NO164910B - Epoxy novolac resin composition. - Google Patents

Epoxy novolac resin composition. Download PDF

Info

Publication number
NO164910B
NO164910B NO863619A NO863619A NO164910B NO 164910 B NO164910 B NO 164910B NO 863619 A NO863619 A NO 863619A NO 863619 A NO863619 A NO 863619A NO 164910 B NO164910 B NO 164910B
Authority
NO
Norway
Prior art keywords
functional
grams
weight
functional component
epoxy
Prior art date
Application number
NO863619A
Other languages
Norwegian (no)
Other versions
NO863619L (en
NO863619D0 (en
NO164910C (en
Inventor
James L Bertram
Louis L Walker
Avis L Mccrary
Fermin M Cortez
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO863619L publication Critical patent/NO863619L/en
Publication of NO863619D0 publication Critical patent/NO863619D0/en
Priority to NO900479A priority Critical patent/NO900479D0/en
Publication of NO164910B publication Critical patent/NO164910B/en
Publication of NO164910C publication Critical patent/NO164910C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Description

Foreliggende oppfinnelse vedrører epoksy-novolak-harpikser, nærmere bestemt et epoksy-novolak-harpiksmateriale med gjennomsnittlig epoksydfunksjonalitet 3-12. The present invention relates to epoxy-novolac resins, more specifically an epoxy-novolac resin material with an average epoxy functionality of 3-12.

Høyfunksjonelle (gjennomsnittsfunksjonalitet 5-8) epoksy-novolak-harpikser har høye Tg-verdier når de er herdet med sulfanilimid. Imidlertid er de svært vanskelige å fremstille på grunn av den høye viskositet hos novolakharpiks-forløperne. Foreliggende oppfinnelse er rettet mot epoksy-novolak-harpikser som har høye Tg-verdier når de er herdet med typiske epoksy-herdemidler, for eksempel metylendianilin, diaminodifenylsulfon, sulfanilimid og lignende samtidig som de har relativt lav smelteviskositet. High functionality (average functionality 5-8) epoxy novolac resins have high Tg values when cured with sulfanilimide. However, they are very difficult to manufacture due to the high viscosity of the novolak resin precursors. The present invention is aimed at epoxy-novolac resins which have high Tg values when cured with typical epoxy curing agents, for example methylenedianiline, diaminodiphenylsulfone, sulfanilimide and the like, while also having a relatively low melt viscosity.

Foreliggende oppfinnelse dreier seg således om en epoksy-novolak-harpiks som har en gjennomsnittlig epoksydfunksjonalitet på 3-12 og er representert ved formelen The present invention thus concerns an epoxy-novolac resin which has an average epoxy functionality of 3-12 and is represented by the formula

hvor hver A uavhengig er en toverdig hydrokarbongruppe med 1-14, fortrinnsvis 1-8, karbonatomer; hver R er uavhengig hydrogen, et halogenatom, en hydroksylgruppe eller en hydrokarbongruppe med 1- 9, fortrinnsvis 1-4, karbonatomer, idet hver R' uavhengig er hydrogen eller en alkylgruppe med 1-4 karbonatomer, og n har en gjennomsnittsverdi på 1-10. Det karakteristiske er at (a) når 2- funksjonelle og 3-funksjonelle komponenter er til stede og R wherein each A is independently a divalent hydrocarbon group of 1-14, preferably 1-8, carbon atoms; each R is independently hydrogen, a halogen atom, a hydroxyl group or a hydrocarbon group with 1-9, preferably 1-4, carbon atoms, each R' independently being hydrogen or an alkyl group with 1-4 carbon atoms, and n has an average value of 1- 10. The characteristic is that (a) when 2-functional and 3-functional components are present and R

er hydrogen, så er vektforholdet mellom 2-funksjonell komponent og 3-funksjonell komponent mindre enn 1,1:1, fortrinnsvis mindre enn 0,75:1, helst mindre enn 0,5:1; (b) når 2-funksjonelle og 3-funksjonelle komponenter er til stede og hver R uavhengig er et halogenatom, en hydroksylgruppe eller en hydrokarbongruppe med 1-9, fortrinnsvis 1-4, karbonatomer, så er vektforholdet mellom den 2-funksjonelle komponent og den 3-funksjonelle komponent mindre enn 0,5:1; (c) når den gjennomsnittlige is hydrogen, then the weight ratio of 2-functional component to 3-functional component is less than 1.1:1, preferably less than 0.75:1, most preferably less than 0.5:1; (b) when 2-functional and 3-functional components are present and each R is independently a halogen atom, a hydroxyl group or a hydrocarbon group of 1-9, preferably 1-4, carbon atoms, then the weight ratio of the 2-functional component and the 3-functional component less than 0.5:1; (c) when the mean

epoksydfunksjonalitet er fra 3 til 5, inneholder harpiksen mindre enn 12,5, fortrinnsvis mindre enn 7, vekt% av 2-funksjonell komponent; og (d) når den gjennomsnittlige epoksyd-funksjonalitet er fra 5 til 12, inneholder harpiksen mindre enn 9, fortrinnsvis mindre enn 5, vekt% 2-funksjonell komponent. epoxy functionality is from 3 to 5, the resin contains less than 12.5, preferably less than 7, wt% of 2-functional component; and (d) when the average epoxy functionality is from 5 to 12, the resin contains less than 9, preferably less than 5, wt% 2-functional component.

Med uttrykket "2-funksjonell komponent" slik det her anvendes, menes den del av novolakharpiksen eller epoksy-novolak-harpiksen hvor n har en verdi av null. With the expression "2-functional component" as used here, is meant the part of the novolak resin or epoxy novolak resin where n has a value of zero.

Med uttrykket,"3-funksjonell komponent" slik det her anvendes, menes den del av novolakharpiksen eller epoksy-novolak-harpiksen hvor n har en verdi av 1. With the expression "3-functional component" as used here, is meant the part of the novolak resin or epoxy novolak resin where n has a value of 1.

Med uttrykket "gjennomsnittlig funksjonalitet" slik det her anvendes, menes det gjennomsnittlige antall aromatiske hydroksyl-grupper pr. molekyl. With the expression "average functionality" as used here, is meant the average number of aromatic hydroxyl groups per molecule.

De følgende eksempler er illustrerende for foreliggende oppfinnelse. The following examples are illustrative of the present invention.

TESTMETODER TEST METHODS

De følgende testmetoder ble anvendt i eksemplene. The following test methods were used in the examples.

MOLEKYLVEKT ble bestemt ved anvendelse av standardgel-gjennom-trengningskromatografi (GPC)-metoder under anvendelse av poly-styren-standarder for molekylvekt-kalibrering. MOLECULAR WEIGHT was determined using standard gel permeation chromatography (GPC) methods using polystyrene standards for molecular weight calibration.

GLASSOVERGANGSTEMPERATUR ( Tg) ble bestemt ved hjelp av en DuPont 1090 analysator med differensialsveipekalorimetri (DSC) modell 912 for Tg opp til ca. 250°C. GLASS TRANSITION TEMPERATURE (Tg) was determined using a DuPont 1090 analyzer with differential scanning calorimetry (DSC) model 912 for Tg up to approx. 250°C.

For Tg-verdier >250°C ble det anvendt en DuPont modell 943 termalmekanisk analysator (TMA). For Tg values >250°C, a DuPont model 943 thermal mechanical analyzer (TMA) was used.

MYKNINGSPUNKTER ble bestemt ved hjelp av et mykningspunktapparat (MSP) modell Mettler FP-53. SOFTENING POINTS were determined using a softening point (MSP) apparatus model Mettler FP-53.

BRUDDSEIGHETSMÅLING ( G1C) FRACTURE TOUGHNESS MEASUREMENT (G1C)

Metoden for måling av G^c (bruddseighet eller "kritisk spenningsenergifrigjøringsrate") er en tilpasning av ASTM E-399 plastmaterialer fra den opprinnelige bruk på metaller. Kompakt-strekktesten er nå i utstrakt bruk og er beskrevet i J. Mater. Sei., Vol. 16, 2657, 1981. Et individuelt prøvestykke kuttes til tilnærmet 1" (25,4 mm) kvadrat fra et flatt støpestykke, vanligvis med 1/8" (3,175 mm) tykkelse. Et duehalehakk kuttes i den ene ende, sentrert, ca. 1/4" (6,25 mm) i dybde. Så innsettes et barberblad i dette hakk og banket for å produsere en forhånds-brekk. To hull bores så nær duehalen, som angitt i ASTM E-399, hvorved prøvestykket tillates å bli stiftet opp i stilling i Instron-testmaskinen. Strekking av prøven tillater nå den krevede kraft å utbre åpning av forhåndsbrekken som skal måles, under anvendelse av en testhastighet på 0,02"/minutt (0,0085 mm/sek.). Denne kraft anvendes i ligningen som er gitt i ASTM E-399, sammen med de nødvendige prøvedimensjoner og den aktuelle forhåndsbrekklengde, for å beregne en "påkjennings-intensifiseringsfaktor" Kq. Dette kombineres deretter med strekkmodul (i de tilfeller hvor strekkmodul ikke var målt, ble en verdi på 300 000 psi (2,07 GPa) anvendt) og Poisson's forhold for materialet til å gi verdien for G1C, vanligvis rapportert i erg/cm<2> x 10^. En skala som sammenligner typiske verdier for G1C for diverse plaster og metaller er gitt i Lee, L.H., "Physicochemical Aspects of Polymer Surfaces", K.L. Mittal, utgitt av Plenum Press, New York, N.Y., 1983. The method for measuring G^c (fracture toughness or "critical stress energy release rate") is an adaptation of ASTM E-399 plastics from its original use on metals. The compact tensile test is now in widespread use and is described in J. Mater. Sei., Vol. 16, 2657, 1981. An individual test piece is cut approximately 1" (25.4 mm) square from a flat casting, usually 1/8" (3.175 mm) thick. A dovetail notch is cut at one end, centered, approx. 1/4" (6.25 mm) in depth. A razor blade is then inserted into this notch and tapped to produce a pre-break. Two holes are drilled as close to the dovetail as specified in ASTM E-399, allowing the specimen to be stapled into position in the Instron testing machine. Stretching the specimen now allows the required force to propagate opening of the prebreak to be measured, using a test speed of 0.02"/minute (0.0085 mm/sec). This force is used in the equation given in ASTM E-399, along with the required specimen dimensions and the appropriate pre-break length, to calculate a "stress intensification factor" Kq. This is then combined with tensile modulus (in cases where tensile modulus was not measured, a value of 300,000 psi (2.07 GPa) was used) and Poisson's ratio for the material to give the value for G1C, usually reported in erg/cm<2 > x 10^. A scale comparing typical values of G1C for various plastics and metals is given in Lee, L.H., "Physicochemical Aspects of Polymer Surfaces", K.L. Mittal, published by Plenum Press, New York, N.Y., 1983.

EKSEMPEL 1 EXAMPLE 1

A. Fremstilling av fenol/ formaldehvd- novolak- harpiks A. Production of phenol/formaldehyde-novolac resin

En novolakharpiks ble fremstilt ved å omsette 2,89 deler fenol, 1,0 del 37 %ig formalin og 0,0018 del oksalsyre for å produsere en harpiks med et Mettler-mykningspunkt på 74,1, smelteviskositet ved 150°C på 100 cP. Analyse ved gelgjennomtrengningskromatografi (GPC) viste at produktet hadde en vektmidlere M.V. på 813, en antallsmidlere M.V. på 583, med en polydispersitet på 1,40. Produktet inneholdt 24,98 vekt% 2-funksjonelle komponenter og 17,18 vekt% 3-funksjonelle komponenter for et forhold mellom 2-funksjonelle og 3-funksjonelle komponenter på 1,24:1. A novolak resin was prepared by reacting 2.89 parts phenol, 1.0 part 37% formalin and 0.0018 part oxalic acid to produce a resin with a Mettler softening point of 74.1, melt viscosity at 150°C of 100 cP . Analysis by gel permeation chromatography (GPC) showed that the product had a weight medium M.V. on 813, a number of means M.V. of 583, with a polydispersity of 1.40. The product contained 24.98% by weight of 2-functional components and 17.18% by weight of 3-functional components for a ratio of 2-functional to 3-functional components of 1.24:1.

B. Fjerning av 2- funksionelt produkt B. Removal of 2-functional product

Den .ovenfor fremstilte fenol/formaldehyd-novolak-harpiks ble gjentatte ganger ekstrahert med kokende vann inntil det 2-funksjonelle innhold var mindre enn 1 vekt%. The phenol/formaldehyde novolak resin prepared above was repeatedly extracted with boiling water until the 2-functional content was less than 1% by weight.

C. Fremstilling av epoksv- novolak- harpiks C. Preparation of epoxy novolak resin

Produktet fra eksempel 1-B, 206 gram, ble opplost i 925 gram epiklorhydrin, 484,7 gram isopropanol og 78,6 gram vann. Denne blanding ble deretter oppvarmet til 70°C, og 360 gram av 20 %ig vandig natriumhydroksyd ble tilsatt i tilnærmet 45 minutter (2700 s). Reaksjonsblandingen ble digerert ved denne temperatur i ytterligere-15 minutter (900 s). Så ble vannfasen separert og forkastet. 160 gram av 20 %ig vandig natriumhydroksyd ble satt til blandingen ved 70°C i løpet av tilnærmet 20-30 minutter (1200-1800 s). Reaksjonen ble digerert i ytterligere 15-20 minutter (900-1200 s) ved 70°C og så avkjølt. Vannsjiktet ble separert, og det organiske sjikt ble gjentatte ganger vasket med vann inntil det var fritt for salt og natriumhydroksyd. Ytterligere epiklorhydrin, 462 gram, ble tilsatt under vasketrinnene for å hjelpe på separasjonen. Produktet ble oppnådd ved å fjerne overskudd av epiklorhydrin og løsningsmiddel via vakuumdestillasjon. Det halvfaste epoksyharpiksprodukt hadde et epoksyinnhold på 23,3 %, en epoksydekvivalentvekt på 184,5 og et hydrolyserbart kloridinnhold på 51 ppm. The product from Example 1-B, 206 grams, was dissolved in 925 grams of epichlorohydrin, 484.7 grams of isopropanol and 78.6 grams of water. This mixture was then heated to 70°C, and 360 grams of 20% aqueous sodium hydroxide was added over approximately 45 minutes (2700 seconds). The reaction mixture was digested at this temperature for an additional 15 minutes (900 s). The water phase was then separated and discarded. 160 grams of 20% aqueous sodium hydroxide was added to the mixture at 70°C over approximately 20-30 minutes (1200-1800 s). The reaction was digested for an additional 15-20 minutes (900-1200 s) at 70°C and then cooled. The aqueous layer was separated, and the organic layer was repeatedly washed with water until it was free of salt and sodium hydroxide. Additional epichlorohydrin, 462 grams, was added during the washing steps to aid in the separation. The product was obtained by removing excess epichlorohydrin and solvent via vacuum distillation. The semi-solid epoxy resin product had an epoxy content of 23.3%, an epoxy equivalent weight of 184.5 and a hydrolyzable chloride content of 51 ppm.

EKSEMPEL 2 EXAMPLE 2

A. Fremstilling av fenol/ formaldehyd- novolak- harpiks A. Production of phenol/formaldehyde novolak resin

En porsjon av den novolak-harpiks som ble fremstilt i eksempel 1-A ble anvendt. A portion of the novolak resin prepared in Example 1-A was used.

B. Fremstilling av epoksy- novolak B. Preparation of epoxy novolak

Under anvendelse av den fremgangsmåte som er beskrevet i eksempel 1-C, ble en porsjon av ekstrahert novolak-harpiks (206 gram) omsatt med 925 gram epiklorhydrin i 498 gram isopropanol og 80,4 gram vann. Etter separering av vannfasen ble ytterligere 32 gram natriumhydroksyd oppløst i 128 gram vann tilsatt i annet trinn. Epoksyproduktet hadde en epoksydekvivalentvekt på 179,4, et hydrolyserbart kloridinnhold på 768 ppm, et Mettler-mykningspunkt på 53,5°C, og en smelteviskositet på 100 cP (0,1 Pa-s) ved 150°C. Den vektmidlere M.V. var 1 106, antallsmidlere M.V. 719 og polydispersiteten 1,54. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet som 4,0. Det 2-funksjonelle og 3-funksjonelle innhold var henholdsvis 10,50 og 12,65 vekt%, slik at det ble et forhold på 0,83:1. Using the method described in Example 1-C, a portion of extracted novolak resin (206 grams) was reacted with 925 grams of epichlorohydrin in 498 grams of isopropanol and 80.4 grams of water. After separation of the water phase, a further 32 grams of sodium hydroxide was dissolved in 128 grams of water added in the second step. The epoxy product had an epoxide equivalent weight of 179.4, a hydrolyzable chloride content of 768 ppm, a Mettler softening point of 53.5°C, and a melt viscosity of 100 cP (0.1 Pa-s) at 150°C. The weight mediator M.V. was 1,106, number means M.V. 719 and the polydispersity 1.54. The average epoxy functionality was calculated as 4.0. The 2-functional and 3-functional content were respectively 10.50 and 12.65% by weight, so that there was a ratio of 0.83:1.

EKSEMPEL 3 EXAMPLE 3

A. Fremstilling av fenol/ formaldehvd- novolak A. Production of phenol/formaldehyde novolak

Det ble anvendt en porsjon av novolak-harpiksen fra eksempel 1-A. A portion of the novolak resin from Example 1-A was used.

B. Fremstillin<g> av epoksv- novolak B. Preparation of epoxy novolak

Under anvendelse av samme fremgangsmåte som beskrevet i eksempel 1-C, ble 425,9 gram av ovennevnte novolak omsatt med 1894,0 gram epiklorhydrin i 1019,8 gram isopropanol ved anvendelse av 1065,2 gram av 20 %ig vandig natriumhydroksyd. Epoksynovolakken hadde en epoksydekvivalent-vekt på 177,9. Den vektmidlere M.V. var 1309, antallsmidlere M.V. 862 og polydispersiteten 1,46. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet til 4,8. Det 2-funksjonelle innhold var 2,29 % mot 9,9 % for det 3-funksjonelle produkt, hvilket i et vektforhold mellom 2-funksjonelt og 3-funksjonelt på 0,23:1. Using the same method as described in example 1-C, 425.9 grams of the above-mentioned novolak were reacted with 1894.0 grams of epichlorohydrin in 1019.8 grams of isopropanol using 1065.2 grams of 20% aqueous sodium hydroxide. The epoxy novolac had an epoxy equivalent weight of 177.9. The weight mediator M.V. was 1,309, number means M.V. 862 and the polydispersity 1.46. The average epoxy functionality was calculated to be 4.8. The 2-functional content was 2.29% against 9.9% for the 3-functional product, which in a weight ratio between 2-functional and 3-functional of 0.23:1.

EKSEMPEL 4 EXAMPLE 4

A. Fremstilling av fenol/ formaldehvd- novolak- harpiks A. Production of phenol/formaldehyde-novolac resin

En glassreaktor utstyrt med rører, tilbakeløpskjøler, tilsetningstrakt og innretning for styring av temperaturen ble satset med 550 gram (5,85 mol) fenol og 2,75 gram (0,03 mol) oksalsyre. Denne blanding ble oppvarmet til 110°C, og 298,8 gram (3,68 mol) av 37 %ig formalin ble tilsatt langsomt i løpet av 60 minutter (3600 s). Reaksjonsblandingen ble tillatt å koke under tilbakeløpskjøling under formalin-tilsetningen og i ca. 60 minutter (3600 s) deretter. Vakuum ble så påført, og overskuddet av fenol og vann ble fjernet ved vakuum-destillasjon ved en sluttemperatur på 180°C. A glass reactor equipped with stirrer, reflux condenser, addition funnel and device for controlling the temperature was charged with 550 grams (5.85 moles) of phenol and 2.75 grams (0.03 moles) of oxalic acid. This mixture was heated to 110°C, and 298.8 grams (3.68 moles) of 37% formalin was added slowly over 60 minutes (3600 s). The reaction mixture was allowed to boil under reflux during the formalin addition and for approx. 60 minutes (3600 s) thereafter. Vacuum was then applied and the excess phenol and water were removed by vacuum distillation at a final temperature of 180°C.

Den faste novolakharpiks hadde et Mettler-mykningspunkt på 87,9°C, analyse ved gelgjennomtrengningskromatografi (GPC) viste at produktet har en vektmidlere M.V. på 1 044, en antallsmidlere M.V. på 700, med polydispersitet 1,49. Produktet inneholdet 16,3 % 2-funksjonelle komponenter, og forholdet mellom 2-funksjonelt og 3-funksjonelt var 1,2:1,0. The solid novolak resin had a Mettler softening point of 87.9°C, analysis by gel permeation chromatography (GPC) showed that the product has a weighting agent M.V. of 1,044, a number average M.V. of 700, with polydispersity 1.49. The product contained 16.3% 2-functional components, and the ratio between 2-functional and 3-functional was 1.2:1.0.

B. Fremstillin<g> av epoksy- novolak- harpiks B. Preparation<g> of epoxy-novolac resin

Under anvendelse av den nøyaktig samme fremgangsmåte som beskrevet i eksempel 1-C ble 307 gram av produktet fra eksempel 4-B omsatt med 767,0 gram av 20 %ig vandig kaustikk i 1365,3 gram epiklorhydrin, 735,1 gram isopropanol og 118,7 gram vann. Produktet hadde en MSP på 81,3°C, en smelteviskositet på 589 cP (0,589 pa-s), målt ved 150°C, og en epoksydekvivalent-vekt på 186,1. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var mindre enn 0,5:1. Using the exact same procedure as described in Example 1-C, 307 grams of the product from Example 4-B were reacted with 767.0 grams of 20% aqueous caustic in 1365.3 grams of epichlorohydrin, 735.1 grams of isopropanol and 118 .7 grams of water. The product had an MSP of 81.3°C, a melt viscosity of 589 cP (0.589 pa-s), measured at 150°C, and an epoxy equivalent weight of 186.1. The ratio of 2-functional to 3-functional components was less than 0.5:1.

EKSEMPEL 5 EXAMPLE 5

A. Fremstilling av fenol/ formaldehvd- novolak- harpiks A. Production of phenol/formaldehyde-novolac resin

Anvendelse av fremgangsmåten som er beskrevet i eksempel 4-A. 1506,6 gram (16,03 mol) fenol ble omsatt med 831,56 gram (10,26 mol) av 37 %ig formalin under anvendelse av 7,53 gram (0,084 mol) oksalsyre. Det faste produkt hadde et Mettler-mykningspunkt på 90,7°C. Det 2-funksjonelle innhold var 15,27 %, målt ved GPC. Vektmidlere M.V. var 1 098, antallsmidlere M.V. 714 og polydispersiteten 1,54. Produktet inneholdt 15,27 vekt% 2-funksjonelle komponenter, og et innhold av 3-funksjonelt komponent på 12,67 vekt%, dvs. et forhold mellom 2-funksjonelle og 3-funksjonelle komponenter på 1,2:1. Application of the method described in example 4-A. 1506.6 grams (16.03 moles) of phenol were reacted with 831.56 grams (10.26 moles) of 37% formalin using 7.53 grams (0.084 moles) of oxalic acid. The solid product had a Mettler softening point of 90.7°C. The 2-functional content was 15.27%, measured by GPC. Weight means M.V. was 1,098, number means M.V. 714 and the polydispersity 1.54. The product contained 15.27% by weight of 2-functional components, and a 3-functional component content of 12.67% by weight, i.e. a ratio between 2-functional and 3-functional components of 1.2:1.

B. Fjerning av 2- funksjonelt produkt B. Removal of 2-functional product

En porsjon av det ovenfor fremstilte produkt ble kontinuerlig ekstrahert med vann av ca. 99°C inntil det 2-funksjonelle innhold var 4,26 vekt%, målt ved GPC. Det faste produkt hadde et Mettler-mykningspunkt på 108,9°C. Den vektmidlere M.V. var 1 263, antallsmidlere M.V. 895, med polydispersitet 1,41. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var 0,40:1. A portion of the product prepared above was continuously extracted with water of approx. 99°C until the 2-functional content was 4.26% by weight, measured by GPC. The solid product had a Mettler softening point of 108.9°C. The weight mediator M.V. was 1,263, number means M.V. 895, with polydispersity 1.41. The ratio of 2-functional to 3-functional components was 0.40:1.

C. Fjerning av 2- funksjonelt produkt C. Removal of 2-functional product

En annen porsjon av novolakharpiksen fremstilt i eksempel 5-A ble kontinuerlig ekstrahert med vann inntil det 2-funksjonelle innhold var mindre enn 0,5 vekt%, målt ved GPC. Mettler-mykningspunktet var 128°C. Den vektmidlere M.V. var 1 446, antallsmidlere M.V. 1 138 og polydispersitet 1,27. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var mindre enn 0,25:1,0. Another portion of the novolak resin prepared in Example 5-A was continuously extracted with water until the 2-functional content was less than 0.5% by weight, as measured by GPC. The Mettler softening point was 128°C. The weight mediator M.V. was 1,446, number means M.V. 1,138 and polydispersity 1.27. The ratio of 2-functional to 3-functional components was less than 0.25:1.0.

D. Fremstilling av epoksvnovolak D. Preparation of epoxy vnovolac

En porsjon av harpiksen fremstilt i eksempel 5-B, A portion of the resin prepared in Example 5-B,

402,5 gram, ble omsatt med 1789,9 gram epiklorhydrin i 963,8 gram isopropanol og 155,6 gram vann under anvendelse av 1006,4 gram av 20 %ig vandig kaustikk som beskrevet i eksempel 1-C. Produktet hadde en epoksydekvivalent-vekt på 185. Den vektmidlere M.V. var 1 481, den antallsmidlere M.V. 935 og polydispersiteten 1,58. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet til 5,1. Det 2-funksjonelle innhold var 3,81 %. Vektforholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var mindre enn 0,25:1. 402.5 grams, was reacted with 1789.9 grams of epichlorohydrin in 963.8 grams of isopropanol and 155.6 grams of water using 1006.4 grams of 20% aqueous caustic as described in example 1-C. The product had an epoxy equivalent weight of 185. The weight mediator M.V. was 1,481, the numerical average M.V. 935 and the polydispersity 1.58. The average epoxy functionality was calculated to be 5.1. The 2-functional content was 3.81%. The weight ratio of 2-functional to 3-functional components was less than 0.25:1.

E. Fremstilling av epoksvnovolak E. Preparation of epoxy vnovolac

En porsjon av harpiksen fremstilt i eksempel 5-C, A portion of the resin prepared in Example 5-C,

385,3 gram, ble omsatt med 1713,6 gram epiklorhydrin i 922,7 gram isopropanol og 149 gram vann under anvendelse av 964,6 gram av 20 %ig vandig kaustikk som beskrevet i eksempel 1-C. Produktet var et sprøtt, ikke-sintrende faststoff med en MSP på 85°C og et epoksydinnhold på 23 % (en epoksydekvivalent-vekt på 187). Vektmidlere M.V. var 1 719, antallsmidlere M.V. 1 234 og polydispersiteten 1,39. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet til 6,6. Det 2-funksjonelle innhold var mindre enn 0,5 %. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var mindre enn 0,25:1,0. 385.3 grams, was reacted with 1713.6 grams of epichlorohydrin in 922.7 grams of isopropanol and 149 grams of water using 964.6 grams of 20% aqueous caustic as described in example 1-C. The product was a brittle, non-sintering solid with an MSP of 85°C and an epoxide content of 23% (an epoxide equivalent weight of 187). Weight means M.V. was 1,719, number means M.V. 1,234 and the polydispersity 1.39. The average epoxy functionality was calculated to be 6.6. The 2-functional content was less than 0.5%. The ratio of 2-functional to 3-functional components was less than 0.25:1.0.

EKSEMPEL 6 EXAMPLE 6

A. Fremstilling av fenol/ formaldehyd- novolak- harpiks A. Production of phenol/formaldehyde novolak resin

Ved anvendelse av den metode som er beskrevet i eksempel 4-A ble 3000 gram (31,88 mol) fenol omsatt med 1655,96 gram Using the method described in example 4-A, 3000 grams (31.88 mol) of phenol were reacted with 1655.96 grams

(20,4 mol) av 37 %ig formalin under anvendelse av 15,0 gram (0,167 mol) oksalsyre. Den faste harpiks som ble oppnådd hadde et Mettler-mykningspunkt på 92,7, smelteviskositet 380 cP ved 150°C. Ved GPC-analyse var den vektmidlere M.N. 1 168, den antallsmidlere M.V. 753, med en polydispersitet på 1,55. Harpiksen inneholdt 16,67 vekt% 2-funksjonelt komponent og (20.4 mol) of 37% formalin using 15.0 grams (0.167 mol) of oxalic acid. The solid resin obtained had a Mettler softening point of 92.7, melt viscosity 380 cP at 150°C. By GPC analysis, the weighted average was M.N. 1,168, the number average M.V. 753, with a polydispersity of 1.55. The resin contained 16.67 wt% 2-functional component and

13,43 vekt% 3-funksjonelt komponent. Vektforholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var 1,24:1. 13.43 wt% 3-functional component. The weight ratio between 2-functional and 3-functional components was 1.24:1.

B. Fjerning av 2- funksionelt produkt B. Removal of 2-functional product

En porsjon av ovennevnte produkt ble kontinuerlig ekstrahert med vann av tilnærmet 99°C inntil det 2-funksjonelle innhold var 0,36 vekt%, målt ved HPLC. Ved GPC-analyse var den vektmidlere M.V. 1 452, den antallsmidlere M.V. 1 123, med en polydispersitet på 1,29. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var mindre enn 0,25:1. A portion of the above product was continuously extracted with water of approximately 99°C until the 2-functional content was 0.36% by weight, measured by HPLC. By GPC analysis, the weighted average was M.V. 1,452, the number average M.V. 1,123, with a polydispersity of 1.29. The ratio of 2-functional to 3-functional components was less than 0.25:1.

C. Fjerning av 2- funksionelt produkt C. Removal of 2-functional product

En annen porsjon av novolakharpiksen fremstilt i eksempel 6-A ble kontinuerlig ekstrahert med varmt vann inntil det 2-funksjonelle innhold var 0,73 vekt%, målt ved HPLC. Harpiksen hadde en vektmidlere M.V. på 1 427, en antallsmidlere M.V. på 1 090, med en polydispersitet på 1,31. Produktet hadde et vektforhold mellom 2-funksjonelle og 3-funksjonelle komponenter på 0,25:1. Another portion of the novolak resin prepared in Example 6-A was continuously extracted with hot water until the 2-functional content was 0.73% by weight, as measured by HPLC. The resin had a weight mediator M.V. of 1,427, a number average M.V. of 1,090, with a polydispersity of 1.31. The product had a weight ratio between 2-functional and 3-functional components of 0.25:1.

D. Fremstilling av epoksvnovolak D. Preparation of epoxy vnovolac

En porsjon av novolakharpiksen fra eksempel 6-B, 425 gram, ble omsatt med epiklorhydrin under anvendelse av nøyaktig de samme forhold mellom reaktanter og betingelser som beskrevet i eksempel 8-B. Produktet var et ikke-sintrende, sprøtt faststoff med en MSP på 86,0°C. Smelteviskositeten var 850 cP, målt ved 150°C. Produktet hadde en epoksydekvivalent-vekt på 184,0. Den vektmidlere M.V. var 1 775, antallsmidlere M.V. 1 203, med en polydispersitet på 1,48. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet til 6,5. Forholdet mellom 2-funksjonelt og 3-funksjonelt innhold var mindre enn 0,25:1. A portion of the novolak resin from Example 6-B, 425 grams, was reacted with epichlorohydrin using exactly the same ratios of reactants and conditions as described in Example 8-B. The product was a non-sintering, brittle solid with an MSP of 86.0°C. The melt viscosity was 850 cP, measured at 150°C. The product had an epoxy equivalent weight of 184.0. The weight mediator M.V. was 1,775, number means M.V. 1,203, with a polydispersity of 1.48. The average epoxy functionality was calculated to be 6.5. The ratio of 2-functional to 3-functional content was less than 0.25:1.

E. Fremstilling av epoksynovolak E. Preparation of epoxy novolac

En porsjon av novolakharpiksen fra eksempel 6-C, 425,0 gram, ble omsatt nøyaktig som beskrevet i eksempel 9-D slik at man fikk en sprø, fast harpiks med en epoksydekvivalent-vekt på 184,6. Den vektmidlere M.V. var 1 789, antallsmidlere M.V. 1 187, med en polydispersitet på 1,41. Den gjennomsnittlige epoksydfunksjonalitet ble beregnet til 6,4. Det 2-funksjonelle innhold var 0,73 vekt%, og vektforholdet mellom 2-funksjonelt og 3-funksjonelt innhold var mindre enn 0,25:1. A portion of the novolak resin from Example 6-C, 425.0 grams, was reacted exactly as described in Example 9-D to give a brittle, solid resin with an epoxy equivalent weight of 184.6. The weight mediator M.V. was 1,789, number means M.V. 1,187, with a polydispersity of 1.41. The average epoxy functionality was calculated to be 6.4. The 2-functional content was 0.73% by weight, and the weight ratio between 2-functional and 3-functional content was less than 0.25:1.

SAMMENLIGNINGSFORSØK COMPARISON ATTEMPT

A. Fremstilling av epoksy- novolak- harpiks A. Preparation of epoxy-novolac resin

En porsjon av harpiksen fra eksempel 6-A, 104 gram ble oppløst i 462,5 gram epiklorhydrin, og 2,3 gram 60 %ig vandig benzyltrimetylammoniumklorid-løsning tilsatt. Denne løsning ble omrørt under nitrogenatmosfære i 72 timer (259 200 s) ved 70°C, deretter avkjølt til 20°C, og 312,5 gram av en 16 %ig løsning av natriumhydroksyd/9 % natriumkarbonat og omrørt ved 20°C i 90 minutter (5400 s). Vannsjiktet ble separert, og ytterligere 312,5 gram av 16 %ig natriumhydroksyd/9 % natriumkarbonat-løsning og omrørt i 30 minutter (1800 s) ved 20°C. Vannsjiktet ble separert, og det organiske sj ikt ble vasket med vann inntil det var fritt for salt og kaustikk. Overskudd av epiklorhydrin ble så fjernet via vakuumdestillasjon ved 150°C. Produktet hadde et epoksydinnhold på 24,9 % (en epoksydekvivalent-vekt på 172,7). Det 2-funksjonelle innhold var 13,4 %. Den vektmidlere M.V. var 1 531, og den antallsmidlere M.V. var 729, med en polydispersitet på 1,71. Den gjennomsnittlige epoksyd-funksjonalitet ble beregnet til 4,2. Forholdet mellom 2-funksjonelle og 3-funksjonelle komponenter var 1,30. A portion of the resin from Example 6-A, 104 grams was dissolved in 462.5 grams of epichlorohydrin, and 2.3 grams of 60% aqueous benzyltrimethylammonium chloride solution added. This solution was stirred under a nitrogen atmosphere for 72 hours (259,200 s) at 70°C, then cooled to 20°C, and 312.5 grams of a 16% solution of sodium hydroxide/9% sodium carbonate and stirred at 20°C in 90 minutes (5400 s). The aqueous layer was separated, and an additional 312.5 grams of 16% sodium hydroxide/9% sodium carbonate solution and stirred for 30 minutes (1800 seconds) at 20°C. The aqueous layer was separated, and the organic layer was washed with water until it was free of salt and caustic. Excess epichlorohydrin was then removed via vacuum distillation at 150°C. The product had an epoxide content of 24.9% (an epoxide equivalent weight of 172.7). The 2-functional content was 13.4%. The weight mediator M.V. was 1,531, and the number average M.V. was 729, with a polydispersity of 1.71. The average epoxy functionality was calculated to be 4.2. The ratio between 2-functional and 3-functional components was 1.30.

Claims (3)

1. Epoksy-novolak-harpiksmateriale med gjennomsnittlig epoksydfunksjonalitet på 3-12, representert ved følgende formel: hvor A uavhengig er en toverdig hydrokarbongruppe som har 1-14 karbonatomer; hver R er uavhengig hydrogen, et halogenatom, en hydroksylgruppe eller en hydrokarbongruppe som har 1-9 karbonatomer; hver R' er uavhengig hydrogen eller en alkylgruppe som har 1-4 karbonatomer, og n har en gjennomsnittlig verdig på 1-10, karakterisert ved at (a) når 2-funksjonelle og 3-funksjonelle komponenter er tilstede og R er hydrogen, så er vektforholdet mellom den 2- funksjonelle komponent og den 3-funksjonelle komponent mindre enn 1,1:1; (b) når 2-funksjonelle og 3-funksjonelle komponenter er tilstede og hver R er uavhengig et halogenatom, en hydroksylgruppe eller en hydrokarbongruppe som har 1-9 karbonatomer, så er vektforholdet mellom den 2-funksjonelle komponent og den 3- funksjonelle komponent mindre enn 0,5:1; (c) når den gjennomsnittlige epoksydfunksjonalitet er fra 3 til 5, så inneholder harpiksen mindre enn 12,5 vekt% av den 2-funksjonelle komponent; og (d) når den gjennomsnittlige epoksydfunksjonalitet er fra 5 til 12, så inneholder harpiksen mindre enn 9 vekt% av den 2-funksjonelle komponent.1. Epoxy-novolac resin material with an average epoxy functionality of 3-12, represented by the following formula: where A is independently a divalent hydrocarbon group having 1-14 carbon atoms; each R is independently hydrogen, a halogen atom, a hydroxyl group or a hydrocarbon group having 1-9 carbon atoms; each R' is independently hydrogen or an alkyl group having 1-4 carbon atoms, and n has an average value of 1-10, characterized in that (a) when 2-functional and 3-functional components are present and R is hydrogen, then the weight ratio of the 2-functional component to the 3-functional component is less than 1.1:1; (b) when 2-functional and 3-functional components are present and each R is independently a halogen atom, a hydroxyl group or a hydrocarbon group having 1-9 carbon atoms, then the weight ratio of the 2-functional component to the 3-functional component is less than 0.5:1; (c) when the average epoxy functionality is from 3 to 5, then the resin contains less than 12.5% by weight of the 2-functional component; and (d) when the average epoxy functionality is from 5 to 12, then the resin contains less than 9% by weight of the 2-functional component. 2. Epoksy-novolak-harpiksmateriale som angitt i krav 1, karakterisert ved de betingelser at (a) når 2-funksjonelle og 3-funksjonelle komponenter er tilstede og R er hydrogen, så er vektforholdet mellom den 2-funksjonelle komponent og den 3-funksjonelle komponent mindre enn 0,75:1; (b) når 2-funksjonelle og 3-funksjonelle komponenter er tilstede og hver R er uavhengig et halogenatom, en hydroksylgruppe eller en hydrokarbongruppe som har 1-9 karbonatomer, så er vektforholdet mellom den 2-funksjonelle komponent og den 3-funksjonelle komponent mindre enn 0,5:1; (c) når den gjennomsnittlige epoksydfunksjonalitet er fra 3 til 5, så inneholder harpiksen mindre enn 7 vekt% av den 2-funksjonelle komponent; og (d) når den gjennomsnittlige epoksydfunksjonalitet er fra 5 til 12, så inneholder harpiksen mindre enn 5 vekt% av den 2-funksjonelle komponent.2. Epoxy-novolac resin material as set forth in claim 1, characterized by the conditions that (a) when 2-functional and 3-functional components are present and R is hydrogen, then the weight ratio between the 2-functional component and the 3- functional component less than 0.75:1; (b) when 2-functional and 3-functional components are present and each R is independently a halogen atom, a hydroxyl group or a hydrocarbon group having 1-9 carbon atoms, then the weight ratio of the 2-functional component to the 3-functional component is less than 0.5:1; (c) when the average epoxy functionality is from 3 to 5, then the resin contains less than 7% by weight of the 2-functional component; and (d) when the average epoxy functionality is from 5 to 12, then the resin contains less than 5% by weight of the 2-functional component. 3. Epoksy-novolak-harpiksmateriale som angitt i krav 2, karakterisert ved den forutsetning at når 2-funksjonelle og 3-funksjonelle komponenter er tilstede og R er hydrogen, så er vektforholdet mellom den 2-funksjonelle komponent og den 3-funksjonelle komponent mindre enn 0,5:1.3. Epoxy-novolac resin material as stated in claim 2, characterized by the premise that when 2-functional and 3-functional components are present and R is hydrogen, the weight ratio between the 2-functional component and the 3-functional component is less than 0.5:1.
NO863619A 1985-01-11 1986-09-10 Epoxy novolac resin composition. NO164910C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO900479A NO900479D0 (en) 1985-01-11 1990-02-01 NOVOLAK RESINES, AND PROCEDURE FOR PREPARATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69070285A 1985-01-11 1985-01-11
PCT/US1986/000052 WO1986004075A1 (en) 1985-01-11 1986-01-13 Epoxy novolac resins having reduced 2-functional components and a process for reducing 2-functional components in novolac resins

Publications (4)

Publication Number Publication Date
NO863619L NO863619L (en) 1986-09-10
NO863619D0 NO863619D0 (en) 1986-09-10
NO164910B true NO164910B (en) 1990-08-20
NO164910C NO164910C (en) 1990-11-28

Family

ID=24773574

Family Applications (2)

Application Number Title Priority Date Filing Date
NO863619A NO164910C (en) 1985-01-11 1986-09-10 Epoxy novolac resin composition.
NO900479A NO900479D0 (en) 1985-01-11 1990-02-01 NOVOLAK RESINES, AND PROCEDURE FOR PREPARATION.

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO900479A NO900479D0 (en) 1985-01-11 1990-02-01 NOVOLAK RESINES, AND PROCEDURE FOR PREPARATION.

Country Status (7)

Country Link
EP (1) EP0209572A4 (en)
JP (2) JPS62501780A (en)
BR (1) BR8604531A (en)
DK (1) DK435386D0 (en)
FI (1) FI863663A (en)
NO (2) NO164910C (en)
WO (1) WO1986004075A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128183A (en) * 1992-02-27 1994-05-10 Mitsui Toatsu Chem Inc Method for simultaneous production of bisphenol f and novolak type phenolic resin
US6001949A (en) * 1995-12-13 1999-12-14 Gun Ei Chemical Industry Co., Ltd. Novolak type phenolic resins and methods of manufacturing thereof
JPH09124756A (en) 1995-10-30 1997-05-13 Gun Ei Chem Ind Co Ltd Novolak phenol resin and production thereof
MY129953A (en) * 1996-02-09 2007-05-31 Nippon Kayaku Kk Epoxy resin, epoxy resin composition and hardened product thereof
JP4847650B2 (en) * 2001-07-06 2011-12-28 ソマール株式会社 Thermosetting epoxy resin composition for fixing gold wires
KR101335717B1 (en) * 2011-11-29 2013-12-24 국도화학 주식회사 Novolac resin
WO2015057881A1 (en) 2013-10-17 2015-04-23 Si Group, Inc. Modified alkylphenol-aldehyde resins stabilized by a salicylic acid
CN111825818B (en) 2013-10-17 2023-11-21 Si集团有限公司 In situ alkylphenol-aldehyde resins
TWI731986B (en) * 2016-06-29 2021-07-01 日商迪愛生股份有限公司 Phenol novolac resin, curable resin composition and hardened products thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB296514A (en) * 1927-07-07 1928-09-06 British Dyestuffs Corp Ltd Improvements in the manufacture of phenolic resins
US2617785A (en) * 1946-06-18 1952-11-11 Union Carbide & Carbon Corp Novolak resin preparation
DE1148077B (en) * 1958-04-01 1963-05-02 Ciba Geigy Process for the preparation of fusible glycidyl polyethers
NL128717C (en) * 1958-12-18
US3226365A (en) * 1960-12-10 1965-12-28 Toyo Kogyo Company Ltd Process for producing liquid novolak type phenol-formaldehyde resin compositions
IT967653B (en) * 1972-09-20 1974-03-11 Sir Soc Italiana Resine Spa PROCEDURE FOR THE PREPARATION OF SOLID EPOXY VOLACH RESINS
US3928288A (en) * 1973-04-11 1975-12-23 Dow Chemical Co Epoxy novolac resins having a narrow molecular weight distribution and process therefor
JPS5219755A (en) * 1975-08-05 1977-02-15 Dow Chemical Co Epoxy novolak resin production method
JPS52144099A (en) * 1976-05-26 1977-12-01 Hitachi Ltd Epoxy resin compositions
US4102866A (en) * 1976-10-29 1978-07-25 Texaco Development Corporation Method of making glycidyl ethers of novolak resins
JPS5698227A (en) * 1980-01-09 1981-08-07 Matsushita Electric Works Ltd Epoxy resin composition
JPS56116717A (en) * 1980-02-20 1981-09-12 Yuka Shell Epoxy Kk Preparation of novolak-type epoxy resin
JPS5730716A (en) * 1980-07-31 1982-02-19 Dainippon Ink & Chem Inc Treating method of phenolic resin
JPS60133017A (en) * 1983-12-20 1985-07-16 Dainippon Ink & Chem Inc Phenolic resin for shell molding and its production

Also Published As

Publication number Publication date
EP0209572A1 (en) 1987-01-28
FI863663A0 (en) 1986-09-10
BR8604531A (en) 1987-07-14
WO1986004075A1 (en) 1986-07-17
JPH0641262A (en) 1994-02-15
NO900479D0 (en) 1990-02-01
NO863619L (en) 1986-09-10
NO863619D0 (en) 1986-09-10
DK435386A (en) 1986-09-11
DK435386D0 (en) 1986-09-11
JPH0471927B2 (en) 1992-11-17
EP0209572A4 (en) 1988-10-24
JPS62501780A (en) 1987-07-16
NO900479L (en) 1986-09-10
FI863663A (en) 1986-09-10
NO164910C (en) 1990-11-28

Similar Documents

Publication Publication Date Title
US20060235183A1 (en) Epoxy resin composition, process for producing epoxy resin, novel epoxy resin, novel phenol resin
NO840295L (en) EPOXY PREPARATIONS CONTAINING SUBSTITUTED DIAMETERS
NO164910B (en) Epoxy novolac resin composition.
US4448948A (en) Epoxy resin and the process for its production
JPS62292822A (en) Thermoplastic polymer composition having thermosetting processing characteristic
KR920007658B1 (en) Advanced epoxy resins containing halogen
EP0679165A1 (en) Substituted resorcinol-based epoxy resins
US4649188A (en) Method for reducing 2-functional components in novolac resins and epoxy novolac resins prepared therefrom
NO168114B (en) NON-SINCING EPOXY RESIN, PROCEDURE FOR THE PREPARATION OF SUCH RESIN AND USE OF THEM
JP4529234B2 (en) Epoxy resin composition and cured product thereof
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
JPS6225116A (en) Resin obtained from novel polyglycidyl ether
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP2856565B2 (en) Resin manufacturing method
US5171869A (en) Allyl or propenyl group-containing naphthalene derivatives
JP2587739B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3939000B2 (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP3852789B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
US20240067777A1 (en) Curable compound product
JP3646942B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
US5243058A (en) Allyl or propenyl group-containing naphthalene derivatives
US5079314A (en) Curable compositions containing epoxidized phenolformaldehyde resins containing reduced quantities of 2-functional components
JPH04270720A (en) Epoxy resin, its production and cured product
JP4082668B2 (en) Phenolic resin, epoxy resin composition and cured product thereof