EP2475948B1 - Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s) - Google Patents

Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s) Download PDF

Info

Publication number
EP2475948B1
EP2475948B1 EP09745074.6A EP09745074A EP2475948B1 EP 2475948 B1 EP2475948 B1 EP 2475948B1 EP 09745074 A EP09745074 A EP 09745074A EP 2475948 B1 EP2475948 B1 EP 2475948B1
Authority
EP
European Patent Office
Prior art keywords
partitions
combustion
lines
line
incomplete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09745074.6A
Other languages
German (de)
French (fr)
Other versions
EP2475948A1 (en
Inventor
Nicolas Fiot
Pierre Mahieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solios Carbone SA
Original Assignee
Solios Carbone SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solios Carbone SA filed Critical Solios Carbone SA
Publication of EP2475948A1 publication Critical patent/EP2475948A1/en
Application granted granted Critical
Publication of EP2475948B1 publication Critical patent/EP2475948B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • F27B13/14Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/04Arrangements of indicators or alarms

Definitions

  • the invention relates to the field of so-called "rotating fire" chamber furnaces for the firing of carbonaceous blocks, more particularly carbon anodes and cathodes intended for the electrolytic production of aluminum. and the invention more particularly relates to a method for characterizing combustion in partition lines of such a chamber furnace.
  • Fire burners (x) turning to bake anodes are described in particular in the following patent documents: US 4,859,175 , WO 91/19147 , US 6,339,729 , US 6,436,335 and CA 2550880 , which will be referred to for more details about them.
  • their structure and functioning are partially recalled, with reference to figures 1 and 2 hereinafter, respectively showing a schematic plan view of the structure of a furnace (x) rotating (s) and open chambers, two lights in this example, for the figure 1 , and a partial perspective view and cutaway cross section showing the internal structure of such an oven, for the figure 2 .
  • the baking oven (FAC) 1 comprises two parallel casings or bays 1a and 1b, extending along the longitudinal axis XX along the length of the oven 1 and each comprising (e) a succession of transverse chambers 2 (perpendicular to the axis XX), separated from each other by transverse walls 3.
  • Each chamber 2 is constituted, in its length, that is to say in the transverse direction of the furnace 1, by the juxtaposition, alternately, of 4 cells, open at their upper part, to allow the loading of the carbonaceous blocks to be cooked and the unloading of the cooled cooked blocks, and in which are stacked the carbonaceous blocks 5 to be embedded in a carbonaceous dust, and hollow-walled hollow heating partitions 6, generally kept spaced apart by transverse spacers 6a.
  • the hollow partitions 6 of a chamber 2 are in the longitudinal extension (parallel to the major axis XX of the furnace 1) of the hollow partitions 6 of the other chambers 2 of the same span 1a or 1b, and the hollow partitions 6 are in communication with each other through skylights 7 at the upper part of their longitudinal walls, facing longitudinal passages formed at this level in the transverse walls 3, so that the hollow partitions 6 form rows of longitudinal partitions, arranged parallel to the XX axis of the furnace and in which will circulate gaseous fluids (combustion air, combustible gases and gases and combustion fumes) for preheating and cooking the anodes 5, and then cooling.
  • gaseous fluids combustion air, combustible gases and gases and combustion fumes
  • the hollow partitions 6 further include baffles 8, to elongate and distribute more uniformly the path of the combustion gases or fumes, and these hollow partitions 6 are provided at their upper part with openings 9, called “openings”, closable by removable covers and arranged in an oven crown block 1.
  • the two bays 1a and 1b of the furnace 1 are placed in communication at their longitudinal ends by turning flues 10, which make it possible to transfer the gaseous fluids from one end of each line of hollow partitions 6 of a span 1a or 1b at the end of the line of corresponding hollow partitions 6 on the other bay 1b or 1a, so as to form substantially rectangular loops of hollow partition lines 6.
  • fire advance (x) furnaces consists in causing a flame front to move from one chamber 2 to another which is adjacent during a cycle, each chamber 2 undergoing successively stages of preheating, forced heating, fire, then cooling (natural then forced).
  • the heating of the oven 1 is thus provided by the heating ramps 16, the injectors of the burners are introduced through the openings 9 in the hollow walls 6 of the chambers 2 concerned.
  • the blowing ramp 18 and the the cooling ramp (s) 19 comprise combustion air insufflation pipes supplied by motorcycle fans, these pipes being connected, via the openings 9, to the hollow partitions 6 of the chambers 2 concerned.
  • the suction ramp 11 is available to extract the combustion gases and fumes, referred to collectively as "combustion fumes", which circulate in hollow partition lines 6.
  • the heating and cooking of the anodes 5 are ensured both by the combustion of the fuel (gaseous or liquid) injected, in a controlled manner, by the heating ramps 16, and, to a substantially equal extent, by the combustion of volatile materials.
  • volatile materials such as polycyclic aromatic hydrocarbons
  • the flow of air and combustion fumes takes place along the lines of hollow partitions 6, and a negative pressure, imposed downstream of the heating zone B by the suction ramp 11 at the downstream end.
  • the preheating zone A makes it possible to control the flow rate of the combustion fumes inside the hollow partitions 6, whereas the air coming from the cooling zones C and D, thanks to the cooling ramps 19 and especially to the ramp 18, is preheated in the hollow partitions 6, cooling the anodes 5 cooked in the adjacent cells 4, during its journey and serves as an oxidizer when it reaches the heating zone B.
  • the control method of the FAC 1 essentially comprises the temperature and / or pressure regulation of the preheating zones A, heating B and natural blowing or cooling C of the oven 1 according to predefined setpoint laws.
  • the combustion fumes extracted from the fires by the suction ramps 11 are collected in a flue gas duct 20, for example a cylindrical duct partially shown on the figure 2 , with a smoke flue 21 that can have a U-shaped shape (see dotted line on the figure 1 ) or which can circumnavigate the furnace, and whose outlet 22 directs the combustion fumes sucked and collected to a smoke treatment center (CTF) not shown because not forming part of the invention.
  • a flue gas duct 20 for example a cylindrical duct partially shown on the figure 2
  • a smoke flue 21 that can have a U-shaped shape (see dotted line on the figure 1 ) or which can circumnavigate the furnace, and whose outlet 22 directs the combustion fumes sucked and collected to a smoke treatment center (CTF) not shown because not forming part of the invention.
  • CTF smoke treatment center
  • the current conduct of ovens of this type favors the fuel supply (liquid or gaseous fuel) of the heating ramps 16 regardless of draft depression conditions and aeraulic conditions in the partitions 6, where it This can result in incomplete combustion in a significant number, even high, of the partition lines 6.
  • This results in high operating costs of the furnace, not only because of the overconsumption of fuel, but also Because of the clogging of ducts and suction ducts that lead to the capture by unburnt deposits, deposits which also represent a potential risk of ignition and drift of the cooking process.
  • the problem underlying the invention is, in general, to improve the continuous optimization of the operation of such ovens, in order to reduce operating costs and prevent the risk of fire and drift of the cooking process, and for this purpose, the invention proposes a method or a method for characterizing the combustion in the partition lines of a chamber furnace called "fire (s) turning (s)" for the firing carbon blocks, by analyzing the value of at least one image parameter of the overall content of unburned in the combustion gases and residual air from said partition lines and collected in a suction ramp of said oven, said furnace comprising a succession of preheating chambers, heating, natural cooling and forced cooling, arranged in series along the longitudinal axis of the furnace, each chamber being formed by the juxtaposition, transversely to said longitudinal axis; nal and alternately, cells in which are arranged carbon blocks to cook and hollow heating partitions, in communication and aligned with the partitions of the other rooms, parallel to the longitudinal axis of the furnace, in lines of partitions in which circulate cooling and combustion air and combustion gases,
  • the method according to the invention further comprises at least one previous step, so-called preselection of the partition lines likely to be in an incomplete combustion situation, and making it possible to limit the number of injection stop tests, in said step of successive tests of total fuel injection stoppage, to only lines of preselected partitions, and consisting in calculating, for each line of partitions of rank n, a combustion ratio, equal to the ratio of the quantity of combustion air available to the quantity of fuel injected into said line of partitions of rank n , to define empirically a so-called stoichiometric limit ratio from measurements of said image parameter of the unburned content in the combustion gases collected at the output of a line of standard partitions, representative of the best state of the oven partition lines, and so that this stoichiometric ratio corresponds to a measured threshold of said image parameter below which the combustion is considered incomplete, to compare the combustion ratio of all the lines of partitions with
  • the identification of the partition lines in an incomplete combustion situation is advantageously preceded by a pre-selection of the partition lines likely to be in this incomplete combustion situation, thanks to the calculations, on the one hand, of the combustion ratio for each of the oven partition lines, and, on the other hand, of said stoichiometric ratio, empirically defined from measurements of the image parameter in a standard partition line, chosen as being representative of the best state of the partition lines and finally by comparing each combustion ratio with the stoichiometric ratio, to deduce which (s) is or are the line or lines of combustion, in which or which combustion may be considered incomplete.
  • combustion ratio (RCcn) in said step of preselecting the incomplete combustion partition lines, it is possible to calculate the combustion ratio (RCcn) in a line of partition walls.
  • row n being proportional to the square root of the static draw depression measured in the preheating zone for said line of partitions considered, and inversely proportional to the sum of the fuel injection power of the injectors of the heating ramps operating on the same line of partitions of rank n.
  • the overall content of the unburned content in the combustion gases is chosen as an image parameter.
  • the carbon monoxide (CO) content which is measured, to determine said stoichiometric ratio, in the suction pipe of said suction ramp which is connected to the partition wall of the standard partition line in the first chamber of preheating, said threshold of this image parameter which corresponds to the stoichiometric ratio being about 500 ppm CO measured at said suction pipe, which corresponds, under the standard operating conditions of this type of oven, to a level of 1000 ppm of CO at the point of combustion.
  • the process of the invention can be carried out without it is necessary to implement a specific detection and / or measurement apparatus, but only by using measurement data already available, because provided by sensors of a detection instrumentation already installed on such furnaces, the implementation the method of the invention being carried out only through a software module that can simply and easily be integrated into the current programs for driving such ovens.
  • the method according to the present application can be completed by the fact that after the characterization steps for identifying and selecting the partition lines in incomplete combustion, it is possible to implement at least one subsequent step called combustion optimization.
  • such an optimization of the combustion can consist in automatically modifying control parameters in the zones of preheating, heating and / or natural cooling of the oven, in order to balance the stoichiometric ratio RS combustion air on fuel, in order to recover a complete combustion situation, which can be defined simply by passing the value of said image parameter under a parameterizable threshold.
  • the method of the present application can be advantageously such that, following said optimization step, at least one complementary step of characterization of the combustion as defined above, in the lines of non-preselected partitions, as also indicated above, among the partition lines assumed to be incomplete combustion, is activated if at least one step of optimizing the combustion as mentioned above did not recover a complete combustion situation.
  • the method of the invention relates to a combustion characterization loop in the partition lines 6 of the furnace 1 by analysis of the total content of carbon monoxide (CO), or any other image parameter of the unburned content, in the fumes collected at the suction ramp 11 of a furnace fire 1, where this total CO content is measured by the CO-analyzer-detector 14 in the manifold of the suction ramp 11 (see figure 2 ), and the method of characterizing the combustion in the partition lines 6 comprises a first step of estimating the quality of combustion in each of the rows of partitions 6 and preselection of partition lines estimated in incomplete combustion state, then classifying the partition lines using a rating system, for selecting partition lines considered to be incomplete combustion, and defined according to the ratio of the combustion air to the fuel available in each line of partitions 6 and a ratio stoichiometric RS empirically defined by measurements in a line of standard partitions 6, representative of the best state of the walls of the walls of the furnace.
  • CO carbon monoxide
  • This first step of the combustion characterization method makes it possible to preselect lines of partitions 6 which are estimated to be incomplete combustion if their so-called combustion ratio RC, which is the ratio of the combustion air to the fuel available for each line of partitions. 6 considered, is lower than the stoichiometric ratio RS presented above.
  • This step of preselecting the partition lines estimated in incomplete combustion is immediately followed by a step of selecting the rows of partitions 6 considered incomplete combustion by classification, according to a rating system of the combustion quality in the partition lines which is based, as already said, on the principle of the stoichiometry of the ratio of the amount of combustion air to the amount of fuel available in each line of partitions.
  • the maximum amount of fuel that can be injected at a given moment in a line of partitions 6 depends on the air flow in this line of partitions, or the level of static depression measured in this line partitions at the same time. Below the stoichiometric ratio, the combustion is incomplete, and some of the fuels present in the line of partitions no longer burn completely, giving rise to the formation of carbon monoxide (CO).
  • CO carbon monoxide
  • FIG. 3 represents, by 3 continuous curves, the CO content measured in ppm by a CO analyzer 14 in the suction pipe 11a (see figure 2 ) of a line of partitions considered, as a function of the quantity of fuel injected, expressed as total injection power in the said line of partitions considered, and evaluated as a percentage of the maximum installed power, the three continuous curves of measurements of CO each being established for one respectively of three different static pulling depressions in the partition line considered and respectively corresponding to three phantom curves indicative of the percentage of residual oxygen in the flue gases collected in the suction pipe of 11a of the suction ramp 11 considered, these three different static depressions being measured by the preheating ramp 15, at the first chamber 2 preheating.
  • the three measurement curves of CO 23, 24 and 25 give results greater than 1000 ppm, which corresponds to a combustion even more incomplete as the draft depression is low in absolute value.
  • the curves 26, 27 and 28 indicating the variation of the percentage of residual oxygen are decreasing with a negative slope substantially constant and little different from one curve to another.
  • a combustion ratio RC cln is defined which gives the ratio of the quantity of fuel injected in said line of partitions of rank n to the quantity of air oxidant available in this same line of partitions of rank n.
  • the amount of combustion air available in the line of partitions of rank n corresponds to the air flow in this line of partitions of rank n, which can be estimated by the calculation of the square root of the static draft depression in this line. of partitions of rank n, measured in the preheating zone A by the preheating measurement ramp 15 (see figure 1 ).
  • the quantity of fuel injected into the same line of partitions of rank n can be directly obtained by summing the powers of the injectors that operate on the same line of partitions.
  • the combustion ratio RCc1n in a line of partitions of rank n is proportional to the square root of the static draft depression measured in the preheating zone A for this line of partitions 6 considered and inversely proportional to the sum of the powers of the injecting fuel injector heating ramps 16 operating on the same line of partitions 6 of rank n.
  • the figure 4 represents, for this line of partitions 6 of rank n, a shaded and curved zone 29, which corresponds to the envelope of the different measurement points of the CO measured in ppm to the corresponding suction pipe 11 a as a function of the variation of the corresponding combustion ratio RCcln.
  • the threshold value of RC below which the combustion is estimated to be incomplete is defined empirically by observation of the value of CO in a line of partitions representative of the best state oven partitions.
  • the incomplete combustion threshold is therefore indicated at 500 ppm measured CO, which corresponds to a value of the stoichiometric ratio RS of about 6, at the intersection of the shaded area 29 of the envelope of the measuring points of the CO measured and the incomplete combustion threshold of 500 ppm.
  • a pre-selection of the rows of partitions 6 likely to be in an incomplete combustion situation is further specified that the CO content, chosen in this embodiment as an image parameter of the overall content of unburned in the combustion gases , is measured, to determine the stoichiometric ratio RS, in that of the suction pipes 11a of the suction ramp 11 which is connected to that of the partitions 6 which is at the intersection of the line of standard partitions and the first chamber 2 of preheating, the threshold of the CO content corresponding to the stoichiometric ratio RS being about 500 ppm CO measured at this suction pipe 11a, which corresponds, under standard operating conditions of this type of oven 1, at a level of 1000 ppm CO at the point of combustion.
  • the combustion ratio RCc1n From calculation of the combustion ratio RCc1n, it is also deduced, at least for the rows of partitions 6 estimated in incomplete combustion by comparison of their combustion ratio RCc1 with the stoichiometric ratio RS, but preferably for all the rows of partitions 6 of the furnace 1, a note for classifying the partition lines in descending order from the one with the most incomplete combustion to the one with the least incomplete combustion, or even the most complete if all the partition lines are noted, for example by a system of notation from 0 to 20, defined such that beyond the value 10, the stoichiometric limit is exceeded and combustion is considered incomplete in the corresponding line of partitions.
  • the lines of closions considered in incomplete combustion are thus selected as having a grade greater than 10, which are then each subjected to a step of identification of the incomplete combustion partition lines, using a complete fuel injection stop test for a specified period and in succession on the fuel lines selected partitions, starting with the one with the highest rating and performing the test successively on the partition lines whose burn scores are in descending order.
  • the figure 6 schematically represents the unfolding of the fuel injection total stop test successively on three rows of partitions of rank ⁇ , ⁇ and ⁇ , whose NC combustion ratings are progressively decreasing.
  • the ordinate shows the total CO content measured in ppm in the collector of the suction manifold 11 by the CO detector 14 (see FIG. figure 2 ), and, on the x-axis, the time in minutes has been indicated.
  • Curve 33 represents the evolution over time of the total CO content measured in the manifold of the suction ramp 11.
  • the row of partitions 6 of rank ⁇ is controlled by the total stopping of the supply of fuel to the injectors of the heating ramps 16 operating on this line of partitions ⁇ , by an almost instantaneous break, starting from from an initial value (for the total stop test) of fuel injection rate to a zero flow rate, which corresponds to the left side with downward arrow of the rectangle " ⁇ ", symbolizing the fuel supply control fuel injectors of this line of partitions ⁇ during this total injection stop test.
  • the injection is stopped for a time interval t1 t2 sufficient for the measurement of the CO content to stabilize before the time t2 of the end of the total injection cutoff.
  • the curve 33 of the CO content shows a drop to a stabilized value of, for example, 500 ppm during the interval t1 t2, so that it is possible to measure the value ⁇ CO corresponding to the difference between the initial value at time t1 and the final value at time t2 of the CO content due to this interruption of supply. Then, at time t2, the fuel supply of this line of partitions ⁇ is restored to its initial value, as symbolized on the right side of the rectangle " ⁇ " of the figure 6 , by the rising arrow.
  • a time interval t2 t3 elapses, of a duration slightly greater than or substantially equal to the interval t1 t2, itself of the order of 2 minutes, to start at time t3, the same test total stop of fuel injection on the line of partitions of rank ⁇ , knowing that, during the execution of a test of total stop on a line of particular partitions, no modification is controlled on the course of the cooking process in all the other lines of partitions.
  • the duration of the second test, on the line of partitions ⁇ , corresponding to the interval t3 t4, is the same as the duration t1 t2, and the curve 33 of the CO content, which is returned, after the end of the test on the line of partitions ⁇ , at a normal level, marks, as a result of the test on the line of partitions ⁇ , a limited decrease in the CO content measured following the total injection stop in the line of partitions ⁇ during the interval t3 t4.
  • the resulting CO reduction, ⁇ CO is compared to a percentage X of the initial value of the CO content at the beginning of this test, COi, and, as is the case for the line of partitions ⁇ , if ⁇ CO is greater than X% of COi, the line of partitions ⁇ is identified as being in incomplete combustion, which is not the case of the partition lines ⁇ and ⁇ , if we consider the curve 33 of the figure 6 .
  • the total fuel injection stop test is therefore conducted, line of partitions per line of partitions, on the partition lines previously selected by their NC combustion rating. It is essential that no action be commanded on the lines of partitions 6 other than the one in total injection stop test, during the complete duration of this test, so as not to disturb the characterization of the combustion. This characterization indeed depends on the calculation of the variation of the measured CO content between the initial moment of the test and the final moment, while noting that the measurements of CO content always remain global.
  • the sudden downward inflection then the rise of curve 33 on the figure 6 therefore reflect the impact of the total fuel injection shutdown in the line of partitions ⁇ on the CO content in the collector of the intake manifold 11, which therefore takes into account the flue gases extracted from all the walls of the oven walls.
  • this value of X depends in particular on the number of partitions 6 per chamber 2 of the oven, as well as the accuracy of measurement and detection threshold values of the CO detector 14, in particular. In general, X% is selected in a range of 5% to 10%.
  • the characterization system implementing the method of the invention must be able to detect at least one partition of rank n among 9 partitions 6 where the combustion tends to become incomplete.
  • combustion optimization After having thus selected the partition lines considered in incomplete combustion, using the stoichiometric ratio RS, RC combustion ratios of the partition lines, the comparison of the combustion ratios with the stoichiometric ratio, and the assignment of notes. of combustion NC to the partition lines, then after the identification of incomplete combustion partition lines by the total fuel injection stop test, at least one subsequent step, called combustion optimization, can be carried out implemented.
  • Such a step may consist in modifying, preferably automatically, control parameters in at least one of the natural cooling zones C, heating B and preheating A, in order, as far as possible, to balance the combustion ratios on the stoichiometric ratio of combustion air on fuel, to recover a complete combustion situation in as large a number as possible of the partition lines, this transition to a complete combustion situation that can be defined by the passage of the measured value of the CO content, or by passing the value of at least one other image parameter of the overall unburned content in the combustion gases, below a parameterizable threshold.
  • the method according to the present application proposes at least one additional stage of characterization of the combustion, which is carried out by applying the total injection stop test to those of the partition lines which do not have have been preselected, according to the demand method, from the partition lines assumed to be incomplete combustion, simply because their RC combustion ratio has been calculated lower than the stoichiometric RS ratio.
  • this additional characterization step makes it possible to identify partitions whose stoichiometric conditions are satisfactory, having an NC combustion rating of less than 10, in the example of the notation system previously described, but whose physical conditions generate problems. of combustion, because partitions are deformed, pinched or plugged more or less completely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

L'invention concerne le domaine des fours à chambres dits à « feu(x) tournant(s) », pour la cuisson de bloc carbonés, plus particulièrement d'anodes et de cathodes en carbone destinées à la production par électrolyse de l'aluminium, et l'invention a plus particulièrement pour objet une méthode de caractérisation de la combustion dans des lignes de cloisons d'un tel four à chambres.The invention relates to the field of so-called "rotating fire" chamber furnaces for the firing of carbonaceous blocks, more particularly carbon anodes and cathodes intended for the electrolytic production of aluminum. and the invention more particularly relates to a method for characterizing combustion in partition lines of such a chamber furnace.

Des fours à feu(x) tournant(s) pour cuire des anodes sont décrits notamment dans les documents de brevet suivants : US 4,859,175 , WO 91/19147 , US 6,339, 729 , US 6,436,335 et CA 2550880 , auxquels on se reportera pour plus de précisions à leur sujet. On rappelle cependant partiellement leur structure et leur fonctionnement, en référence aux figures 1 et 2 ci-après, représentant respectivement une vue schématisée en plan de la structure d'un four à feu(x) tournant(s) et chambres ouvertes, à deux feux dans cet exemple, pour la figure 1, et une vue partielle en perspective et coupe transversale avec arrachement représentant la structure interne d'un tel four, pour la figure 2.Fire burners (x) turning to bake anodes are described in particular in the following patent documents: US 4,859,175 , WO 91/19147 , US 6,339,729 , US 6,436,335 and CA 2550880 , which will be referred to for more details about them. However, their structure and functioning are partially recalled, with reference to figures 1 and 2 hereinafter, respectively showing a schematic plan view of the structure of a furnace (x) rotating (s) and open chambers, two lights in this example, for the figure 1 , and a partial perspective view and cutaway cross section showing the internal structure of such an oven, for the figure 2 .

Le four à cuire (FAC) 1 comprend deux cuvelages ou travées 1 a et 1 b parallèles, s'étendant selon l'axe longitudinal XX sur la longueur du four 1 et comportant chacun(e) une succession de chambres 2 transversales (perpendiculaires à l'axe XX), séparées les unes des autres par des murs transversaux 3. Chaque chambre 2 est constituée, dans sa longueur, c'est-à-dire dans la direction transversale du four 1, par la juxtaposition, en alternance, d'alvéoles 4, ouverts à leur partie supérieure, pour permettre le chargement des blocs carbonés à cuire et le déchargement des blocs cuits refroidis, et dans lesquels sont empilés les blocs carbonés 5 à cuire noyés dans une poussière carbonée, et des cloisons chauffantes creuses 6, à parois minces, généralement maintenues espacées par des entretoises 6a transversales. Les cloisons creuses 6 d'une chambre 2 sont dans le prolongement longitudinal (parallèle au grand axe XX du four 1) des cloisons creuses 6 des autres chambres 2 de la même travée 1 a ou 1 b, et les cloisons creuses 6 sont en communication les unes avec les autres par des lucarnes 7 à la partie supérieure de leurs parois longitudinales, en regard de passages longitudinaux ménagés à ce niveau dans les murs transversaux 3, de sorte que les cloisons creuses 6 forment des lignes de cloisons longitudinales, disposées parallèlement au grand axe XX du four et dans lesquelles vont circuler des fluides gazeux (air comburant, gaz combustibles et gaz et fumées de combustion) permettant d'assurer la préchauffe et la cuisson des anodes 5, puis leur refroidissement. Les cloisons creuses 6 comportent, en outre, des chicanes 8, pour allonger et répartir plus uniformément le trajet des gaz ou fumées de combustion et ces cloisons creuses 6 sont munies, à leur partie supérieure, d'ouvertures 9, dites « ouvreaux », obturables par des couvercles amovibles et ménagées dans un bloc de couronnement du four 1.The baking oven (FAC) 1 comprises two parallel casings or bays 1a and 1b, extending along the longitudinal axis XX along the length of the oven 1 and each comprising (e) a succession of transverse chambers 2 (perpendicular to the axis XX), separated from each other by transverse walls 3. Each chamber 2 is constituted, in its length, that is to say in the transverse direction of the furnace 1, by the juxtaposition, alternately, of 4 cells, open at their upper part, to allow the loading of the carbonaceous blocks to be cooked and the unloading of the cooled cooked blocks, and in which are stacked the carbonaceous blocks 5 to be embedded in a carbonaceous dust, and hollow-walled hollow heating partitions 6, generally kept spaced apart by transverse spacers 6a. The hollow partitions 6 of a chamber 2 are in the longitudinal extension (parallel to the major axis XX of the furnace 1) of the hollow partitions 6 of the other chambers 2 of the same span 1a or 1b, and the hollow partitions 6 are in communication with each other through skylights 7 at the upper part of their longitudinal walls, facing longitudinal passages formed at this level in the transverse walls 3, so that the hollow partitions 6 form rows of longitudinal partitions, arranged parallel to the XX axis of the furnace and in which will circulate gaseous fluids (combustion air, combustible gases and gases and combustion fumes) for preheating and cooking the anodes 5, and then cooling. The hollow partitions 6 further include baffles 8, to elongate and distribute more uniformly the path of the combustion gases or fumes, and these hollow partitions 6 are provided at their upper part with openings 9, called "openings", closable by removable covers and arranged in an oven crown block 1.

Les deux travées 1 a et 1 b du four 1 sont mises en communication à leurs extrémités longitudinales par des carneaux de virage 10, qui permettent de transférer les fluides gazeux d'une extrémité de chaque ligne de cloisons creuses 6 d'une travée 1a ou 1b à l'extrémité de la ligne de cloisons creuses 6 correspondante sur l'autre travée 1b ou 1a, de sorte à former des boucles sensiblement rectangulaires de lignes de cloisons creuses 6.The two bays 1a and 1b of the furnace 1 are placed in communication at their longitudinal ends by turning flues 10, which make it possible to transfer the gaseous fluids from one end of each line of hollow partitions 6 of a span 1a or 1b at the end of the line of corresponding hollow partitions 6 on the other bay 1b or 1a, so as to form substantially rectangular loops of hollow partition lines 6.

Le principe d'exploitation des fours à feu(x) tournant(s), également dénommés fours « à avancement de feu(x) », consiste à amener un front de flammes à se déplacer d'une chambre 2 à une autre qui lui est adjacente au cours d'un cycle, chaque chambre 2 subissant successivement des stades de préchauffage, chauffage forcé, plein feu, puis refroidissement (naturel puis forcé).The principle of operation of rotating fire furnaces (x), also called "fire advance (x)" furnaces, consists in causing a flame front to move from one chamber 2 to another which is adjacent during a cycle, each chamber 2 undergoing successively stages of preheating, forced heating, fire, then cooling (natural then forced).

La cuisson des anodes 5 est réalisée par un ou plusieurs feux ou groupes de feux (deux groupes de feux étant représentés sur la figure 1, dans une position dans laquelle l'un s'étend, dans cet exemple, sur treize chambres 2 de la travée 1 a et l'autre sur treize chambres 2 de la travée 1 b) qui se déplacent cycliquement de chambre 2 en chambre 2. Chaque feu ou groupe de feux est composé de cinq zones successives A à E, qui sont, comme représenté sur la figure 1 pour le feu de la travée 1 b, et de l'aval vers l'amont par rapport au sens d'écoulement des fluides gazeux dans les lignes de cloisons creuses 6, et dans le sens contraire aux déplacements cycliques de chambre en chambre :

  1. A) Une zone de préchauffage comportant, en se reportant au feu de la travée 1a, et en tenant compte du sens de rotation des feux indiqué par la flèche au niveau du carneau de virage 10 à l'extrémité du four 1 en haut sur la figure 1 :
    • une rampe d'aspiration 11 équipée, pour chaque cloison creuse 6 de la chambre 2 au-dessus de laquelle cette rampe d'aspiration s'étend, d'un système de mesure et de réglage du débit des gaz et fumées de combustion par ligne de cloisons creuses 6, ce système pouvant comprendre, dans chaque pipe d'aspiration 11 a qui est solidaire de la rampe d'aspiration 11 et débouchant dans cette dernière, d'une part, et, d'autre part, engagée dans l'ouverture 9 de l'une respectivement des cloisons creuses 6 de cette chambre 2, un volet d'obturation réglable pivoté par un actionneur de volet, pour le réglage du débit, ainsi qu'un débitmètre 12, légèrement en amont, dans la pipe 11a correspondante, d'un capteur de température (thermocouple) 13 de mesure de la température des fumées de combustion à l'aspiration, et
    • une rampe de mesure de préchauffage 15, sensiblement parallèle à la rampe d'aspiration 11 en amont de cette dernière, généralement, au-dessus de la même chambre 2, et équipée de capteurs de température (thermocouples) et de capteurs de pression pour préparer la dépression statique et la température régnant dans chacune des cloisons creuses 6 de cette chambre 2 afin de pouvoir afficher et régler cette dépression et cette température de la zone de préchauffage;
  2. B) Une zone de chauffage comportant :
    • plusieurs rampes de chauffage identiques 16, deux ou, de préférence, trois, comme représenté sur la figure 1 ; chacune équipée de brûleurs ou d'injecteurs de combustible (liquide ou gazeux) et de capteurs de température (thermocouples), chacune des rampes 16 s'étendant au-dessus de l'une des chambres respectivement d'un nombre correspondant de chambres 2 adjacentes, de sorte que les injecteurs de chaque rampe de chauffage 16 sont engagés dans les ouvertures 9 des cloisons creuses 6 pour y injecter le combustible ;
  3. C) Une zone de soufflage ou de refroidissement naturel comportant :
    • une rampe dite de « point zéro » 17, s'étendant au-dessus de la chambre 2 immédiatement en amont de celle en dessous de la rampe de chauffage 16 la plus en amont, et équipée de capteurs de pression pour mesurer la pression régnant dans chacune des cloisons creuses 6 de cette chambre 2, afin de pouvoir régler cette pression comme indiqué ci-après, et
    • une rampe de soufflage 18, équipée de moto ventilateurs munis d'un dispositif permettant le réglage du débit d'air ambiant insufflé dans chacune des cloisons creuses 6 d'une chambre 2 en amont de celle située sous la rampe de point zéro 17, de sorte que les débits d'air ambiant insufflés dans ces cloisons creuses 6 peuvent être régulées de sorte à obtenir une pression voulue (légère surpression ou légère dépression) au niveau de la rampe de point zéro 17 ;
  4. D) Une zone de refroidissement forcé, qui s'étend sur trois chambres 2 en amont de la rampe de soufflage 18, et qui comporte, dans cet exemple, deux rampes de refroidissement 19 parallèles, chacune équipée de moto ventilateurs et de pipes de soufflage insufflant de l'air ambiant dans les cloisons creuses 6 de la chambre 2 correspondante ; et
  5. E) Une zone de travail, s'étendant en amont des rampes de refroidissement 19 et permettant l'enfournement et le détournement des anodes 5, et l'entretien des chambres 2.
The cooking of the anodes 5 is carried out by one or more fires or groups of fires (two groups of fires being represented on the figure 1 in a position in which one extends, in this example, on thirteen chambers 2 of span 1a and the other on thirteen chambers 2 of span 1b) which move cyclically from chamber 2 to chamber 2 Each light or group of lights is composed of five successive zones A to E, which are, as shown on the figure 1 for the fire of the span 1b, and downstream upstream with respect to the flow direction of the gaseous fluids in the hollow partition lines 6, and in the opposite direction to the cyclic displacements from chamber to chamber:
  1. A) A preheating zone comprising, referring to the light of the span 1a, and taking into account the direction of rotation of the lights indicated by the arrow at the turning flue 10 at the end of the furnace 1 at the top of the figure 1 :
    • a suction ramp 11 equipped, for each hollow partition 6 of the chamber 2 above which this suction ramp extends, a system for measuring and regulating the flow of gases and combustion fumes by line of hollow partitions 6, this system may comprise, in each suction pipe 11 a which is integral with the suction ramp 11 and opening into the latter, on the one hand, and, on the other hand, engaged in the opening 9 of one respectively of the hollow partitions 6 of this chamber 2, an adjustable shutter pivoted by a shutter actuator, for adjusting the flow, and a flowmeter 12, slightly upstream, in the pipe 11a corresponding, of a temperature sensor (thermocouple) 13 for measuring the temperature of the exhaust combustion fumes, and
    • a preheating measurement ramp 15, substantially parallel to the suction ramp 11 upstream of the latter, generally above the same chamber 2, and equipped with temperature sensors (thermocouples) and pressure sensors for preparing the static depression and the temperature prevailing in each of the hollow partitions 6 of this chamber 2 in order to be able to display and adjust this depression and this temperature of the preheating zone;
  2. B) A heating zone comprising:
    • several identical heating ramps 16, two or, preferably, three, as shown in FIG. figure 1 ; each equipped with burners or fuel injectors (liquid or gaseous) and temperature sensors (thermocouples), each of the ramps 16 extending above one of the chambers respectively of a corresponding number of adjacent chambers 2 , so that the injectors of each heating ramp 16 are engaged in the openings 9 of the hollow partitions 6 to inject the fuel therein;
  3. C) A natural blowing or cooling zone comprising:
    • a ramp called "zero point" 17, extending above the chamber 2 immediately upstream of that below the heating ramp 16 the most upstream, and equipped with pressure sensors to measure the pressure prevailing in each of the hollow partitions 6 of this chamber 2, in order to adjust this pressure as indicated below, and
    • a blowing ramp 18, equipped with motorcycle fans provided with a device for adjusting the flow rate of ambient air blown into each of the hollow partitions 6 of a chamber 2 upstream of that located under the zero point ramp 17, of so that the ambient air flows insufflated in these hollow partitions 6 can be regulated so as to obtain a desired pressure (slight overpressure or slight depression) at the zero point ramp 17;
  4. D) A forced cooling zone, which extends over three chambers 2 upstream of the blast ramp 18, and which comprises, in this example, two parallel cooling ramps 19, each equipped with motor fans and blow pipes injecting ambient air into the hollow partitions 6 of the corresponding chamber 2; and
  5. E) A working zone, extending upstream of the cooling ramps 19 and allowing the charging and diversion of the anodes 5, and the maintenance of the rooms 2.

Le chauffage du four 1 est ainsi assuré par les rampes de chauffage 16, dont les injecteurs des brûleurs sont introduits, via les ouvertures 9, dans les cloisons creuses 6 des chambres 2 concernées. En amont des rampes de chauffage 16 (par rapport au sens d'avancement du feu et au sens de circulation de l'air et des gaz et fumées de combustion dans les lignes de cloisons creuses 6), la rampe de soufflage 18 et la ou les rampe(s) de refroidissement 19 comportent des pipes d'insufflation d'air de combustion alimentées par des moto ventilateurs, ces pipes étant connectées, via les ouvertures 9, aux cloisons creuses 6 des chambres 2 concernées. En aval des rampes de chauffage 16, on dispose de la rampe d'aspiration 11 pour extraire les gaz et fumées de combustion, désignés dans leur ensemble par les termes « fumées de combustion », qui circulent dans les lignes de cloisons creuses 6.The heating of the oven 1 is thus provided by the heating ramps 16, the injectors of the burners are introduced through the openings 9 in the hollow walls 6 of the chambers 2 concerned. Upstream of the heating ramps 16 (with respect to the direction of fire and the flow direction of the air and combustion gases and fumes in the hollow partition lines 6), the blowing ramp 18 and the the cooling ramp (s) 19 comprise combustion air insufflation pipes supplied by motorcycle fans, these pipes being connected, via the openings 9, to the hollow partitions 6 of the chambers 2 concerned. Downstream of the heating ramps 16, the suction ramp 11 is available to extract the combustion gases and fumes, referred to collectively as "combustion fumes", which circulate in hollow partition lines 6.

Le chauffage et la cuisson des anodes 5 sont assurés à la fois par la combustion du combustible (gazeux ou liquide) injecté, de manière contrôlée, par les rampes de chauffage 16, et, dans une mesure sensiblement égale, par la combustion de matières volatiles (telles que des hydrocarbures aromatiques polycycliques) du brai diffusées par les anodes 5 dans les alvéoles 4 des chambres 2 en zones de préchauffage et chauffage, ces matières volatiles, en grande partie combustible, diffusées dans les alvéoles 4 pouvant s'écouler dans les deux cloisons creuses 6 adjacentes par des passages ménagés dans ces cloisons, pour s'enflammer dans ces deux cloisons, grâce à de l'air comburant résiduel présent, à ce niveau, parmi les fumées de combustion dans ces cloisons creuses 6.The heating and cooking of the anodes 5 are ensured both by the combustion of the fuel (gaseous or liquid) injected, in a controlled manner, by the heating ramps 16, and, to a substantially equal extent, by the combustion of volatile materials. (such as polycyclic aromatic hydrocarbons) pitch diffused by the anodes 5 in the cells 4 of the chambers 2 in preheating and heating zones, these volatile materials, largely combustible, diffused into the cells 4 can flow in both adjacent hollow partitions 6 by passages formed in these partitions, to ignite in these two partitions, thanks to the residual combustion air present at this level, among the combustion fumes in these hollow partitions 6.

Ainsi, la circulation de l'air et des fumées de combustion s'effectue le long des lignes de cloisons creuses 6, et une dépression, imposée en aval de la zone de chauffage B par la rampe d'aspiration 11 à l'extrémité aval de la zone de préchauffage A, permet de contrôler le débit des fumées de combustion à l'intérieur des cloisons creuses 6, tandis que l'air provenant des zones de refroidissement C et D, grâce aux rampes de refroidissement 19 et surtout à la rampe de soufflage 18, est préchauffé dans les cloisons creuses 6, en refroidissant les anodes 5 cuites dans les alvéoles 4 adjacents, au cours de son trajet et sert de comburant lorsqu'il parvient dans la zone de chauffage B.Thus, the flow of air and combustion fumes takes place along the lines of hollow partitions 6, and a negative pressure, imposed downstream of the heating zone B by the suction ramp 11 at the downstream end. of the preheating zone A, makes it possible to control the flow rate of the combustion fumes inside the hollow partitions 6, whereas the air coming from the cooling zones C and D, thanks to the cooling ramps 19 and especially to the ramp 18, is preheated in the hollow partitions 6, cooling the anodes 5 cooked in the adjacent cells 4, during its journey and serves as an oxidizer when it reaches the heating zone B.

Au fur et à mesure que la cuisson des anodes 5 se produit, on fait avancer cycliquement (par exemples toutes les 24 heures environ) d'une chambre 2 l'ensemble des rampes 11 à 19 et les équipements et appareillages de mesures et d'enregistrement associés, chaque chambre 2 assurant ainsi, successivement, en amont de la zone de préchauffage A, une fonction de chargement des blocs carbonés crus 5, puis, dans la zone de préchauffage A, une fonction de préchauffage naturel par les fumées de combustion du combustible et des vapeurs de brai qui quittent les alvéoles 4 en pénétrant dans les cloisons creuses 6, compte tenu de la dépression dans les cloisons creuses 6 des chambres 2 en zone de préchauffage A, puis, dans la zone de chauffage B ou de cuisson, une fonction de chauffage des blocs 5 à environ 1100°C, et enfin, dans les zones de refroidissement C et D, une fonction de refroidissement des blocs cuits 5 par l'air ambiant et, corrélativement, de préchauffage de cet air constituant le comburant du four 1, la zone de refroidissement forcé D étant suivie, dans le sens opposé au sens d'avancement du feu et de circulation des fumées de combustion, d'une zone E de déchargement des blocs carbonés 5 refroidis, puis éventuellement de chargement des blocs carbonés crus dans les alvéoles 4.As the firing of the anodes 5 occurs, cyclically (e.g. every 24 hours or so) of a chamber 2, all of the ramps 11 to 19 are advanced and the measuring equipment and equipment associated register, each chamber 2 thus ensuring, successively, upstream of the zone of preheating A, a loading function of the green carbonaceous blocks 5, then, in the preheating zone A, a natural preheating function by the fuel combustion fumes and pitch vapors leaving the cells 4 by penetrating into the hollow partitions 6, taking into account the depression in the hollow partitions 6 of the chambers 2 in the preheating zone A, then, in the heating zone B or cooking zone, a heating function of the blocks 5 at about 1100 ° C., and finally, in the cooling zones C and D, a cooling function of the blocks baked by the ambient air and, correspondingly, of preheating this air constituting the oxidizer of the oven 1, the forced cooling zone D being followed, in the opposite direction in the direction of advancement of the fire and flue gas circulation, a zone E of unloading cooled carbonaceous blocks 5, then possibly loading green carbonaceous blocks in the cells 4.

Le procédé de régulation du FAC 1 comprend essentiellement la régulation en température et/ou en pression des zones de préchauffage A, chauffage B et soufflage ou refroidissement naturel C du four 1 en fonction de lois de consignes prédéfinies.The control method of the FAC 1 essentially comprises the temperature and / or pressure regulation of the preheating zones A, heating B and natural blowing or cooling C of the oven 1 according to predefined setpoint laws.

Les fumées de combustion extraites des feux par les rampes d'aspiration 11 sont collectées dans un conduit des fumées 20, par exemple un conduit cylindrique partiellement représenté sur la figure 2, avec un carneau des fumées 21 pouvant avoir une forme en plan en U (voir en pointillés sur la figure 1) ou pouvant faire le tour du four, et dont la sortie 22 dirige les fumées de combustion aspirées et collectées vers un centre de traitement des fumées (CTF) non représenté car ne faisant pas partie de l'invention.The combustion fumes extracted from the fires by the suction ramps 11 are collected in a flue gas duct 20, for example a cylindrical duct partially shown on the figure 2 , with a smoke flue 21 that can have a U-shaped shape (see dotted line on the figure 1 ) or which can circumnavigate the furnace, and whose outlet 22 directs the combustion fumes sucked and collected to a smoke treatment center (CTF) not shown because not forming part of the invention.

Afin de conférer aux anodes (bloc carbonés) leurs caractéristiques optimales, et donc principalement de garantir l'obtention d'une température finale de cuisson, la conduite actuelle des fours de ce type privilégie l'alimentation en combustible (carburant liquide ou gazeux) des rampes de chauffage 16 indépendamment des conditions de dépression de tirage et des conditions aérauliques dans les cloisons 6, d'où il peut résulter une combustion incomplète dans un nombre non négligeable, voir élevé, des lignes de cloisons 6. Ceci a, à son tour, pour conséquence des coûts de fonctionnement élevés du four, non seulement en raison de la surconsommation en combustible, mais également en raison de l'encrassement des gaines et conduits d'aspiration qui mènent à la captation par les dépôts d'imbrûlés, dépôts qui représentent de surcroit un risque potentiel d'inflammation et de dérive du procédé de cuisson.In order to give the anodes (carbon blocks) their optimal characteristics, and therefore mainly to guarantee the obtaining of a final cooking temperature, the current conduct of ovens of this type favors the fuel supply (liquid or gaseous fuel) of the heating ramps 16 regardless of draft depression conditions and aeraulic conditions in the partitions 6, where it This can result in incomplete combustion in a significant number, even high, of the partition lines 6. This, in turn, results in high operating costs of the furnace, not only because of the overconsumption of fuel, but also Because of the clogging of ducts and suction ducts that lead to the capture by unburnt deposits, deposits which also represent a potential risk of ignition and drift of the cooking process.

Le problème à la base de l'invention est, d'une manière générale, d'améliorer l'optimisation en continu du fonctionnement de tels fours, afin d'en réduire les coûts de fonctionnement et prévenir les risques d'incendie et de dérive du procédé de cuisson, et, à cet effet, l'invention propose un procédé ou une méthode de caractérisation de la combustion dans des lignes de cloisons d'un four à chambres dit « à feu(x) tournant(s) » pour la cuisson de blocs carbonés, par analyse de la valeur d'au moins un paramètre image de la teneur globale en imbrulés dans les gaz de combustion et de l'air résiduel issus desdites lignes de cloisons et collectés dans une rampe d'aspiration dudit four, ledit four comportant une succession de chambres de préchauffage, de chauffage, de refroidissement naturel et de refroidissement forcé, disposées en série selon l'axe longitudinal du four, chaque chambre étant constituée par la juxtaposition, transversalement audit axe longitudinal et en alternance, d'alvéoles dans lesquels sont disposés des blocs carbonés à cuire et de cloisons chauffantes creuses, en communication et alignées avec les cloisons des autres chambres, parallèlement à l'axe longitudinal du four, en lignes de cloisons dans lesquelles circulent de l'air de refroidissement et comburant et des gaz de combustion, ladite rampe d'aspiration étant reliée à chacune des cloisons de la première chambre en préchauffage par l'une respectivement de pipes d'aspiration, l'air comburant nécessaire étant en partie injecté par une rampe de soufflage de la zone de refroidissement naturel, reliée à au moins un ventilateur, et en partie infiltré par dépression à travers les lignes de cloisons, et le combustible nécessaire à la cuisson des blocs carbonés étant en partie injecté par au moins deux rampes de chauffage s'étendant chacune sur l'une respectivement d'au moins deux chambres adjacentes de la zone de chauffage, et aptes à injecter chacune du combustible dans chacune des cloisons de la chambre respective correspondante de la zone de chauffage, la régulation de la combustion du four comprenant essentiellement une régulation en température et/ou en pression des zones de préchauffage, chauffage et refroidissement naturel, par ligne de cloisons, en fonction de lois de consignes prédéfinies en température et/ou en pression, et ladite méthode de caractérisation de la combustion se caractérise en ce qu'elle comprend au moins une étape de tests successifs d'arrêt total d'injection de combustible, ligne de cloisons par ligne de cloisons, d'une durée suffisante pour que la mesure dudit paramètre image de la teneur globale en imbrulés dans les gaz de combustion se stabilise, et sans commander d'action sur les lignes de cloisons autres que celle en test d'arrêt total d'injection pendant la durée de ce test, la caractérisation de la combustion étant basée sur le calcul de la variation entre les mesures dudit paramètre image prises avant et après l'arrêt total d'injection dans chacune des lignes de cloisons testées, afin d'identifier une ou plusieurs lignes de cloisons en situation de combustion incomplète, si ladite variation est supérieure à x % de la valeur dudit paramètre image au début dudit test d'arrêt total d'injection, x % étant, de préférence, de l'ordre de 5% à 10%, la valeur de x dépendant notamment du nombre de cloisons par chambre, des valeurs de seuil de détection et de la précision de mesure d'au moins un détecteur dudit paramètre image.The problem underlying the invention is, in general, to improve the continuous optimization of the operation of such ovens, in order to reduce operating costs and prevent the risk of fire and drift of the cooking process, and for this purpose, the invention proposes a method or a method for characterizing the combustion in the partition lines of a chamber furnace called "fire (s) turning (s)" for the firing carbon blocks, by analyzing the value of at least one image parameter of the overall content of unburned in the combustion gases and residual air from said partition lines and collected in a suction ramp of said oven, said furnace comprising a succession of preheating chambers, heating, natural cooling and forced cooling, arranged in series along the longitudinal axis of the furnace, each chamber being formed by the juxtaposition, transversely to said longitudinal axis; nal and alternately, cells in which are arranged carbon blocks to cook and hollow heating partitions, in communication and aligned with the partitions of the other rooms, parallel to the longitudinal axis of the furnace, in lines of partitions in which circulate cooling and combustion air and combustion gases, said suction ramp being connected to each of the partitions the first chamber preheating by one respectively of suction pipes, the necessary combustion air being partially injected by a blowing ramp of the natural cooling zone, connected to at least one fan, and partly infiltrated by depression through the partition lines, and the fuel required for cooking the carbonaceous blocks being partially injected by at least two heating ramps each extending over one respectively of at least two adjacent chambers of the heating zone and capable of injecting each of the fuel into each of the partitions of the corresponding respective chamber of the heating zone, the regulation of the combustion of the furnace essentially comprising a temperature and / or pressure regulation of the zones of preheating, heating and natural cooling , per line of partitions, according to predefined temperature and / or pressure setpoint laws, and said method of characterization of the combustion is characterized in that it comprises at least one step of successive tests for total fuel injection stoppage, line of partitions per line of partitions, of a duration sufficient for the measurement of said image parameter of the overall content of unburned in the combustion gases stabilizes, and without controlling action on the walls of lines other than that in total injection stop test during the duration of this test, the characterization of the combustion being based on the calculation of the variation between the measurements of said image parameter taken before and after the total injection stoppage in each of the lines of partitions tested, in order to identify one or more partition lines in an incomplete combustion situation, if said variation is greater than x% of the value of said image parameter at the beginning of said total injection stop test, x% being preferably of the order of 5% to 10%, the value of x depending on t the number of partitions per chamber, detection threshold values and the measurement accuracy of at least one detector of said image parameter.

Ainsi, par un test d'arrêt total d'injection du combustible dans une ligne de cloisons seulement pendant une durée suffisante pour stabiliser la mesure du paramètre image, et sans rien modifier sur les autres lignes de cloisons, on peut, grâce au procédé de l'invention, identifier une ligne de cloisons fonctionnant en situation de combustion incomplète, sur laquelle des mesures postérieures d'optimisation de la combustion pourront être prises.Thus, by a total fuel injection stop test in a line of partitions only for a time sufficient to stabilize the measurement of the image parameter, and without changing anything on the other lines of partitions, it is possible, thanks to the method of the invention, identify a line of partitions operating in an incomplete combustion situation, on which later measurements of combustion optimization can be taken.

Afin de limiter le nombre de tests d'arrêt d'injection et de permettre au système d'identifier de manière plus rapide la ou les cloisons en situation de combustion incomplète, la méthode selon l'invention comprend de plus au moins une étape antérieure, dite de présélection des lignes de cloisons susceptibles d'être dans une situation de combustion incomplète, et permettant de limiter le nombre de tests d'arrêt d'injection, dans ladite étape de tests successifs d'arrêt total d'injection de combustible, aux seules lignes de cloisons présélectionnées, et consistant à calculer, pour chaque ligne de cloisons de rang n, un ratio de combustion, égal au rapport de la quantité d'air comburant disponible à la quantité de combustible injecté dans ladite ligne de cloisons de rang n, à définir empiriquement un rapport limite dit stoechiométrique à partir de mesures dudit paramètre image de la teneur en imbrulés dans les gaz de combustion collectés en sortie d'une ligne de cloisons étalon, représentative du meilleur état des lignes de cloisons du four, et de sorte que ce rapport stoechiométrique corresponde à un seuil mesuré dudit paramètre image en dessous duquel la combustion est considérée comme incomplète, à comparer le ratio de combustion de toutes les lignes de cloisons au rapport stoechiométrique, et à considérer comme incomplète la combustion dans toute ligne de cloisons de rang n pour laquelle le ratio de combustion correspondant est inférieur au rapport stoechiométrique.In order to limit the number of injection stop tests and to enable the system to identify more quickly the partition (s) in an incomplete combustion situation, the method according to the invention further comprises at least one previous step, so-called preselection of the partition lines likely to be in an incomplete combustion situation, and making it possible to limit the number of injection stop tests, in said step of successive tests of total fuel injection stoppage, to only lines of preselected partitions, and consisting in calculating, for each line of partitions of rank n, a combustion ratio, equal to the ratio of the quantity of combustion air available to the quantity of fuel injected into said line of partitions of rank n , to define empirically a so-called stoichiometric limit ratio from measurements of said image parameter of the unburned content in the combustion gases collected at the output of a line of standard partitions, representative of the best state of the oven partition lines, and so that this stoichiometric ratio corresponds to a measured threshold of said image parameter below which the combustion is considered incomplete, to compare the combustion ratio of all the lines of partitions with a stoichiometric ratio, and to consider as incomplete the combustion in any line of partitions of rank n for which the corresponding ratio of combustion is lower than the stoichiometric ratio.

Ainsi, l'identification des lignes de cloisons en situation de combustion incomplète, grâce au test d'arrêt total d'injection, est avantageusement précédée d'une présélection des lignes de cloisons susceptibles d'être dans cette situation de combustion incomplète, grâce aux calculs, d'une part, du ratio de combustion pour chacune de toutes les lignes de cloisons du four, et, d'autre part, dudit rapport stoechiométrique, défini empiriquement à partir de mesures du paramètre image dans une ligne de cloisons étalon, choisie comme étant représentative du meilleur état des lignes de cloisons et enfin par la comparaison de chaque ratio de combustion au rapport stoechiométrique, pour en déduire quelle(s) est ou sont la ou les lignes de combustion, dans laquelle ou lesquelles la combustion peut être considérée comme incomplète.Thus, the identification of the partition lines in an incomplete combustion situation, thanks to the total injection stop test, is advantageously preceded by a pre-selection of the partition lines likely to be in this incomplete combustion situation, thanks to the calculations, on the one hand, of the combustion ratio for each of the oven partition lines, and, on the other hand, of said stoichiometric ratio, empirically defined from measurements of the image parameter in a standard partition line, chosen as being representative of the best state of the partition lines and finally by comparing each combustion ratio with the stoichiometric ratio, to deduce which (s) is or are the line or lines of combustion, in which or which combustion may be considered incomplete.

Dans un mode de mise en oeuvre avantageux de la méthode de caractérisation de la combustion selon la présente demande, dans ladite étape de présélection des lignes de cloisons en combustion incomplète, on peut calculer le ratio de combustion (RCcln) dans une ligne de cloisons de rang n comme étant proportionnel à la racine carrée de la dépression statique de tirage mesurée dans la zone de préchauffage pour ladite ligne de cloisons considérée, et inversement proportionnel à la somme des puissances d'injection de combustible des injecteurs des rampes de chauffage opérant sur la même ligne de cloisons de rang n.In an advantageous embodiment of the combustion characterization method according to the present application, in said step of preselecting the incomplete combustion partition lines, it is possible to calculate the combustion ratio (RCcn) in a line of partition walls. row n being proportional to the square root of the static draw depression measured in the preheating zone for said line of partitions considered, and inversely proportional to the sum of the fuel injection power of the injectors of the heating ramps operating on the same line of partitions of rank n.

En particulier, lors de cette étape de présélection, le ratio de combustion de la ligne de cloisons de rang n peut être aisément calculé en appliquant la formule suivante : RC cln = 10 x P 1 - P 7 x N i = 1 N InjHRi

Figure imgb0001

où P1 et P7 sont les pressions mesurées dans les cloisons de rang n des chambres en communication respectivement avec la rampe d'aspiration et la rampe dite de « point zéro » dans la zone de refroidissement naturel, N est le nombre de rampes de chauffage, en général égal à 2 ou 3, et InjHRi est la puissance d'injection totale dans la cloison de rang n des injecteurs de la rampe de chauffage de rang i, où i varie de 1 à N.In particular, during this preselection step, the combustion ratio of the row of partitions of rank n can be easily calculated by applying the following formula: RC cln = 10 x P 1 - P 7 x NOT Σ i = 1 NOT InjHRi
Figure imgb0001

where P 1 and P 7 are the pressures measured in the n-row partitions of the chambers in communication with the suction ramp and the so-called "zero point" ramp respectively in the natural cooling zone, N is the number of ramps of heating, generally equal to 2 or 3, and InjHRi is the total injection power in the row n partition of the injectors of the heating ramp of rank i, where i varies from 1 to N.

Avantageusement, de plus, dans la méthode de caractérisation selon la présente demande, l'étape de présélection des lignes de cloisons en combustion incomplète peut également comprendre une étape qui consiste à classer les lignes de cloisons en combustion incomplète dans l'ordre allant de celle où la combustion est la plus incomplète à celle où la combustion est la moins incomplète, en appliquant un système de notation des lignes de cloisons selon lequel on attribue à toute ligne de cloisons de rang n une note de classement NCcln donnée par la formule suivante : NC cln = 20 - 10 RC c ln RS .

Figure imgb0002
Advantageously, moreover, in the characterization method according to the present application, the step of preselecting the incomplete combustion partition lines may also comprise a step consisting in classifying the incomplete combustion partition lines in the order of that where the combustion is the most incomplete to the one where the combustion is least incomplete, by applying a system of notation of the partition lines according to which any line of partitions of rank n is assigned a classification note NC cln given by the following formula : NC cln = 20 - 10 RC vs ln RS .
Figure imgb0002

En outre, afin d'en tirer rapidement une information de présélection facile à utiliser, on peut effectuer l'étape de classement des lignes de cloisons en considérant avantageusement que, pour une ligne de cloisons de rang n en bon état, la combustion est complète si NCcln<10, la combustion est incomplète si 10<NCcln <12, et la combustion est très incomplète, et donc critique, si NCcln> 12.In addition, in order to quickly obtain an easy-to-use preselection information, it is possible to perform the step of classifying the partition lines by advantageously considering that, for a line of walls of rank n in good condition, the combustion is complete. if NC cln <10, the combustion is incomplete if 10 <NC cln <12, and the combustion is very incomplete, and therefore critical, if NC cln > 12.

Pour assurer une mise en oeuvre de cette méthode de caractérisation qui est avantageuse au plan de la simplicité des moyens de détection et du traitement des signaux fournis par ces moyens, on choisit, comme paramètre image de la teneur globale en imbrulés dans les gaz de combustion, la teneur en monoxyde de carbone (CO), qui est mesurée, pour déterminer ledit rapport stoechiométrique, dans la pipe d'aspiration de ladite rampe d'aspiration qui est reliée à la cloison de la ligne de cloisons étalon dans la première chambre de préchauffage, ledit seuil de ce paramètre image auquel correspond le rapport stoechiométrique étant d'environ 500 ppm de CO mesuré à ladite pipe d'aspiration, ce qui correspond, dans les conditions standards de fonctionnement de ce type de four, à un niveau de 1000 ppm de CO au point de combustion.To ensure an implementation of this method of characterization which is advantageous in terms of the simplicity of the detection means and the processing of the signals provided by these means, the overall content of the unburned content in the combustion gases is chosen as an image parameter. , the carbon monoxide (CO) content, which is measured, to determine said stoichiometric ratio, in the suction pipe of said suction ramp which is connected to the partition wall of the standard partition line in the first chamber of preheating, said threshold of this image parameter which corresponds to the stoichiometric ratio being about 500 ppm CO measured at said suction pipe, which corresponds, under the standard operating conditions of this type of oven, to a level of 1000 ppm of CO at the point of combustion.

Ainsi, comme un détecteur de monoxyde de carbone peut déjà être présent, dans de tels fours de l'état de la technique, dans les collecteurs de la rampe d'aspiration, le procédé de l'invention peut être mis en oeuvre sans qu'il soit nécessaire d'implanter un appareillage de détection et/ou de mesure spécifique, mais uniquement en utilisant des données de mesures déjà disponibles, car fournies par des capteurs d'une instrumentation de détection déjà implantée sur de tels fours, la mise en oeuvre du procédé de l'invention s'effectuant uniquement grâce à un module logiciel qui peut simplement et facilement être intégré aux programmes actuels de conduite de tels fours.Thus, since a carbon monoxide detector can already be present in such furnaces of the state of the art, in the manifolds of the suction manifold, the process of the invention can be carried out without it is necessary to implement a specific detection and / or measurement apparatus, but only by using measurement data already available, because provided by sensors of a detection instrumentation already installed on such furnaces, the implementation the method of the invention being carried out only through a software module that can simply and easily be integrated into the current programs for driving such ovens.

En outre, la méthode selon la présente demande peut être complétée par le fait qu'après les étapes de caractérisation permettant d'identifier et de sélectionner les lignes de cloisons en combustion incomplète, on peut mettre en oeuvre au moins une étape postérieure dite d'optimisation de la combustion.Furthermore, the method according to the present application can be completed by the fact that after the characterization steps for identifying and selecting the partition lines in incomplete combustion, it is possible to implement at least one subsequent step called combustion optimization.

Avantageusement, une telle optimisation de la combustion peut consister à modifier automatiquement des paramètres de régulation dans les zones de préchauffage, chauffage et/ou refroidissement naturel du four, afin d'équilibrer le rapport stoechiométrique RS air comburant sur combustible, dans le but de recouvrer une situation de combustion complète, qui peut être définie simplement par le passage de la valeur dudit paramètre image sous un seuil paramétrable.Advantageously, such an optimization of the combustion can consist in automatically modifying control parameters in the zones of preheating, heating and / or natural cooling of the oven, in order to balance the stoichiometric ratio RS combustion air on fuel, in order to recover a complete combustion situation, which can be defined simply by passing the value of said image parameter under a parameterizable threshold.

Mais, que cette étape d'optimisation soit conduite comme précisé au paragraphe précédent, ou d'une toute autre manière, la méthode de la présente demande peut être avantageusement telle que, suite à ladite étape d'optimisation, au moins une étape complémentaire de caractérisation de la combustion telle que définie ci-dessus, dans les lignes de cloisons non présélectionnées, de la manière également indiquée ci-dessus, parmi les lignes de cloisons supposées en combustion incomplète, est activée si au moins une étape d'optimisation de la combustion telle qu'évoquée ci-dessus n'a pas permis de recouvrer une situation de combustion complète.But, whether this optimization step is carried out as specified in the preceding paragraph, or in any other way, the method of the present application can be advantageously such that, following said optimization step, at least one complementary step of characterization of the combustion as defined above, in the lines of non-preselected partitions, as also indicated above, among the partition lines assumed to be incomplete combustion, is activated if at least one step of optimizing the combustion as mentioned above did not recover a complete combustion situation.

D'autres caractéristiques et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif, en référence aux dessins annexés sur lesquels :

  • les figures 1 et 2, déjà décrites ci-dessus, sont respectivement une vue schématisée en plan de la structure d'un four à deux feux tournants et chambres ouvertes, et une vue partielle en perspective et coupe transversale avec arrachement représentant la structure interne d'un tel four,
  • la figure 3 est un graphique double représentant l'évolution, d'une part, du CO mesuré (en ppm) et, d'autre part, du pourcentage d'oxygène résiduel dans les fumées collectées à la pipe d'aspiration d'une même ligne de cloisons, en fonction de la puissance d'injection totale, dans la ligne de cloisons, exprimée en pourcentage de la puissance maximum installée, selon trois valeurs différentes de la dépression statique de tirage mesurées au niveau de la rampe de mesure de préchauffage associée à la première chambre de préchauffage du four ;
  • la figure 4 est une courbe de caractérisation de la combustion dans une ligne de cloisons de rang n, indiquant la teneur en CO mesurée (en ppm) par ligne de cloisons en fonction du rapport de combustion RCcln ;
  • la figure 5 est un diagramme représentant, en abscisse, la notation de la combustion dans une ligne de cloisons de rang n par la note NCcln, résultant de la mise en oeuvre du système de classification de la combustion selon la présente demande, alors que la teneur en CO mesurée (en ppm) par ligne de cloisons dans la pipe d'aspiration correspondante est représentée en ordonnées, et
  • la figure 6 est un diagramme correspondant à un exemple de test d'arrêt total d'injection de combustible successivement dans trois lignes de cloisons α, β, et γ, et représentant, en ordonnées, la valeur de la teneur en CO globale mesurée (en ppm) dans la rampe d'aspiration en fonction du temps (exprimé en minute), et faisant apparaitre, pour la première ligne de cloisons α testée, une réduction de la teneur en CO globale mesurée, due au test, supérieure à un seuil indicatif d'un état de combustion incomplète dans cette ligne de cloisons α.
Other features and advantages of the invention will emerge from the description given below, without limitation, with reference to the accompanying drawings in which:
  • the figures 1 and 2 , already described above, are respectively a schematic plan view of the structure of a furnace with two rotating lights and open chambers, and a partial perspective view and cutaway cross-section showing the internal structure of such an oven,
  • the figure 3 is a double graph showing the evolution, on the one hand, of the measured CO (in ppm) and, on the other hand, the percentage of residual oxygen in the fumes collected at the suction pipe of the same line of partitions, according to the total injection power, in the partition line, expressed as a percentage of the maximum installed power, according to three values different from the static draft depression measured at the preheating measurement ramp associated with the first preheating chamber of the oven;
  • the figure 4 is a combustion characterization curve in a n-row partition line, indicating the measured CO content (in ppm) per partition line as a function of the combustion ratio RC cln ;
  • the figure 5 is a diagram showing, on the abscissa, the notation of the combustion in a line of partitions of rank n by the note NC cln , resulting from the implementation of the classification system of the combustion according to the present application, while the content of Measured CO (in ppm) per line of partitions in the corresponding suction pipe is plotted on the ordinate, and
  • the figure 6 is a diagram corresponding to an example of a total fuel injection stop test successively in three rows of partitions α, β, and γ, and representing, on the ordinate, the value of the total measured CO content (in ppm) in the suction ramp as a function of time (expressed in minutes), and showing, for the first line of partitions tested α, a reduction in the overall measured CO content, due to the test, above a threshold indicative of an incomplete combustion state in this line of partitions α.

Le procédé de l'invention concerne une boucle de caractérisation de la combustion dans les lignes de cloisons 6 du four 1 par analyse de la teneur globale en monoxyde de carbone (CO), ou de tout autre paramètre image de la teneur en imbrulés, dans les fumées collectées à la rampe d'aspiration 11 d'un feu du four 1, où cette teneur globale en CO est mesurée par l'analyseur-détecteur de CO 14 dans le collecteur de la rampe d'aspiration 11 (voir figure 2), et la méthode de caractérisation de la combustion dans les lignes de cloisons 6 comporte une première étape d'estimation de la qualité de combustion dans chacune des lignes de cloisons 6 et de présélection de lignes de cloisons estimées en état de combustion incomplète, puis de classement des lignes de cloisons en utilisant un système de notation, permettant de sélectionner des lignes de cloisons considérées en combustion incomplète, et défini en fonction du rapport de l'air comburant au combustible disponibles dans chaque ligne de cloisons 6 et d'un rapport stoechiométrique RS défini empiriquement par mesures dans une ligne de cloisons 6 étalon, représentative du meilleur état des lignes de cloisons du four.The method of the invention relates to a combustion characterization loop in the partition lines 6 of the furnace 1 by analysis of the total content of carbon monoxide (CO), or any other image parameter of the unburned content, in the fumes collected at the suction ramp 11 of a furnace fire 1, where this total CO content is measured by the CO-analyzer-detector 14 in the manifold of the suction ramp 11 (see figure 2 ), and the method of characterizing the combustion in the partition lines 6 comprises a first step of estimating the quality of combustion in each of the rows of partitions 6 and preselection of partition lines estimated in incomplete combustion state, then classifying the partition lines using a rating system, for selecting partition lines considered to be incomplete combustion, and defined according to the ratio of the combustion air to the fuel available in each line of partitions 6 and a ratio stoichiometric RS empirically defined by measurements in a line of standard partitions 6, representative of the best state of the walls of the walls of the furnace.

Cette première étape de la méthode de caractérisation de la combustion permet de présélectionner des lignes de cloisons 6 qui sont estimées en combustion incomplète si leur rapport dit de combustion RC, qui est le rapport de l'air comburant au carburant disponibles pour chaque ligne de cloisons 6 considérée, est inférieur au rapport stoechiométrique RS présenté ci-dessus.This first step of the combustion characterization method makes it possible to preselect lines of partitions 6 which are estimated to be incomplete combustion if their so-called combustion ratio RC, which is the ratio of the combustion air to the fuel available for each line of partitions. 6 considered, is lower than the stoichiometric ratio RS presented above.

Cette étape de présélection des lignes de cloisons estimées en combustion incomplète est immédiatement suivie d'une étape de sélection des lignes de cloisons 6 considérées en combustion incomplète par classement, selon un système de notation de la qualité de combustion dans les lignes de cloisons qui est basé, comme déjà dit, sur le principe de la stoechiométrie du rapport de la quantité d'air comburant à la quantité de combustible disponibles dans chaque ligne de cloisons.This step of preselecting the partition lines estimated in incomplete combustion is immediately followed by a step of selecting the rows of partitions 6 considered incomplete combustion by classification, according to a rating system of the combustion quality in the partition lines which is based, as already said, on the principle of the stoichiometry of the ratio of the amount of combustion air to the amount of fuel available in each line of partitions.

En effet, la quantité maximale de combustible que l'on peut injecter à un instant donné dans une ligne de cloisons 6 dépend du débit d'air dans cette ligne de cloisons, ou du niveau de dépression statique mesuré dans cette ligne de cloisons au même instant. En deçà du rapport stoechiométrique, la combustion est incomplète, et une partie des combustibles en présence dans la ligne de cloisons ne brûle plus complètement, donnant naissance à la formation de monoxyde de carbone (CO).Indeed, the maximum amount of fuel that can be injected at a given moment in a line of partitions 6 depends on the air flow in this line of partitions, or the level of static depression measured in this line partitions at the same time. Below the stoichiometric ratio, the combustion is incomplete, and some of the fuels present in the line of partitions no longer burn completely, giving rise to the formation of carbon monoxide (CO).

Ce phénomène de seuil est mieux perçu par la considération de la figure 3, représentant, par 3 courbes continues, la teneur de CO mesurée en ppm par un analyseur de CO 14 dans la pipe d'aspiration 11a (voir figure 2) d'une ligne de cloisons considérée, en fonction de la quantité de combustible injectée, exprimée en puissance d'injection totale dans ladite ligne de cloisons considérée, et évaluée en pourcentage de la puissance maximum installée, les trois courbes continues de mesures du CO étant établies chacune pour l'une respectivement de trois dépressions statiques de tirage différentes dans la ligne de cloisons considérée et correspondant respectivement à trois courbes en traits mixtes indicatives du pourcentage d'oxygène résiduel dans les gaz de fumées collectés dans la pipe d'aspiration de 11a de la rampe d'aspiration 11 considérée, ces trois dépressions statiques différentes étant mesurées par la rampe de préchauffage 15, au niveau de la première chambre 2 de préchauffage.This threshold phenomenon is better perceived by the consideration of figure 3 , representing, by 3 continuous curves, the CO content measured in ppm by a CO analyzer 14 in the suction pipe 11a (see figure 2 ) of a line of partitions considered, as a function of the quantity of fuel injected, expressed as total injection power in the said line of partitions considered, and evaluated as a percentage of the maximum installed power, the three continuous curves of measurements of CO each being established for one respectively of three different static pulling depressions in the partition line considered and respectively corresponding to three phantom curves indicative of the percentage of residual oxygen in the flue gases collected in the suction pipe of 11a of the suction ramp 11 considered, these three different static depressions being measured by the preheating ramp 15, at the first chamber 2 preheating.

Ainsi, les courbes 23, 24 et 25 de la teneur en CO mesurées (en ppm) à ladite pipe d'aspiration 11a en faisant varier la puissance d'injection totale de 10% à environ 30% de la puissance maximum installée, avec une dépression statique de tirage respectivement de -140 Pa, - 120 Pa et -70 Pa, correspondent respectivement aux courbes en traits mixtes 26, 27 et 28 indiquant la variation correspondante (en réduction continue) du pourcentage d'oxygène résiduel, comme indiqué sur l'axe des ordonnées de droite de la figure 3, respectivement pour les mêmes dépressions de tirage.Thus, the curves 23, 24 and 25 of the CO content measured (in ppm) at said suction pipe 11a by varying the total injection power from 10% to about 30% of the maximum installed power, with static vacuum draw respectively of -140 Pa, - 120 Pa and -70 Pa respectively correspond to the curves in phantom 26, 27 and 28 indicating the corresponding variation (in continuous reduction) of the percentage of residual oxygen, as indicated on the y axis of the right of the figure 3 , respectively for the same drawdown depressions.

On remarque que, pour une puissance d'injection totale dans une ligne de cloisons 6 comprise entre 10% et 15% de la puissance maximum installée, les courbes du CO mesuré 23, 24 et 25 à la pipe d'aspiration 11a de la dite ligne de cloisons 6 sont peu différentes l'une de l'autre, et indiquent de faibles teneurs en CO (sensiblement inférieures à 500 ppm), correspondant à une combustion considérée comme complète, tandis que pour des valeurs de la puissance d'injection totale supérieures à 15% de la puissance maximum installée, les trois courbes de mesure du CO 23, 24 et 25 divergent l'une de l'autre avec des pentes d'abord progressivement croissantes puis sensiblement constantes, mais d'autant plus importantes que la dépression de tirage est faible en valeur absolue. De plus, pour une puissance d'injection totale par ligne de cloisons supérieure à environ 25% de la puissance maximum installée, les trois courbes de mesure du CO 23, 24 et 25 donnent des résultats supérieurs à 1000 ppm, ce qui correspond à une combustion d'autant plus incomplète que la dépression de tirage est faible en valeur absolue. Simultanément, les courbes 26, 27 et 28 indiquant la variation du pourcentage d'oxygène résiduel sont décroissantes avec une pente négative sensiblement constante et peu différente d'une courbe à l'autre.Note that, for a total injection power in a line of partitions 6 between 10% and 15% of the maximum installed power, the curves of CO measured 23, 24 and 25 to the suction pipe 11a of the said line of partitions 6 are little different from each other, and indicate low levels of CO (substantially less than 500 ppm), corresponding to a combustion considered complete, while for values of the total injection power greater than 15% of the maximum installed power, the three CO 23, 24 and 25 measuring curves diverge from one another with slopes that are initially increasing and then substantially constant, but as important as the draft depression is small in absolute value. Moreover, for a total injection power per line of partitions greater than about 25% of the maximum installed power, the three measurement curves of CO 23, 24 and 25 give results greater than 1000 ppm, which corresponds to a combustion even more incomplete as the draft depression is low in absolute value. Simultaneously, the curves 26, 27 and 28 indicating the variation of the percentage of residual oxygen are decreasing with a negative slope substantially constant and little different from one curve to another.

En se basant sur cette constatation, on définit, pour chaque ligne de cloisons 6 de rang n, un ratio de combustion RCcln qui donne le rapport de la quantité de combustible injecté dans ladite ligne de cloisons de rang n à la quantité d'air comburant disponible dans cette même ligne de cloisons de rang n. La quantité d'air comburant disponible dans la ligne de cloisons de rang n correspond au débit d'air dans cette ligne de cloisons de rang n, qui peut être estimé par le calcul de la racine carrée de la dépression statique de tirage dans cette ligne de cloisons de rang n, mesurée dans la zone de préchauffage A par la rampe de mesure de préchauffage 15 (voir figure 1).On the basis of this observation, for each row of partitions 6 of rank n, a combustion ratio RC cln is defined which gives the ratio of the quantity of fuel injected in said line of partitions of rank n to the quantity of air oxidant available in this same line of partitions of rank n. The amount of combustion air available in the line of partitions of rank n corresponds to the air flow in this line of partitions of rank n, which can be estimated by the calculation of the square root of the static draft depression in this line. of partitions of rank n, measured in the preheating zone A by the preheating measurement ramp 15 (see figure 1 ).

La quantité de combustible injectée dans la même ligne de cloisons de rang n peut être directement obtenue par sommation des puissances des injecteurs qui opèrent sur cette même ligne de cloisons.The quantity of fuel injected into the same line of partitions of rank n can be directly obtained by summing the powers of the injectors that operate on the same line of partitions.

Ainsi, la formule (1) exprimant le rapport ou ratio de combustion de cette ligne de cloisons de rang n, soit RCcln, peut être la suivante : RC cln = 10 x P 1 - P 7 x N i = 1 N InjHRi ;

Figure imgb0003

où P1 et P7 sont les pressions mesurées dans la ligne de cloisons de rang n au niveau des chambres 2 en communication respectivement avec la rampe d'aspiration 11 pour P1, dans la zone de préchauffage A, et avec la rampe de « point 0 » 17 dans la zone de refroidissement naturel C, et où N est le nombre de rampes de chauffage 16, en général égal à 2 ou 3, et InjHRi est la somme des puissances d'injection des injecteurs de la rampe de chauffage 16 de rang i où i varie de 1 à N (2 ou 3) dans la ligne de cloison de rang n. On note de plus que chaque rampe de chauffage 16 comporte généralement deux injecteurs par cloison 6 de la même chambre 2 correspondante, de sorte que si N = 3, comme dans l'exemple de la figure 1 (avec trois rampes de chauffage 16), une ligne de cloisons de rang n est alimentée en combustible par six injecteurs. Ainsi, le rapport de combustion RCcln dans une ligne de cloisons de rang n est proportionnel à la racine carrée de la dépression statique de tirage mesurée dans la zone de préchauffage A pour cette ligne de cloisons 6 considérée et inversement proportionnel à la somme des puissances d'injection de combustible des injecteurs des rampes de chauffage 16 opérant sur cette même ligne de cloisons 6 de rang n.Thus, the formula (1) expressing the ratio or combustion ratio of this row of partitions of rank n, namely RCcln, may be the following: RC cln = 10 x P 1 - P 7 x NOT Σ i = 1 NOT InjHRi ;
Figure imgb0003

where P1 and P7 are the pressures measured in the line of partitions of rank n at the chambers 2 in communication respectively with the suction ramp 11 for P1, in the preheating zone A, and with the "point 0" ramp 17 in the natural cooling zone C, and where N is the number of heating ramps 16, generally equal at 2 or 3, and InjHRi is the sum of the injection power of the injectors of the heating ramp 16 of rank i where i varies from 1 to N (2 or 3) in the partition line of rank n. It is further noted that each heating ramp 16 generally comprises two injectors per partition 6 of the same chamber 2 corresponding, so that if N = 3, as in the example of the figure 1 (With three heating ramps 16), a line of partitions n rank is fueled by six injectors. Thus, the combustion ratio RCc1n in a line of partitions of rank n is proportional to the square root of the static draft depression measured in the preheating zone A for this line of partitions 6 considered and inversely proportional to the sum of the powers of the injecting fuel injector heating ramps 16 operating on the same line of partitions 6 of rank n.

La figure 4 représente, pour cette ligne de cloisons 6 de rang n, une zone hachurée et cintrée 29, qui correspond à l'enveloppe des différents points de mesure du CO mesuré en ppm à la pipe d'aspiration 11 a correspondante en fonction de la variation du rapport de combustion correspondant RCcln. La valeur seuil de RC en deçà de laquelle la combustion est estimé incomplète, c'est-à-dire la valeur dudit rapport stoechiométrique RS, est définie de manière empirique par observation de la valeur du CO dans une ligne de cloisons représentative du meilleur état des cloisons du four.The figure 4 represents, for this line of partitions 6 of rank n, a shaded and curved zone 29, which corresponds to the envelope of the different measurement points of the CO measured in ppm to the corresponding suction pipe 11 a as a function of the variation of the corresponding combustion ratio RCcln. The threshold value of RC below which the combustion is estimated to be incomplete, that is to say the value of said stoichiometric ratio RS, is defined empirically by observation of the value of CO in a line of partitions representative of the best state oven partitions.

Au delà d'une valeur de 1000 ppm de CO non dilué, qui correspond approximativement à une valeur de 500 ppm mesurée au détecteur de CO 14 dans la pipe d'aspiration 11a (figure 2) compte tenu de la dilution dans le four 1, la combustion est considérée incomplète.Above a value of 1000 ppm undiluted CO, which corresponds approximately to a value of 500 ppm measured at the CO detector 14 in the suction pipe 11a ( figure 2 ) given the dilution in kiln 1, combustion is considered incomplete.

Sur la figure 4, le seuil de combustion incomplète est donc indiqué à 500 ppm de CO mesuré, ce qui correspond à une valeur du rapport stoechiométrique RS d'environ 6, à l'intersection de la zone hachurée 29 de l'enveloppe des points de mesure du CO mesuré et du seuil de combustion incomplète de 500 ppm.On the figure 4 , the incomplete combustion threshold is therefore indicated at 500 ppm measured CO, which corresponds to a value of the stoichiometric ratio RS of about 6, at the intersection of the shaded area 29 of the envelope of the measuring points of the CO measured and the incomplete combustion threshold of 500 ppm.

On réalise ainsi une présélection des lignes de cloisons 6 susceptibles d'être dans une situation de combustion incomplète, étant encore précisé que la teneur en CO, choisie dans cet exemple de réalisation comme paramètre image de la teneur globale en imbrulés dans les gaz de combustion, est mesurée, pour déterminer le rapport stoechiométrique RS, dans celle des pipes d'aspiration 11a de la rampe d'aspiration 11 qui est reliée à celle des cloisons 6 qui se trouve à l'intersection de la ligne de cloisons étalon et de la première chambre 2 de préchauffage, le seuil de la teneur en CO auquel correspond le rapport stoechiométrique RS étant d'environ 500 ppm de CO mesuré à cette pipe d'aspiration 11a, ce qui correspond, dans des conditions standards de fonctionnement de ce type de four 1, à un niveau de 1000 ppm de CO au point de combustion.Thus, a pre-selection of the rows of partitions 6 likely to be in an incomplete combustion situation, is further specified that the CO content, chosen in this embodiment as an image parameter of the overall content of unburned in the combustion gases , is measured, to determine the stoichiometric ratio RS, in that of the suction pipes 11a of the suction ramp 11 which is connected to that of the partitions 6 which is at the intersection of the line of standard partitions and the first chamber 2 of preheating, the threshold of the CO content corresponding to the stoichiometric ratio RS being about 500 ppm CO measured at this suction pipe 11a, which corresponds, under standard operating conditions of this type of oven 1, at a level of 1000 ppm CO at the point of combustion.

Du calcul du rapport de combustion RCcln, on déduit également, au moins pour les lignes de cloisons 6 estimées en combustion incomplète par comparaison de leur rapport de combustion RCcln avec le rapport stoechiométrique RS, mais de préférence pour toutes les lignes de cloisons 6 du four 1, une note permettant de classer les lignes de cloisons par ordre décroissant de celle ayant la combustion la plus incomplète à celle ayant la combustion la moins incomplète, voire la plus complète si toutes les lignes de cloisons sont notées, par exemple par un système de notation de 0 à 20, défini de telle sorte qu'au-delà de la valeur 10, la limite stoechiométrique est dépassée et la combustion est considérée comme incomplète dans la ligne de cloisons correspondante.From calculation of the combustion ratio RCc1n, it is also deduced, at least for the rows of partitions 6 estimated in incomplete combustion by comparison of their combustion ratio RCc1 with the stoichiometric ratio RS, but preferably for all the rows of partitions 6 of the furnace 1, a note for classifying the partition lines in descending order from the one with the most incomplete combustion to the one with the least incomplete combustion, or even the most complete if all the partition lines are noted, for example by a system of notation from 0 to 20, defined such that beyond the value 10, the stoichiometric limit is exceeded and combustion is considered incomplete in the corresponding line of partitions.

A titre d'exemple, un classement des lignes de cloisons présélectionnées comme étant en combustion incomplète de la manière décrite ci-dessus, consiste à classer ces lignes de cloisons dans l'ordre allant de celle où la combustion est la plus incomplète à celle où la combustion est la moins incomplète en appliquant le système de notation des lignes de cloisons selon lequel on attribue à toute ligne de cloisons 6 de rang n une note de classement NCcln donnée par la formule (2) suivante : NC cln = 20 - 10 RC c ln RS ,

Figure imgb0004

où RCcln et RS sont les rapports précédemment définis, à savoir respectivement le rapport de combustion dans la cloison de rang n et le rapport stoechiométrique.By way of example, a classification of the pre-selected partition lines as being in incomplete combustion in the manner described above, consists in classifying these partition lines in the order from that in which combustion is most incomplete to that in which combustion is the less incomplete by applying the system of scoring partition lines according to which is assigned to any line of partitions 6 of rank n a classification note NCcln given by the following formula (2): NC cln = 20 - 10 RC vs ln RS ,
Figure imgb0004

where RCc1 and RS are the previously defined ratios, namely respectively the combustion ratio in the n-rank partition and the stoichiometric ratio.

Les lignes de cloisons ayant été notées de 0 à 20, en fonction de leur rapport respectif RCcnl/RS, on considère que si la note de combustion NCcln est inférieure à 10, la combustion est complète, tandis que si cette note de combustion NCcln est comprise entre 10 et 12, la combustion est incomplète, cette combustion étant même très incomplète, et donc critique, si la note NCcln est supérieure à 12.The partition lines having been rated from 0 to 20, depending on their ratio RCcnl / RS, it is considered that if the combustion rating NCcln is less than 10, the combustion is complete, whereas if this combustion note NCcln is between 10 and 12, the combustion is incomplete, this combustion is even very incomplete, and therefore critical, if the note NCcln is greater than 12.

Le résultat d'une telle notation est représenté, à titre d'exemple, sur la figure 5, sur laquelle les notes NCcln sont indiquées par des points ronds sur une courbe continue qui traverse trois zones rectangulaires hachurées, dont l'une 30 s'étend entre les notes 0 et 10 en abscisse et entre 0 et le seuil de combustion incomplète de 500 ppm de CO mesuré, pour les lignes de cloisons en combustion complète, dont une deuxième zone 31 s'étend en abscisse entre les notes 10 et 12 et en ordonnée entre les valeurs de 500 et 1000 ppm de CO mesuré, pour une ou des ligne(s) de cloisons en combustion incomplète, et enfin dont la troisième zone 32 s'étend pour les notes supérieures à 12 en abscisse et un CO mesuré supérieur à 1000 ppm en ordonnée, pour toute ligne de cloisons en combustion très incomplète et donc critique.The result of such a notation is represented, for example, on the figure 5 , on which the notes NCc1n are indicated by round dots on a continuous curve which crosses three hatched rectangular zones, one of which extends between 0 and 10 on the abscissa and between 0 and the incomplete combustion threshold of 500 measured ppm of CO, for complete combustion partition lines, of which a second zone 31 extends on the abscissa between the notes 10 and 12 and on the ordinate between the values of 500 and 1000 ppm of CO measured, for one or more lines (s) partitions in incomplete combustion, and finally whose third zone 32 extends for grades greater than 12 on the abscissa and a measured CO greater than 1000 ppm on the ordinate, for any line of partitions in combustion very incomplete and therefore critical .

Par une telle notation, on sélectionne ainsi les lignes de closions considérées en combustion incomplète, comme ayant une note supérieure à 10, que l'on soumet ensuite chacune à une étape d'identification des lignes de cloisons en combustion incomplète, à l'aide d'un test d'arrêt total d'injection du combustible pendant une durée déterminée et en succession sur les lignes de cloisons sélectionnées, en commençant par celle ayant la note la plus élevée et en effectuant le test successivement sur les lignes de cloisons dont les notes de combustion sont par ordre décroissant.By such a notation, the lines of closions considered in incomplete combustion are thus selected as having a grade greater than 10, which are then each subjected to a step of identification of the incomplete combustion partition lines, using a complete fuel injection stop test for a specified period and in succession on the fuel lines selected partitions, starting with the one with the highest rating and performing the test successively on the partition lines whose burn scores are in descending order.

La figure 6 représente schématiquement le déroulement du test d'arrêt total d'injection de combustible successivement sur trois lignes de cloisons de rang α, β et γ, dont les notes de combustion NC sont progressivement décroissantes. Sur la figure 6, on a représenté en ordonnée la teneur en CO globale mesurée en ppm dans le collecteur de la rampe d'aspiration 11 par le détecteur de CO 14 (voir figure 2), et, en abscisse, on a indiqué le temps en minute. La courbe 33 représente l'évolution dans le temps de la teneur en CO globale mesurée dans le collecteur de la rampe d'aspiration 11,. A l'instant t1, on commande sur la ligne de cloisons 6 de rang α l'arrêt total de l'alimentation en carburant des injecteurs des rampes de chauffage 16 opérant sur cette ligne de cloisons α, par une coupure quasi instantanée, à partir d'une valeur initiale (pour le test d'arrêt total) de débit d'injection de carburant jusqu'à un débit nul, ce qui correspond au côté gauche avec flèche descendante du rectangle « α », symbolisant la commande d'alimentation des injecteurs de carburant de cette ligne de cloisons α pendant ce test d'arrêt total d'injection. L'injection est arrêtée pendant un intervalle de temps t1 t2 suffisant pour que la mesure de la teneur en CO se stabilise avant l'instant t2 de la fin de la coupure totale d'injection. La courbe 33 de la teneur en CO marque une chute jusqu'à une valeur stabilisée de, par exemple, 500 ppm au cours de l'intervalle t1 t2, de sorte qu'il est possible de mesurer la valeur ΔCO correspondant à la différence entre la valeur initiale à l'instant t1 et la valeur finale à l'instant t2 de la teneur en CO du fait de cette interruption d'alimentation. Puis, à l'instant t2, l'alimentation en combustible de cette ligne de cloisons α est rétablie à sa valeur initiale, comme symbolisé sur le côté droit du rectangle « α » de la figure 6, par la flèche montante. Puis il s'écoule un intervalle de temps t2 t3, d'une durée légèrement supérieure ou sensiblement égale à l'intervalle t1 t2, lui-même de l'ordre de 2 minutes, pour commencer à l'instant t3, le même test d'arrêt total d'injection de combustible sur la ligne de cloisons de rang β, sachant que, pendant l'exécution d'un test d'arrêt total sur une ligne de cloisons particulière, aucune modification n'est commandée sur le déroulement du processus de cuisson dans toutes les autres lignes de cloisons. La durée du second test, sur la ligne de cloisons β, correspondant à l'intervalle t3 t4, est la même que la durée t1 t2, et la courbe 33 de la teneur en CO, qui est revenue, après la fin du test sur la ligne de cloisons α, à un niveau normal, ne marque, en conséquence du test sur la ligne de cloisons β, qu'une diminution limitée de la teneur de CO mesurée suite à l'arrêt total d'injection dans la ligne de cloisons β pendant l'intervalle t3 t4. Il en est de même pour le troisième test d'arrêt total d'injection, conduit sur la ligne de cloisons γ pendant l'intervalle de temps t5 t6, d'une même durée d'environ 2 min que les durées des autres tests t1 t2 et t3 t4, de sorte qu'à chaque fois, la mesure de la teneur en CO pendant chaque test peut se stabiliser suite à cette coupure d'injection de carburant, et qu'elle peut à nouveau se stabiliser suite à la fin de la coupure de l'alimentation en carburant, pendant l'intervalle de temps séparant deux tests successifs.The figure 6 schematically represents the unfolding of the fuel injection total stop test successively on three rows of partitions of rank α, β and γ, whose NC combustion ratings are progressively decreasing. On the figure 6 , the ordinate shows the total CO content measured in ppm in the collector of the suction manifold 11 by the CO detector 14 (see FIG. figure 2 ), and, on the x-axis, the time in minutes has been indicated. Curve 33 represents the evolution over time of the total CO content measured in the manifold of the suction ramp 11. At time t1, the row of partitions 6 of rank α is controlled by the total stopping of the supply of fuel to the injectors of the heating ramps 16 operating on this line of partitions α, by an almost instantaneous break, starting from from an initial value (for the total stop test) of fuel injection rate to a zero flow rate, which corresponds to the left side with downward arrow of the rectangle "α", symbolizing the fuel supply control fuel injectors of this line of partitions α during this total injection stop test. The injection is stopped for a time interval t1 t2 sufficient for the measurement of the CO content to stabilize before the time t2 of the end of the total injection cutoff. The curve 33 of the CO content shows a drop to a stabilized value of, for example, 500 ppm during the interval t1 t2, so that it is possible to measure the value ΔCO corresponding to the difference between the initial value at time t1 and the final value at time t2 of the CO content due to this interruption of supply. Then, at time t2, the fuel supply of this line of partitions α is restored to its initial value, as symbolized on the right side of the rectangle "α" of the figure 6 , by the rising arrow. Then a time interval t2 t3 elapses, of a duration slightly greater than or substantially equal to the interval t1 t2, itself of the order of 2 minutes, to start at time t3, the same test total stop of fuel injection on the line of partitions of rank β, knowing that, during the execution of a test of total stop on a line of particular partitions, no modification is controlled on the course of the cooking process in all the other lines of partitions. The duration of the second test, on the line of partitions β, corresponding to the interval t3 t4, is the same as the duration t1 t2, and the curve 33 of the CO content, which is returned, after the end of the test on the line of partitions α, at a normal level, marks, as a result of the test on the line of partitions β, a limited decrease in the CO content measured following the total injection stop in the line of partitions β during the interval t3 t4. It is the same for the third total injection stop test, conducted on the line of partitions γ during the time interval t5 t6, of the same duration of about 2 min as the durations of the other tests t1 t2 and t3 t4, so that each time the measurement of the CO content during each test can stabilize after this fuel injection cut, and that it can again stabilize following the end of the shutdown of the fuel supply, during the interval of time separating two successive tests.

Pour chaque test, la réduction de la teneur en CO qui en découle, ΔCO, est comparée à un pourcentage X de la valeur initiale de la teneur en CO au début de ce test, COi, et, comme cela est le cas pour la ligne de cloisons α, si ΔCO est supérieur à X% de COi, la ligne de cloisons α est identifiée comme étant en combustion incomplète, ce qui n'est pas le cas des lignes de cloisons β et γ, si l'on considère la courbe 33 de la figure 6.For each test, the resulting CO reduction, ΔCO, is compared to a percentage X of the initial value of the CO content at the beginning of this test, COi, and, as is the case for the line of partitions α, if ΔCO is greater than X% of COi, the line of partitions α is identified as being in incomplete combustion, which is not the case of the partition lines β and γ, if we consider the curve 33 of the figure 6 .

Le test d'arrêt total d'injection de combustible est donc mené, ligne de cloisons par ligne de cloisons, sur les lignes de cloisons préalablement sélectionnées par leur notation de combustion NC. Il est essentiel qu'aucune action ne soit commandée sur les lignes de cloisons 6 autres que celle en test d'arrêt total d'injection, pendant la durée complète de ce test, afin de ne pas perturber la caractérisation de la combustion. Cette caractérisation dépend en effet du calcul de la variation de la teneur en CO mesurée entre l'instant initial du test et l'instant final, en notant que les mesures de teneur en CO restent toujours globales. L'inflexion brutale vers le bas puis la remontée de la courbe 33 sur la figure 6 traduisent donc bien l'incidence de l'arrêt total d'injection de combustible dans la ligne de cloisons α sur la teneur en CO dans le collecteur de la rampe d'admission 11, qui prend donc en compte les gaz de fumées extraits de toutes les lignes de cloisons du four.The total fuel injection stop test is therefore conducted, line of partitions per line of partitions, on the partition lines previously selected by their NC combustion rating. It is essential that no action be commanded on the lines of partitions 6 other than the one in total injection stop test, during the complete duration of this test, so as not to disturb the characterization of the combustion. This characterization indeed depends on the calculation of the variation of the measured CO content between the initial moment of the test and the final moment, while noting that the measurements of CO content always remain global. The sudden downward inflection then the rise of curve 33 on the figure 6 therefore reflect the impact of the total fuel injection shutdown in the line of partitions α on the CO content in the collector of the intake manifold 11, which therefore takes into account the flue gases extracted from all the walls of the oven walls.

Concernant le seuil de X % de la valeur de la teneur en COi au début de chaque test d'arrêt total d'injection, cette valeur de X dépend notamment du nombre de cloisons 6 par chambre 2 du four, ainsi que de la précision de mesure et des valeurs de seuil de détection du détecteur de CO 14, en particulier. En général, X % est choisi dans une plage de 5% à 10%. Typiquement, pour un four 1 à 9 cloisons 6 par chambre 2, le système de caractérisation mettant en oeuvre le procédé de l'invention doit pouvoir détecter au moins une cloison de rang n parmi 9 cloisons 6 où la combustion tend à devenir incomplète. Si l'on considère que les débits circulant dans chaque ligne de cloisons, et donc dans chaque cloison, sont équivalents, la baisse de la teneur en CO consécutive à l'arrêt de l'injection de combustible dans la cloison de rang n sera d'au moins égale à ΔCOn = 500 ppm/9 = 56 ppm, du fait de la dilution, soit environ X = 10% de la teneur en CO mesurée au collecteur de la rampe d'aspiration 11, où cette teneur est égale à au moins 500 ppm.With regard to the X% threshold of the value of the COi content at the beginning of each total injection stop test, this value of X depends in particular on the number of partitions 6 per chamber 2 of the oven, as well as the accuracy of measurement and detection threshold values of the CO detector 14, in particular. In general, X% is selected in a range of 5% to 10%. Typically, for an oven 1 to 9 partitions 6 per chamber 2, the characterization system implementing the method of the invention must be able to detect at least one partition of rank n among 9 partitions 6 where the combustion tends to become incomplete. If it is considered that the flows flowing in each line of partitions, and therefore in each partition, are equivalent, the decrease in the CO content following the stopping of the injection of fuel into the partition of rank n will be at least equal to ΔCOn = 500 ppm / 9 = 56 ppm, due to the dilution, ie approximately X = 10% of the CO content measured at the manifold of the suction ramp 11, where this content is equal to less than 500 ppm.

Après avoir ainsi sélectionné les lignes de cloisons considérées en combustion incomplète, à l'aide du rapport stoechiométrique RS, des rapports de combustion RC des lignes de cloisons, de la comparaison des rapports de combustion au rapport stoechiométrique, et de l'attribution de notes de combustion NC aux lignes de cloisons, puis après l'identification des lignes de cloisons en combustion incomplète par le test d'arrêt total d'injection de combustible, au moins une étape postérieure, dite d'optimisation de la combustion, peut être mise en oeuvre.After having thus selected the partition lines considered in incomplete combustion, using the stoichiometric ratio RS, RC combustion ratios of the partition lines, the comparison of the combustion ratios with the stoichiometric ratio, and the assignment of notes. of combustion NC to the partition lines, then after the identification of incomplete combustion partition lines by the total fuel injection stop test, at least one subsequent step, called combustion optimization, can be carried out implemented.

Une telle étape peut consister à modifier, de préférence automatiquement, des paramètres de régulation dans l'une au moins des zones de refroidissement naturel C, chauffage B et préchauffage A, afin, autant que possible, d'équilibrer les rapports de combustion sur le rapport stoechiométrique air comburant sur combustible, pour recouvrer une situation de combustion complète dans un nombre aussi élevé que possible des lignes de cloisons, ce passage à une situation de combustion complète pouvant être défini par le passage de la valeur mesurée de la teneur en CO, ou par le passage de la valeur d'au moins un autre paramètre image de la teneur globale en imbrûlé dans les gaz de combustion, sous un seuil paramétrable.Such a step may consist in modifying, preferably automatically, control parameters in at least one of the natural cooling zones C, heating B and preheating A, in order, as far as possible, to balance the combustion ratios on the stoichiometric ratio of combustion air on fuel, to recover a complete combustion situation in as large a number as possible of the partition lines, this transition to a complete combustion situation that can be defined by the passage of the measured value of the CO content, or by passing the value of at least one other image parameter of the overall unburned content in the combustion gases, below a parameterizable threshold.

Mais, si la ou les étapes d'optimisation de la combustion, telles que présentées d'une manière générale ci-dessus, n'a ou n'ont pas permis de recouvrer une situation de combustion complète pour l'ensemble des lignes de cloisons du four 1, alors la méthode selon la présente demande propose au moins une étape complémentaire de caractérisation de la combustion, qui s'effectue par l'application du test d'arrêt total d'injection sur celles des lignes de cloisons n'ayant pas été présélectionnées, conformément à la méthode selon la demande, parmi les lignes de cloisons supposées en combustion incomplète, du seul fait que leur rapport de combustion RC a été calculé inférieur au rapport stoechiométrique RS. De plus, cette étape complémentaire de caractérisation permet d'identifier des cloisons dont les conditions stoechiométriques sont satisfaisantes, ayant une notation de combustion NC inférieure à 10, dans l'exemple de système de notation précédemment décrit, mais dont les conditions physiques génèrent des problèmes de combustion, du fait que des cloisons sont déformées, pincées ou bouchées plus ou moins complètement.But, if the combustion optimization step (s), as presented in a general way above, did not or did not make it possible to recover a complete combustion situation for all the partition lines. of the furnace 1, then the method according to the present application proposes at least one additional stage of characterization of the combustion, which is carried out by applying the total injection stop test to those of the partition lines which do not have have been preselected, according to the demand method, from the partition lines assumed to be incomplete combustion, simply because their RC combustion ratio has been calculated lower than the stoichiometric RS ratio. In addition, this additional characterization step makes it possible to identify partitions whose stoichiometric conditions are satisfactory, having an NC combustion rating of less than 10, in the example of the notation system previously described, but whose physical conditions generate problems. of combustion, because partitions are deformed, pinched or plugged more or less completely.

Claims (10)

  1. Method for characterizing the combustion in lines of partitions of a chamber-type ring furnace for baking carbon blocks (5), by analyzing the value of at least one parameter indicative of the total content of unburnt material in the combustion gases and residual air issuing from said lines of partitions (6) and collected in an exhaust manifold (11) of said furnace (1), said furnace (1) comprising a succession of chambers (2) for preheating, heating, natural cooling, and forced cooling, arranged serially along the longitudinal axis (XX) of the furnace (1), each chamber (2) consisting of pits (4) in which are arranged the carbon blocks (5) to be baked, adjacent to and alternating with, transversely to said longitudinal axis (XX), hollow heating partitions (6), in communication with and aligned with the partitions (6) of other chambers (2), parallel to the longitudinal axis (XX) of the furnace (1), in lines of partitions (6) in which circulate cooling and combustion air and combustion gases, said exhaust manifold (11) being connected to each of the partitions (6) of the first preheating chamber (2) by one of respective exhaust pipes (11 a), the necessary combustion air being partially injected by a blowing ramp (18) of the natural cooling zone (C), connected to at least one fan, and partially infiltrating through the lines of partitions (6) due to the negative pressure, and the fuel necessary for baking the carbon blocks (5) being partially injected by at least two burner (B) ramps (16) each respectively extending over one of at least two adjacent chambers (2) of the heating zone, and each able to inject fuel into each of the partitions (6) of the corresponding chamber (2) of the heating zone (B), the regulation of the furnace (1) combustion essentially comprising a regulation of the temperature and/or pressure of the preheating (A), heating (B), and natural cooling (C) zones, per line of partitions (6), as a function of predefined temperature and/or pressure setpoint rules, said method for characterizing the combustion being characterized in that it comprises at least one step of successive tests of totally stopping the fuel injection, one line of partitions (6) after another , for a sufficient period to allow the measurement of said parameter indicative of the total content of unburnt material in the combustion gases to stabilize, and without ordering any action in the lines of partitions (6) other than for the one concerned by the totally stopped injection test for the duration of this test, the characterization of the combustion being based on calculating the variation between the measurements of said indicative parameter made before and after totally stopping injection in each of the tested lines of partitions (6), in order to identify one or more lines of partitions (6) in a situation of incomplete combustion, if said variation is greater than x% of the value of said indicative parameter at the start of said totally stopped injection test, x% being preferably between about 5% to 10%, the value of x depending in particular on the number of partitions (6) per chamber (2), the detection threshold values, and the accuracy of the measurement of said indicative parameter by at least one detector.
  2. Method according to claim 1, characterized in that it additionally comprises at least one prior step, called the step of preselecting the lines of partitions (6) likely to be in a situation of incomplete combustion, which allows limiting the number of stopped injection tests, in said step of successive totally stopped fuel injection tests, to only the preselected lines of partitions (6), and consisting of: calculating, for each line of partitions (6) of row n, a combustion ratio (RCcln) which is equal to the ratio of the amount of combustion air available to the amount of fuel injected into said line of partitions (6) of row n; empirically defining a limit ratio called the stoichiometric ratio (RS) based on measurements of said parameter indicative of the content of unburnt material in the combustion gases collected at the outlet from a benchmark line of partitions (6), representative of the best state of the lines of partitions (6) of the furnace, and such that this stoichiometric ratio (RS) corresponds to a measured threshold for said indicative parameter below which the combustion is considered to be incomplete; comparing the combustion ratio (RCcln) of all the lines of partitions (6) to the stoichiometric ratio (RS); and considering the combustion as incomplete in any line of partitions (6) of row n for which the corresponding combustion ratio (RCcln) is less than the stoichiometric ratio (RS).
  3. Method according to claim 2, characterized in that, in said step of preselecting the lines of partitions (6) in a state of incomplete combustion, the combustion ratio (RCcln) in a line of partitions (6) of row n is calculated as being proportional to the square root of the static negative suction pressure measured in the preheating zone (A) for said line of partitions (6), and inversely proportional to the sum of the fuel injection capacities from the injectors of the burner ramps (16) operating on the same line of partitions (6) of row n.
  4. Method according to claim 3, characterized in that, during said preselection step, the combustion ratio for the line of partitions (6) of row n is calculated by applying the following formula: RC cln = 10 x P 1 - P 7 x N i = 1 N InjHRi ,
    Figure imgb0009

    where P1 and P7 are the pressures measured in the partitions (6) of row n of the chambers (2) respectively in communication with the exhaust manifold (11) and a "zero point" ramp (17) in the natural cooling zone (C), N is the number of burner ramps (16), generally equal to 2 or 3, and InjHRi is the total injection capacity in the partition of row n for the injectors of the burner ramp (16) of row i, where i varies from 1 to N.
  5. Method according to any one of claims 2 to 4, characterized in that said step of preselecting the lines of partitions (6) in a state of incomplete combustion also comprises a step which consists of classifying the lines of partitions (6) in a state of incomplete combustion, ordered from the one in which combustion is the most incomplete to the one in which combustion is the least incomplete, by applying a scoring system to the lines of partitions (6) in which each line of partitions (6) of row n is assigned a classification score NCcln given by the following formula: NC cln = 20 - 10 RC c ln RS .
    Figure imgb0010
  6. Method according to claim 5, characterized in that the step of classifying the lines of partitions (6) is carried out by considering that, for a line of partitions (6) of row n in a good state, the combustion is complete if NCcln<10, the combustion is incomplete if 10<NCcln<12, and the combustion is very incomplete and therefore critical if NCcln> 12.
  7. Method according to any one of claims 1 to 6, characterized in that the carbon monoxide (CO) content is chosen as the parameter indicative of the total content of unburnt material in the combustion gases, said CO content being measured, for determining said stoichiometric ratio, in the exhaust pipe (11 a) of said exhaust manifold (11) which is connected to the partition (6) of the benchmark line of partitions (6) in the first preheating chamber (2), said threshold for this indicative parameter to which the stoichiometric ratio (RS) corresponds being approximately 500 ppm of CO measured in said exhaust pipe (11 a), which corresponds, in the standard operating conditions for this type of furnace, to a level of 1000 ppm of CO at the point of combustion.
  8. Method according to any one of claims 1 to 7, characterized in that, after the characterization steps which allow identifying and selecting the lines of partitions (6) in a state of incomplete combustion, at least one later combustion optimization step is applied.
  9. Method according to claim 8, characterized in that the combustion optimization consists of automatically modifying regulation parameters in the preheating (A), heating (B), and/or natural cooling (C) zones of the furnace (1), in order to balance the stoichiometric ratio (RS) of combustion air to fuel, for the purpose of restoring a situation of complete combustion, defined as the value of said indicative parameter falling below a configurable threshold.
  10. Method according to either of claims 8 or 9, characterized in that, after said optimization step, at least one additional step of characterizing the combustion according to claim 1, in the lines of partitions (6) not pre-selected according to claim 2 from among the lines of partitions (6) thought to be in a state of incomplete combustion, is activated if the combustion optimization step according to claim 8 or 9 did not restore a situation of complete combustion.
EP09745074.6A 2009-09-07 2009-09-07 Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s) Active EP2475948B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/051682 WO2011027042A1 (en) 2009-09-07 2009-09-07 Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)

Publications (2)

Publication Number Publication Date
EP2475948A1 EP2475948A1 (en) 2012-07-18
EP2475948B1 true EP2475948B1 (en) 2014-12-10

Family

ID=41800521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09745074.6A Active EP2475948B1 (en) 2009-09-07 2009-09-07 Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)

Country Status (7)

Country Link
EP (1) EP2475948B1 (en)
CN (1) CN102597678B (en)
AU (1) AU2009352124B2 (en)
CA (1) CA2772693C (en)
RU (1) RU2500961C1 (en)
WO (1) WO2011027042A1 (en)
ZA (1) ZA201201211B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600607C2 (en) * 2011-09-08 2016-10-27 Солиос Карбон Device and method for optimising combustion in partition lines of multi-chamber kiln for firing carbon blocks
EP3052860B1 (en) * 2013-10-02 2017-12-06 Fives Solios Verfahren zur gaskraftstoffeinspritzung für einen ringkammerofen
FR3012590B1 (en) * 2013-10-31 2018-01-05 Solios Carbone METHOD FOR CONTROLLING A ROTATING FIRE CHAMBER (X) FOR THE COOKING OF CARBON BLOCKS
CN115187607B (en) * 2022-09-14 2022-11-22 山东鑫亚格林鲍尔燃油系统有限公司 Oil sprayer spraying form detection method based on image processing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1114515B (en) * 1979-02-05 1986-01-27 Elettrocarbonium Spa IMPROVEMENT IN THE ADJUSTMENT OF HOFFMANN TYPE CONTINUOUS RING OVENS
SU877285A1 (en) * 1979-08-17 1981-10-30 Запорожский индустриальный институт Apparatus for afterburning volatile substances
FR2600152B1 (en) * 1986-06-17 1988-08-26 Pechiney Aluminium DEVICE AND METHOD FOR OPTIMIZING COMBUSTION IN CHAMBER OVENS FOR COOKING CARBON BLOCKS
FR2616525B1 (en) * 1987-06-09 1989-09-08 Pechiney Aluminium DEVICE AND METHOD FOR SEALING THE PARTITIONS OF A ROTATING FIRE CHAMBER OVEN FOR COOKING CARBON BLOCKS
FR2779811B1 (en) * 1998-06-11 2000-07-28 Pechiney Aluminium ROTATING FIRE OVEN WITH TUBULAR CENTRAL FLOW
FR2918164B1 (en) * 2007-06-29 2009-09-25 Solios Environnement Sa METHOD OF MONITORING A SMOKE DUCT CONNECTING A COOKING FURNACE OF CARBON BLOCKS TO A FUME TREATMENT CENTER
CN101172652B (en) * 2007-10-29 2012-03-21 贾绍才 Alum mine calcium method marching type roasting method and roasting furnace

Also Published As

Publication number Publication date
CA2772693A1 (en) 2011-03-10
RU2012113704A (en) 2013-10-20
CN102597678A (en) 2012-07-18
CN102597678B (en) 2014-08-20
RU2500961C1 (en) 2013-12-10
CA2772693C (en) 2017-01-03
AU2009352124B2 (en) 2014-05-01
AU2009352124A1 (en) 2012-03-08
WO2011027042A1 (en) 2011-03-10
EP2475948A1 (en) 2012-07-18
ZA201201211B (en) 2013-05-29

Similar Documents

Publication Publication Date Title
EP2475948B1 (en) Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)
EP0252856B1 (en) Process and device to optimize the firing in an open chamber furnace for burning carbonaceous blocks
EP2443407B1 (en) Method for adjusting an oven for baking anodes, and oven suitable for implementing same
EP2183536B1 (en) Method for monitoring a smoke duct connecting a carbonated block baking furnace to a smoke processing centre
EP1070224B1 (en) Method and device for regulating burning ring furnaces
EP0971171B1 (en) Combustion method of a combustible with a combustive rich in oxygen
CA2747693A1 (en) Method and system for monitoring the operation of a carbon block baking plant
EP2257753B1 (en) Method for detecting an at least partially clogged partition in a chamber oven
FR2975463A1 (en) Regulation device for regulating combustion of biomass fuel heating system, has humidity regulator integrating values measured by humidity sensor and heat meter to regulate values of parameters so as to ensure optimal combustion of boiler
EP2753889B1 (en) Device and method for optimising combustion in partition lines of a chamber kiln for firing carbon blocks
EP3063487B1 (en) Method for regulating a rotating-fire multiple-chamber furnace for baking carbonaceous blocks
CA2924723C (en) Method for injecting gaseous fuel into a rotary flame chamber furnace
WO2012004686A1 (en) Method for scheduling the operation of energy distribution devices, and installation implementing same
WO2010057929A1 (en) Closed hearth and regulation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 700869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009028260

Country of ref document: DE

Effective date: 20150122

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 700869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20141210

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009028260

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

26N No opposition filed

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150907

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150907

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160829

Year of fee payment: 8

Ref country code: NO

Payment date: 20160825

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090907

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141210

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180821

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009028260

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240820

Year of fee payment: 16