk er vanligvis ikke nødvendig. through as much as 1 inch thick samples of injection molded material. . The properties of the resulting polymers can be altered as has been the practice of certain processes in the manufacture of high impact commercial products, such as admixing a rubbery polymer, but this technique is not usually necessary.

Som det er kjent i industrien, avhenger slagfastheten i en viss grad av forholdene Bom anvendeB ved sprøytestøpingen. Vanligvis oppnås den høyeste slagfasthet når polymeren støpes ved den laveste temperatur og det høyeste trykk som er praktiserbart. As is known in the industry, the impact strength depends to a certain extent on the conditions used in injection molding. Generally, the highest impact strength is achieved when the polymer is molded at the lowest temperature and highest pressure practicable.

Følgende uttrykk anvendes i eksemplene ved omtalen av egenskapene til de forskjellige produkter. The following expressions are used in the examples when describing the properties of the different products.

Slagfastheten bestemmes ved Izod-innsnitt-metoden, og er angitt i cmkg pr. cm. The impact strength is determined by the Izod notch method, and is stated in cmkg per cm.

Modulen er Young's Modul og er angitt i kg pr. cm 2. The modulus is Young's Modulus and is stated in kg per cm 2.

Hårdheten er angitt som Rockwell M. The hardness is indicated as Rockwell M.

Mooney betyr viskositeten uttrykt som ML-4 ved 100°G. Mooney means the viscosity expressed as ML-4 at 100°G.

Varmedeformeringen er angitt i Celsiusgrader ved en belast-ning på 18,6 kg/cm <2>. The thermal deformation is indicated in degrees Celsius at a load of 18.6 kg/cm <2>.

ASTM-metoder ble benyttet. ASTM methods were used.

Klarheten eller gjennomsiktigheten ble bestemt visuelt ved inspeksjon av sprøytestøpte stykker. Clarity or transparency was determined visually by inspection of injection molded pieces.

Seler er vektdeler dersom ikke annet er sagt. Harnesses are weight components unless otherwise stated.

EKSEMPLER. EXAMPLES.

Til bruk som suspensjonsmidler i eksemplene 1-3 ble det fremstillet et lavmolekylært polybutadien ved å polymerisere 100 g butadien i 3OO g heksan i 4 timer ved 50°C med en 1,75 M løsning av butyllitium i heksan i mengder som fremgår av den følgende tabell. Mengdene i millimol er oppført direkte under de tilsvarende mengder i ml. For use as suspending agents in Examples 1-3, a low molecular weight polybutadiene was prepared by polymerizing 100 g of butadiene in 300 g of hexane for 4 hours at 50°C with a 1.75 M solution of butyllithium in hexane in amounts as shown in the following table. The amounts in millimoles are listed directly below the corresponding amounts in ml.

SUSPENDERINGSMIDDEL- LØSNING. SUSPENSION AGENT SOLUTION.

Et foretrukket suspensjonsmiddel oppnås ved å bruke tilstrekkelig litiumkatalysator til å gi 10 til 60 milliatomer aktivt litium pr. 100 g butadien. A preferred suspending agent is obtained by using sufficient lithium catalyst to provide 10 to 60 milliatoms of active lithium per 100 g of butadiene.

Disse polymerisatløsningene ble rystet i luft til den karak-teristiske rav-farven av den aktive litium-forbindelse var for-svunnet. De resulterande løsninger ble deretter brukt som suspens jonsmiddel i eksemplene 1-3. These polymer solutions were shaken in air until the characteristic amber color of the active lithium compound had disappeared. The resulting solutions were then used as suspending agent in examples 1-3.

EKSEMPEL 1- 3. EXAMPLES 1-3.

Butyllitium og de ovenfor fremstilte suspensjonsmiddel-løsning-er ble satt til en løsning av 150 g styren i 280 g heptan i samsvar med den følgende tabell: Butyl lithium and the suspending agent solutions prepared above were added to a solution of 150 g of styrene in 280 g of heptane in accordance with the following table:

Polymeriseringen ble utført i lukkede flasker som var befridd for luft og fuktighet. Reaksjonen var fullført etter 4»5 timer ved 50°C. Suspensjonens karakteristtke gulfarve ble fjernet ved tilsetning av 0,5 ml vann og rysting. Heptanen ble avdekantert og det findelte polymerisat vasket med iso-propanol og tørket i et skap ved 75°C. Polymerisatene ble formet ved sprøytestøpning, hvoretter de hadde de følgende egenskaper: The polymerization was carried out in closed bottles which were freed from air and moisture. The reaction was complete after 4-5 hours at 50°C. The characteristic yellow color of the suspension was removed by adding 0.5 ml of water and shaking. The heptane was decanted off and the finely divided polymerizate was washed with iso-propanol and dried in a cabinet at 75°C. The polymers were formed by injection molding, after which they had the following properties:

Alle disse produkter hadde tilstrekkelig høy slagfasthet til selv å være brukbare erstatninger for dekkommersielle blandinger, etc. som nå anvendes, og produktene fra eksemplene 1 og 2 er særlig fordelaktige fordi de derav støpte produkter er klare og gjennomsiktige. All of these products had sufficiently high impact resistance to even be useful substitutes for commercial tire compounds, etc., which are now used, and the products of Examples 1 and 2 are particularly advantageous because the products molded therefrom are clear and transparent.

EKSEMPEL 4- 11. - EXAMPLE 4- 11. -

Disse eksempler illustrerer anvendelsen av et utvalg polymer-isater og sampolymerisater som suspensjonsmidler ved polymerisering av styren 1 et alifatisk hydrokarbon-løsningemiddel. These examples illustrate the use of a selection of polymers and copolymers as suspending agents in the polymerization of styrene 1 an aliphatic hydrocarbon solvent.

I hvert av de nedenfor angitte eksempler ble 430 g av en In each of the examples given below, 430 g of a

35^ løsning av styren i heptan polymerisert 5 timer ved 50°0 med butyllitium som katalysator, som vist i tabellen. 35% solution of styrene in heptane polymerized for 5 hours at 50°C with butyllithium as catalyst, as shown in the table.

Suspensjonsmiddel-deklarasjon: Suspension agent declaration:

"C-olje" MD-11 E-11D er et kommersielt produkt fra Enjay Chemical Company, og er kjent som et lavmolekylært flytende sampolymerisat av butadien og styren. "C-oil" MD-11 E-11D is a commercial product of Enjay Chemical Company, and is known as a low molecular weight liquid copolymer of butadiene and styrene.

"FE-S 195" er et butadien-styren sampolymerisat som inneholder 2596 bundet styren og fremstilles av The Firestone Tire & Eubber Company. "FE-S 195" is a butadiene-styrene copolymer containing 2596 bonded styrene and is manufactured by The Firestone Tire & Eubber Company.

"PBD" er et 12-Mooney polybutadien fremstillet ved polymerisering av butadien med butyllitium i heksanløsning. "PBD" is a 12-Mooney polybutadiene made by polymerizing butadiene with butyllithium in hexane solution.

Polypiperylen ble fremstillet ved polymersering av piperylen med butyllitium i heksanløsning til en egenviskositet på 0,42. Polypiperylene was produced by polymerizing piperylene with butyllithium in hexane solution to an intrinsic viscosity of 0.42.

Butyl-gummi M-25 er en isopren-isobutylen-sampolymer fra Butyl rubber M-25 is an isoprene-isobutylene copolymer from

Enjay Chemical Company. Enjay Chemical Company.

Polypropylen er et gummiaktig ataktisk polypropylen fremstillet med en Ziegler-katalysator. Polypropylene is a rubbery atactic polypropylene made with a Ziegler catalyst.

Polyisopren er et høymolekylært polymerisat fremstillet ved polymerisering av isopren i heksanløsning med en butyllitium-katalysator. Polyisoprene is a high-molecular polymer produced by polymerizing isoprene in hexane solution with a butyllithium catalyst.

Det fremgår tydelig ved undersøkelse av tabellen at det oppnås en god, suspensjon med de dien-sampolymerer som inneholder mer enn 50% diengummi. Det ble oppnådd dårligere suspensjon med butyl-gummi og poly-propylen, men i alle tilfelle kan det sees tegn på suspenderende virkning, og dette resulterer i forbed-ring av filtrerbarheten for det polymere produkt, Ingen av sprøytestøpningsproduktene hadde den funklende klarhet som ble observert i de to første eksempler. Klarheten avhenger av foreneligheten til suspensjonsmidlet med produktet, hvilket på sin side er avhengig av molekylvekten og struktmen av suspens jonsmidlet så vei som den anvendte mengde. Ved om-hyggelig regulering av disse faktorer er det mulig å fremstille produkter som er mer eller mindre klare. It is clear from examination of the table that a good suspension is obtained with the diene copolymers which contain more than 50% diene rubber. Poorer suspension was achieved with butyl rubber and polypropylene, but in all cases evidence of suspending action can be seen, and this results in improved filterability of the polymeric product. None of the injection molded products had the sparkling clarity observed in the first two examples. Clarity depends on the compatibility of the suspending agent with the product, which in turn depends on the molecular weight and structure of the suspending agent as well as the amount used. By carefully regulating these factors, it is possible to produce products that are more or less clear.

EKSEMPEL 12. EXAMPLE 12.

Dette eksempel illustrerer fremstillingen av en sampolymer av styren og a-metyl-styren. En oppløsning som inneholdt 98 g styren, 52 g a-metyl-styren og 1,9 g polybutadien i 280 g heptan, ble polymerisert i nærvær av en 1,30 ml av 1,75 molar butyllitium i heksan. Polybutadinet ble fremstillet ved polymerisering av butadien i heksan-oppløsningen med butyllitium i et forhold på 40 ml butyllitium pr. 100 g butadien. Polymeriseringen foregikk i 16 timer ved 50°C. Det ble oppnådd en god suspensjon. This example illustrates the preparation of a copolymer of styrene and α-methyl-styrene. A solution containing 98 g of styrene, 52 g of α-methylstyrene and 1.9 g of polybutadiene in 280 g of heptane was polymerized in the presence of 1.30 ml of 1.75 molar butyllithium in hexane. The polybutadiene was produced by polymerizing butadiene in the hexane solution with butyllithium in a ratio of 40 ml of butyllithium per 100 g of butadiene. The polymerization took place for 16 hours at 50°C. A good suspension was achieved.

Claims (1)

Fremgangsmåte for fremstilling av polystyren med høy klarhet og slagstyrke, ved polymerisering i et alifatisk hydrokarbon-løsningsmiddel, ved at styren tilsettes til et polymert suspensjonsmiddel med en molekylvekt på minst 1500 som er oppløst i løsningsmidlet, ved den temperatur ved hvilken polymerisering foregår, karakterisert ved at polymeriseringen utføres i nærvær av ioniske katalysatorer til det er dannet korn med størrelse 10 mikron til 5 mm som er uløselige i løsningsmidlet ved den nevnte temperatur.Process for the production of polystyrene with high clarity and impact strength, by polymerization in an aliphatic hydrocarbon solvent, in that the styrene is added to a polymeric suspension agent with a molecular weight of at least 1500 which is dissolved in the solvent, at the temperature at which polymerization takes place, characterized by that the polymerization is carried out in the presence of ionic catalysts until grains of size 10 microns to 5 mm are formed which are insoluble in the solvent at the said temperature.
NO882522A 1987-06-09 1988-06-08 DEVICE FOR SUSPENSING THE PARTS IN A CHAMBER RING OVEN FOR CARBON CONTAINING BLOCKS NO170744C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8708564A FR2616525B1 (en) 1987-06-09 1987-06-09 DEVICE AND METHOD FOR SEALING THE PARTITIONS OF A ROTATING FIRE CHAMBER OVEN FOR COOKING CARBON BLOCKS

Publications (4)

Publication Number Publication Date
NO882522D0 NO882522D0 (en) 1988-06-08
NO882522L NO882522L (en) 1988-12-12
NO170744B true NO170744B (en) 1992-08-17
NO170744C NO170744C (en) 1992-11-25

Family

ID=9352222

Family Applications (1)

Application Number Title Priority Date Filing Date
NO882522A NO170744C (en) 1987-06-09 1988-06-08 DEVICE FOR SUSPENSING THE PARTS IN A CHAMBER RING OVEN FOR CARBON CONTAINING BLOCKS

Country Status (12)

Country Link
EP (1) EP0295192B1 (en)
CN (1) CN1016539B (en)
AU (1) AU602586B2 (en)
BR (1) BR8802793A (en)
CA (1) CA1333329C (en)
DE (1) DE3864592D1 (en)
FR (1) FR2616525B1 (en)
IN (1) IN169512B (en)
IS (1) IS1509B (en)
MY (1) MY103300A (en)
NO (1) NO170744C (en)
SU (1) SU1641199A3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927410B1 (en) * 2008-02-13 2010-04-09 Solios Carbone SHUTTER WITH INFLATABLE PERIPHERAL SEAL AND SHUTTER SYSTEM COMPRISING THE SAME FOR ROOM OVEN LUCARNE
EP2475948B1 (en) * 2009-09-07 2014-12-10 Solios Carbone Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)
AU2012306185B2 (en) * 2011-09-08 2017-01-12 Solios Carbone Device and method for optimising combustion in partition lines of a chamber kiln for firing carbon blocks
KR102600348B1 (en) * 2021-04-15 2023-11-08 정근석 Device for blocking a fluid pipe and Method for using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR324153A (en) * 1902-09-01 1903-03-25 Postley Arthur Device for shutting off or plugging main gas lines
US1695187A (en) * 1927-10-05 1928-12-11 Goodman Patrick Gas-main stopper
US1814914A (en) * 1928-12-01 1931-07-14 Goodman Mary Conduit stopper
US3495606A (en) * 1965-08-05 1970-02-17 Sterling Radiator Co Inc Damper valve for ventilating ducts
US3425447A (en) * 1965-12-10 1969-02-04 United States Steel Corp Gas-duct valve with flexible closure
CH651380A5 (en) * 1980-08-15 1985-09-13 Alusuisse OPEN RING CHAMBER STOVE FOR THE PRODUCTION OF CARBONED MOLDED BODIES AND METHOD FOR THE OPERATION THEREOF.
FR2535834B1 (en) * 1982-11-09 1987-11-06 Pechiney Aluminium OPEN CHAMBER OVEN FOR COOKING CARBON BLOCKS, COMPRISING A BLOWING PIPE

Also Published As

Publication number Publication date
MY103300A (en) 1993-05-29
CN1016539B (en) 1992-05-06
AU1749288A (en) 1988-12-15
CN88103424A (en) 1988-12-28
BR8802793A (en) 1989-01-03
NO882522L (en) 1988-12-12
NO882522D0 (en) 1988-06-08
DE3864592D1 (en) 1991-10-10
IN169512B (en) 1991-11-02
EP0295192B1 (en) 1991-09-04
IS1509B (en) 1992-09-29
SU1641199A3 (en) 1991-04-07
NO170744C (en) 1992-11-25
FR2616525A1 (en) 1988-12-16
AU602586B2 (en) 1990-10-18
CA1333329C (en) 1994-12-06
FR2616525B1 (en) 1989-09-08
EP0295192A1 (en) 1988-12-14
IS3355A7 (en) 1988-12-10

Similar Documents

Publication Publication Date Title
US3251905A (en) Method of preparing block copolymers of conjugated dienes and vinyl-substituted aromatic compounds using dilithio catalysts and diluent mixture of hydrocarbon and ether
US4219627A (en) Process for the preparation of block copolymers
US5891947A (en) In-situ anionic continuous dispersion polymerization process
US4208356A (en) Process for producing mixture of block copolymers
KR0178368B1 (en) Process for the continuous bulk production of high impact vinylaromatic (co)polymers
US4427837A (en) Process for preparation of diene-styrene-α-methylstyrene block polymers and polymers therefrom
US3402160A (en) Styrene resins
US4377665A (en) Process for producing block copolymer resin
WO1989004843A1 (en) Amine containing initiator system for anionic polymerization
US3303225A (en) Production of polymetallated 1-acetylenes
CA2200020A1 (en) Method for the control of vinyl content in diene polymers
US4223116A (en) Conjugated diene polymerization process and catalyst
JPH0242083B2 (en)
NO170744B (en) DEVICE FOR SUSPENSING THE PARTS IN A CHAMBER RING OVEN FOR CARBON CONTAINING BLOCKS
CA1038097A (en) Method of preparing block polymers
KR860001036B1 (en) Impact resistant -methyl styrene-stryrene copolymer blends
US3560593A (en) Production of block copolymers
US3499059A (en) Method of making toughened polymers from emulsions of immiscible solutions of elastomers,thermoplastic polymers and ethylenically unsaturated monomers stabilized by the addition of block or graft copolymers
US5990236A (en) Preparation of impact-resistant polystyrene
KR100281344B1 (en) Thermoplastic molding materials
US4121031A (en) Process for producing random copolymers
US3728300A (en) Process for producing polymer blends
USH1303H (en) Removal of nickel catalyst from polymer solutions by water addition and centrifugation
US4102849A (en) Oil-extended hydrogenated diblock copolymer
EP0118572A1 (en) A process for preparation of diene styrene alpha-methylstyrene block polymers and polymers therefrom

Legal Events

Date Code Title Description
MK1K Patent expired