NO162519B - PROCEDURE FOR THE PREPARATION OF ALKYLENIC CARBONATE. - Google Patents

PROCEDURE FOR THE PREPARATION OF ALKYLENIC CARBONATE. Download PDF

Info

Publication number
NO162519B
NO162519B NO824030A NO824030A NO162519B NO 162519 B NO162519 B NO 162519B NO 824030 A NO824030 A NO 824030A NO 824030 A NO824030 A NO 824030A NO 162519 B NO162519 B NO 162519B
Authority
NO
Norway
Prior art keywords
alkylene
water
carbon dioxide
carbonate
catalyst
Prior art date
Application number
NO824030A
Other languages
Norwegian (no)
Other versions
NO162519C (en
NO824030L (en
Inventor
Robert J Harvey
Howard M Sachs
Original Assignee
Scient Design Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/441,191 external-priority patent/US4786741A/en
Application filed by Scient Design Co filed Critical Scient Design Co
Publication of NO824030L publication Critical patent/NO824030L/en
Publication of NO162519B publication Critical patent/NO162519B/en
Publication of NO162519C publication Critical patent/NO162519C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D321/00Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D317/00 - C07D319/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Oppfinnelsen vedrører en fremgangsmåte for fremstilling av alkylenkarbonater, slik som angitt i krav l's karakteriserende del. Slike reaksjoner er velkjente.: Alkylenkarbonater er nyttige som oppløsningsmidler eller The invention relates to a method for producing alkylene carbonates, as stated in the characterizing part of claim 1. Such reactions are well known.: Alkylene carbonates are useful as solvents or

som en kilde av de tilsvarende glykoler. as a source of the corresponding glycols.

Flere fremgangsmåter er beskrevet for en enkelttrinn hydrogenering av alkylenoksyder til glykoler i nærvær av en katalysator og karbondioksyd. Slike fremgangsmåter sies å mulig-gjøre reduksjon av den anvendte vannmengde. Fjerning av overskuddsvann er en hovedutgift i den konvensjonelle hydro-generingsprosess. Karbondioksydet konsumeres ikke i proses-sen, men det er foreslått at hydrogeneringen fortsetter via alkylenkarbonat som et mellomprodukt. Several methods are described for the single-step hydrogenation of alkylene oxides to glycols in the presence of a catalyst and carbon dioxide. Such methods are said to make it possible to reduce the amount of water used. Removal of excess water is a major expense in the conventional hydro-generation process. The carbon dioxide is not consumed in the process, but it has been proposed that the hydrogenation continues via alkylene carbonate as an intermediate product.

US patent 3.922.314 beskriver en fremgangsmåte for hydrogenering av etylenoksyd til etylenglykol uten bruk av katalysator men opererer med en vandig etylenoksydoppløsning inneholdende minst 8 vekti etylenoksyd og minst 0,1 vekt% karbondioksyd. US patent 3,922,314 describes a method for the hydrogenation of ethylene oxide to ethylene glycol without the use of a catalyst but operates with an aqueous ethylene oxide solution containing at least 8% by weight of ethylene oxide and at least 0.1% by weight of carbon dioxide.

En katalysatorfremgangsmåte er beskrevet i britisk patent 1.177.877 (eller US patent 3.629.343). Alkylenoksyder hydro-generes til glykoler ved temperaturer på 80-220°C og trykk på 10-180 atm. i nærvæar av en halogenidkatalysator. Foretrukne er alkalimetall eller kvartærnære ammoniumhalogenider, særlig bromider og jodider. Alkalimetallhydroksyder, karbonater eller bikarbonater var fordelaktige. A catalyst process is described in British Patent 1,177,877 (or US Patent 3,629,343). Alkylene oxides are hydrogenated to glycols at temperatures of 80-220°C and pressures of 10-180 atm. in the presence of a halide catalyst. Preferred are alkali metal or quaternary ammonium halides, especially bromides and iodides. Alkali metal hydroxides, carbonates or bicarbonates were advantageous.

En lignende fremgangsmåte er beskrevet i US patent 4.160.116 hvor kvartærnære fosfoniumhalogenider, fortrinnsvis jodider og bromider ble anvendt for å katalysere hydrogeneringen av alkylenoksyder i nærvær av karbondioksyd. Temperaturen var 50-200°C og trykket 3-50 kp/cm<2>. A similar method is described in US patent 4,160,116 where quaternary phosphonium halides, preferably iodides and bromides, were used to catalyze the hydrogenation of alkylene oxides in the presence of carbon dioxide. The temperature was 50-200°C and the pressure 3-50 kp/cm<2>.

Enda en slik fremgangsmåte er beskrevet i japansk patentansøkning 81-45426 hvori molybden- og/eller wolframforbindelser er forbundet med kjente katalysatorer såsom alkalimetall-halogenider, kvartærnære ammonium- eller fosfoniumsalter, organiske halogenider og organiske aminer. Reaksjonen utføres ved 20-250°C og 0-30 kp/cm<2>manometertrykk. Another such method is described in Japanese patent application 81-45426 in which molybdenum and/or tungsten compounds are combined with known catalysts such as alkali metal halides, quaternary ammonium or phosphonium salts, organic halides and organic amines. The reaction is carried out at 20-250°C and 0-30 kp/cm<2>manometer pressure.

Dannelsen av alkylenkarbonater i motsetning til hydrogeneringen av alkylenoksyder til glykoler finner sted i henhold til kjent teknikk, uten tilstedeværende vann. Kayalysatorene og reaksjons betingelsene like de ovenfor beskrevne for hydrogeneringen av alkylenoksyder er nyttige. The formation of alkylene carbonates, in contrast to the hydrogenation of alkylene oxides to glycols, takes place according to known techniques, without the presence of water. The catalysts and reaction conditions similar to those described above for the hydrogenation of alkylene oxides are useful.

I US patent 2.667.497 ble magnesium- eller kalsiumhalogenider anvendt ved 150-250 o C og 35-140 kp/cm^ 2 for å fremstille alkylenkarbonater f ret de tilsvarende oksyder. In US patent 2,667,497, magnesium or calcium halides were used at 150-250 o C and 35-140 kp/cm^ 2 to prepare alkylene carbonates from the corresponding oxides.

US patent 2.766.258 beskriver bruk av kvartærnære ammonium-hydroksyder, karbonater og bikarbonater for å katalysere reaksjonen av alkylenoksyder med karbondioksyd. Reaksjonen ble utført ved temperaturer mellom 100-225°C og trykk på 21-350 kp/cm<2>. US patent 2,766,258 describes the use of quaternary ammonium hydroxides, carbonates and bicarbonates to catalyze the reaction of alkylene oxides with carbon dioxide. The reaction was carried out at temperatures between 100-225°C and pressure of 21-350 kp/cm<2>.

De kvartærnære ammoniumhalogenider ble anvendt i US patent 2.773.070 ved temperaturer på 100-225°C og trykk større enn The quaternary ammonium halides were used in US patent 2,773,070 at temperatures of 100-225°C and pressures greater than

2 2

21 kp/ra . 21 kp/ra.

Ifølge britisk patent nr. 1.485.925 fremstilles et alkylenkarbonat ved å omsette det tilsvarende alkylenoksyd, ved forhøyet trykk og temperatur, med karbondioksyd i nærvær av en protisk forbindelse og en nitrogenholdig base. According to British Patent No. 1,485,925, an alkylene carbonate is prepared by reacting the corresponding alkylene oxide, at elevated pressure and temperature, with carbon dioxide in the presence of a protic compound and a nitrogenous base.

Tre patenter, US patent 2.994.705; 2.994.704; og 2.993.908 beskriver hovedsakelig de samme betingelser, 93-260°C og manometertrykk 8-212 kp/cm 2, med organiske fosfoniumhalogenider, organiske sulfoniumhalogenider og ureahydrohalogenider som katalysatorer for fremstilling av alkylenkarbonater fra den tilsvarende oksiranforbindelse. Three patents, US patent 2,994,705; 2,994,704; and 2,993,908 describe essentially the same conditions, 93-260°C and manometer pressure 8-212 kp/cm 2 , with organic phosphonium halides, organic sulfonium halides and urea hydrohalides as catalysts for the production of alkylene carbonates from the corresponding oxirane compound.

Hydrazin- eller et halogenidsalt derav ble anvendt for å katalysere reaksjonen i US patent 3.535.341 ved temperaturer på 100-250°C. En anionbytterharpiks inneholdende kvartærnære ammoniumgrupper ble beskrevet i US patent 4.233.221 Hydrazine or a halide salt thereof was used to catalyze the reaction in US patent 3,535,341 at temperatures of 100-250°C. An anion exchange resin containing quaternary ammonium groups was described in US patent 4,233,221

som nyttig i dampfasereaksjon. as useful in vapor phase reaction.

Organiske antimonhalogenider ble vist i japansk patentansøkning 80-122.776 for å muliggjøre dannelse av alkylenkarbonater ved romtemperatur til 120°C i en vannfri blanding. Organic antimony halides were shown in Japanese Patent Application 80-122,776 to enable the formation of alkylene carbonates at room temperature to 120°C in an anhydrous mixture.

Det er funnet at reaksjonen av alkylenoksyder til de tilsvarende karbonater kan utføres med kjente katalysatorer ved lavere temperaturer enn hittil anvendt og selv i nærvær av betydelige vannmengder. Hydrolyseringen av karbonater til glykoler kan minimaliseres og hovedproduktet er karbonat. It has been found that the reaction of alkylene oxides to the corresponding carbonates can be carried out with known catalysts at lower temperatures than hitherto used and even in the presence of significant amounts of water. The hydrolysis of carbonates to glycols can be minimized and the main product is carbonate.

I tillegg kan høyere temperaturer som før er anvendt for å fremstille glykoler anvendes for å produsere karbonater i stedet og, uten å fremstille store glykolmengder, særlig høyere glykoler, forutsatt at molarforholdet av karbondioksyd til alkylenoksyd er bibeholdt over ca. 1/1 og at karbondioksydets deltrykk er over en forut valgt verdi. In addition, higher temperatures previously used to produce glycols can be used to produce carbonates instead and, without producing large amounts of glycol, particularly higher glycols, provided that the molar ratio of carbon dioxide to alkylene oxide is maintained above about 1/1 and that the partial pressure of the carbon dioxide is above a previously selected value.

Alkylenoksyder kan omsettes med karbondioksyd for å danne alkylenkarbonater i nærvær av en effektiv mengde egnede katalysatorer ved temperaturer oppover fra 20°C, særlig over 90°C, fortrinnsvis 9 0 til 17 0°C og i nærvær av vann, når molarforholdet av karbondioksyd til alkylenoksyd er minst 1/1 og karbondioksydets deltrykk er tilstrekkelig til å tilveiebringe den ønskede selektivitet til alkylenkarbonat. Trykket ved hvilket reaksjonen utføres er i området ca. 10-200 kp/cm<2>manometertrykk, fortrinnsvis manometertrykk 30 til 80 kp/cm 2. Egnede katalysatorer innebefatter en eller flere i gruppen bestående av kvartærnære organiske ammonium- og fosfoniumhalogenider, organiske sulfoniumhalogenider og organiske antimonhalogenider, særlig metyltrifenylfosfoniumjodid, tetraetylammoniumbromid og tetrafenylantimonbromid. De tilsvarende karboksylater kan også anvendes. Mengden av anvendt katalysator er generelt opptil ca. 0,10 mol pr. mol alkylenoksyd, fortrinnsvis 0,001 til 0,02. Alkylene oxides can be reacted with carbon dioxide to form alkylene carbonates in the presence of an effective amount of suitable catalysts at temperatures upwards of 20°C, especially above 90°C, preferably 90 to 170°C and in the presence of water, when the molar ratio of carbon dioxide to alkylene oxide is at least 1/1 and the partial pressure of the carbon dioxide is sufficient to provide the desired selectivity to alkylene carbonate. The pressure at which the reaction is carried out is in the range of approx. 10-200 kp/cm<2> manometer pressure, preferably manometer pressure 30 to 80 kp/cm 2. Suitable catalysts include one or more of the group consisting of quaternary organic ammonium and phosphonium halides, organic sulfonium halides and organic antimony halides, in particular methyltriphenylphosphonium iodide, tetraethylammonium bromide and tetraphenylantimony bromide . The corresponding carboxylates can also be used. The amount of catalyst used is generally up to approx. 0.10 mol per moles of alkylene oxide, preferably 0.001 to 0.02.

I motsetning til hva man forventet tidligere kan vann være tilstede i betydelige mengder,- til og med overskridende de anvendt i tidligere hydrogeneringsprosesser da dannelsen av store mengder glykol og særlig høyere glykoler unngås ved å bibeholde molarforholdet av karbondioksyd til alkylenoksyd over 1/1 og karbondioksydets deltrykk justeres for å tilveiebringe selektiviteten til ønsket alkylenkarbonat. Nyttige rrolforhold av vann til alkylenoksyd er over ca. 0,01/1 og fortrinnsvis fra ca. 0,1/1 til ca. 4/1, mest foretrukket fra 0,1/1 til 2/1, selvom større mengder vann ikke utelukkes. Vann-tilsetning øker også karbonatdannelsens hastighet. Contrary to what was previously expected, water can be present in significant amounts, even exceeding those used in previous hydrogenation processes, as the formation of large amounts of glycol and especially higher glycols is avoided by maintaining the molar ratio of carbon dioxide to alkylene oxide above 1/1 and that of carbon dioxide partial pressure is adjusted to provide the selectivity to the desired alkylene carbonate. Useful ratio of water to alkylene oxide is above approx. 0.01/1 and preferably from approx. 0.1/1 to approx. 4/1, most preferably from 0.1/1 to 2/1, although larger amounts of water are not excluded. Water addition also increases the rate of carbonate formation.

Hittil har man omsatt alkylenoksyder med karbondioksyd for So far, alkylene oxides have been reacted with carbon dioxide for

å danne alkylenkarbonater ved temperaturer generelt i området 100-300°C, særlig ca. 150-225°C. Selv om dette ikke er beskrevet i detalj ser man at reaksjonen ble utført uten vann. F. eks. i US patent. 4.233.221 ble reaktantene tørket ved kon-" densering av vann etter komprimering slik at reaktant-gassenes fuktughetsnivå var ganske lavt, beregnet til å være ca. 0,2 mol%. Siden karbonathydrlysering ble utført ved for-høyede temperaturer og med katalysatorer også nyttige for den direkte hydrolyse av alkylenoksyder til glykoler, synes det mulig at man tidligere unngikk vann hvis bare karbonat skulle fremstilles. Ellers kunne man vente hydrolyse til glykol. to form alkylene carbonates at temperatures generally in the range 100-300°C, in particular approx. 150-225°C. Although this is not described in detail, it can be seen that the reaction was carried out without water. For example in US patent. 4,233,221, the reactants were dried by condensing water after compression so that the moisture level of the reactant gases was quite low, calculated to be about 0.2 mol%. Since carbonate hydrolysis was carried out at elevated temperatures and with catalysts as well useful for the direct hydrolysis of alkylene oxides to glycols, it seems possible that previously water was avoided if only carbonate was to be produced, otherwise hydrolysis to glycols could be expected.

Det er nå funnet at reaksjon av alkylenoksyder med karbon-dioksyder for å danne etylenkarbonat kan utføres i nærvær av vann. Alkylenkarbonater kan fremstilles med minimale tap ved hydrolyse til glykoler og særlig høyere glykoler. Slik en fremgangsmåte kan anvendes på en strøm kombinert av karbondioksyd, etylenoksyd og vann erholdt ved ekstraksjon av etylenoksyd fra en fortynnet vandig oppløsning med nær-kritisk eller super-kritisk karbondioksyd. Reaksjonen kan ut-føres ved lavere temperaturer enn det som hittil er ansett mulig, dvs. over 2 0°C, og høyere temperaturer, dvs. over 90°C kan anvendes uten å danne store glykolmengder, spesielt høyere glykoler, forutsatt at molarforholdet av karbondioksyd til alkylenoksyd bibeholdes over ca. 1/1 og at karbondioksydets deltrykk er tilstrekkelig for å tilveiebringe den ønskede selektivitet til alkylenkarbonatet. It has now been found that reaction of alkylene oxides with carbon dioxides to form ethylene carbonate can be carried out in the presence of water. Alkylene carbonates can be produced with minimal losses by hydrolysis to glycols and especially higher glycols. Such a method can be applied to a stream combined of carbon dioxide, ethylene oxide and water obtained by extraction of ethylene oxide from a dilute aqueous solution with near-critical or super-critical carbon dioxide. The reaction can be carried out at lower temperatures than has hitherto been considered possible, i.e. above 20°C, and higher temperatures, i.e. above 90°C can be used without forming large amounts of glycols, especially higher glycols, provided that the molar ratio of carbon dioxide to alkylene oxide is retained over approx. 1/1 and that the partial pressure of the carbon dioxide is sufficient to provide the desired selectivity to the alkylene carbonate.

Reaksjonen kan utføres i et stort temperaturområde over ca. 20°C, særlig over 90°C, og spesielt 90° til 170°C. Forhøyet temperatur foretrekkes da alkylenkarbonatdannelsens hastighet er høyere. The reaction can be carried out in a large temperature range above approx. 20°C, especially above 90°C, and especially 90° to 170°C. Elevated temperature is preferred as the rate of alkylene carbonate formation is higher.

Totaltrykk er ingen spesiell kritisk variabel i reaksjonen. Typisk vil det være i området manometertrykk ca. 10-200 kp/cm<2>. Imidlertid er karbondioksydets deltrykk funnet å være meget viktig. Total pressure is not a particularly critical variable in the reaction. Typically, it will be in the range of manometer pressure approx. 10-200 kp/cm<2>. However, the carbon dioxide partial pressure has been found to be very important.

Molarf orholdet av karbondioksyd til alkylenoksyd må være minst ca. 1/1 og kan variere fra 1/1 til 100/1. Vanligvis ville et forhold større enn 1/1 bli valgt, fortrinnsvis 1/1 til 10/1. Der hvor oppfinnelsens fremgangsmåte assosieres med alkylenoksydekstraksjon ved nær-kritisk eller super-kritisk karbondioksyd kan forholdet være så høyt soli 40/1-60/1. The molar ratio of carbon dioxide to alkylene oxide must be at least approx. 1/1 and can vary from 1/1 to 100/1. Usually a ratio greater than 1/1 would be chosen, preferably 1/1 to 10/1. Where the method of the invention is associated with alkylene oxide extraction with near-critical or super-critical carbon dioxide, the ratio can be as high as 40/1-60/1.

Fremgangsmåten er særpreget ved det som er angitt i krav l's karakteriserende del. Ytterligere trekk fremgår av kravene 2-4. The method is characterized by what is stated in claim 1's characterizing part. Further features appear from requirements 2-4.

Det er særlig viktig at vann ikke hydrolyserer alkylenkarbonater til glykoler, særlig høyere glykoler, under betingelser som er funnet egnet for oppfinnelsens fremgangsmåte. Det er nå funnet at glykoldannelse kan unngås ved å tilveiebringe tilstrekkelig karfcondioksyd. En fagmann ville ikke ha forut-sagt slikt et resultat fordi, med tilstedeværende vann og særlig ved høyere temperaturer anvendt her sier teknikkens stand at vann ville hydrolysere alkylenoksydet til glykol. Man trodde at når karbondioksyd var tilstede fortsatte reaksjonen via dannelse av alkylenkarbonater som en mellomprodukt-forbindelse. Se f.eks. US patenter 4.237.324 og 4.117.250 sammen med US patent 3.629.343 til Levin, et al. Alkyelnkar^bonatet var tilsynelatende ikke observert i noen betydelige mengder, da det ble rapportert kvantitative glykolutbytter. It is particularly important that water does not hydrolyze alkylene carbonates to glycols, especially higher glycols, under conditions found to be suitable for the process of the invention. It has now been found that glycol formation can be avoided by providing sufficient carbon dioxide. A person skilled in the art would not have predicted such a result because, with water present and especially at the higher temperatures used here, the state of the art states that water would hydrolyze the alkylene oxide to glycol. It was believed that when carbon dioxide was present, the reaction proceeded via the formation of alkylene carbonates as an intermediate compound. See e.g. US Patents 4,237,324 and 4,117,250 along with US Patent 3,629,343 to Levin, et al. The alkylene carbonate was apparently not observed in any significant amounts, as quantitative glycol yields were reported.

Mengden av vann som kan tolereres har litt tilknytning til The amount of water that can be tolerated is somewhat related to

de andre fremgangsmåtebetingelser og det dannede alkylenkar-bonats selektivitet. Mengder i overskudd av de som er nyttige for den direkte hydrogenering av alkylenoksyder til glykoler er demonstrert ved lavere temperaturer, som man vil se i de etterfølgende eksempler. Ved temperaturer over ca. 90 oC, særlig 9Q-170°C foretrekkes vannmengder opptil mol forhold på ca. 4/1 basert på alkylenoksyd, mest foretrukket 0,1/1 til the other process conditions and the selectivity of the alkylene carbonate formed. Excess amounts of those useful for the direct hydrogenation of alkylene oxides to glycols have been demonstrated at lower temperatures, as will be seen in the following examples. At temperatures above approx. 90 oC, especially 9Q-170°C, water quantities up to a mole ratio of approx. 4/1 based on alkylene oxide, most preferably 0.1/1 to

2/1. Nærværet av vann har en gunstig virkning på karbo-natreaksjonens hastighet i sammenligning med det som kan forventes. Denne virkning kan uttrykkes bedre i sammenligning med visse katalysatorer, spesielt de hvori bindingen mellom halogenidatomet og resten av molekylet er ionisk, i stedet for kovalent, slik som med de foretrukne kvartærnære fos-foniumhalogenidene. 2/1. The presence of water has a favorable effect on the rate of the carbonate reaction compared to what might be expected. This effect can be better expressed in comparison with certain catalysts, especially those in which the bond between the halide atom and the rest of the molecule is ionic, rather than covalent, as with the preferred quaternary phosphonium halides.

Katalysatorene som er funnet nyttige i oppfinnelsens fremgangsmåte innebefatter mange av de tidligere kjente. Mange forbindelser som kan være nyttige innebefatter en eller'flere i gruppen bestående av organiske kvartærnære ammonium-eller fosfoniumhalogenider, organiske sulfoniumhalogenider og organiske antimonhalogenider. De tilsvarende karboksylater kan også anvendes. Eksempler på forbindelser som kan benyt-tes er de følgende ammoniumforbindelser, tetraetylammoniumbromid og tetraetylammoniumjodid. Spesifikke fosfoniumfor-bindelser innebefatter metyltrifenylfosfoniumjodid og metyl-trifenylfosfoniumbromid. Sulfoniumforbindelser kan innebe-fatte trimetylsulfoniumjodid og trimetylsulfoniumbromid. Anti-monforbindelser er funnet ganske effektive når vann ikke er tilstede, men synes å. påvirkes uheldig når vann er inne-befattet. Typiske forbindelser er tetrafenylantimonbromid og trifenylantimondiklorid. Særlig foretrukne katalysatorer når vann er tilstede er metyltrifenylfosfoniumjodid og tetraetylammoniumbromid. Av halogenidene er bromider og jodider foretrukket. The catalysts which have been found useful in the process of the invention include many of those previously known. Many compounds which may be useful include one or more of the group consisting of organic quaternary ammonium or phosphonium halides, organic sulfonium halides, and organic antimony halides. The corresponding carboxylates can also be used. Examples of compounds that can be used are the following ammonium compounds, tetraethylammonium bromide and tetraethylammonium iodide. Specific phosphonium compounds include methyltriphenylphosphonium iodide and methyltriphenylphosphonium bromide. Sulfonium compounds may include trimethylsulfonium iodide and trimethylsulfonium bromide. Antimony compounds have been found to be quite effective when water is not present, but seem to be adversely affected when water is present. Typical compounds are tetraphenylantimony bromide and triphenylantimony chloride. Particularly preferred catalysts when water is present are methyltriphenylphosphonium iodide and tetraethylammonium bromide. Of the halides, bromides and iodides are preferred.

Mengden av katalysator vil være lik den som er brukt i andre fremgangsmåter, opptil ca. 0,1 mol av katalysator pr. mol alkylenoksyd kan anvendes, fortrinnsvis 0,001-0,02 mol pr. mol, selv om større eller mindre mengder ikke er ment å skulle utelates. The amount of catalyst will be similar to that used in other methods, up to approx. 0.1 mol of catalyst per mol of alkylene oxide can be used, preferably 0.001-0.02 mol per moles, although larger or smaller amounts are not intended to be omitted.

Mens fagmenn før har indikert at relativt høye temperaturer på 100°C eller høyere ville bli anvendt enten for å danne alkylenkarbonater uten tilstedeværende vann eller alkylen-glykoler når vann var tilgjengelig for å hydrolysere alkylenoksyder, anvendes ved foreliggende fremgangsmåte tempera turer som varierer oppover fra ca. 2 0°C, fortrinnsvis over 90°C, særlig 90-170°C. While those skilled in the art have previously indicated that relatively high temperatures of 100°C or higher would be used either to form alkylene carbonates without water present or alkylene glycols when water was available to hydrolyze alkylene oxides, in the present process temperatures varying upwards from approx. . 20°C, preferably above 90°C, especially 90-170°C.

Reaksjonen for å danne karbonater kan anvendes i nærvær The reaction to form carbonates can be used in the presence

av betydelige vannmengder. Ved høyere temperaturer som er typiske for teknikkens stand ville glykoler forventes når vann er tilstede og dette er faktisk basis for flere fremgangsmåter som tidligere beskrevet. Som man vil se, selv når det opereres ved relativt høye temperaturer, er det mulig å minimalisere hydrolyse og å danne karbonater i stedet ved kontroll av molarforholdet av karbondioksyd til alkylenoksyd og karbondioksydets deltrykk. of significant amounts of water. At higher temperatures that are typical of the state of the art, glycols would be expected when water is present and this is actually the basis for several methods as previously described. As will be seen, even when operating at relatively high temperatures, it is possible to minimize hydrolysis and to form carbonates instead by controlling the molar ratio of carbon dioxide to alkylene oxide and the carbon dioxide partial pressure.

De første fem eksempler som følger illustrerer dannelsen av alkylenkarbonater ved temperaturer under 90°C. The first five examples that follow illustrate the formation of alkylene carbonates at temperatures below 90°C.

Eksempel 1 Example 1

o o

Det opereres under 90 C uten tilstedeværende vann Katalysatoren innføres i en 130 cc bombe fremstilt av It is operated below 90 C without the presence of water. The catalyst is introduced into a 130 cc bomb made by

"Parr Instrument Company". "Parr Instrument Company".

Etylenoksyd og karbondioksyd tilføres ved^78°C ved å nedsenke bomben i et tørr-is/acetonbad. Bomben lukkes så og plasseres i et 3 6°C bad slik at bombens indre temperatur økes til 30°C og reaksjonen fortsetter. Omrøring skjer på en magnetisk drevet plate. Etter en egnet tidsperiode fjernes bomben fra badet og innholdet analyseres. Resultatene av et antall slike forsøk er vist i Tabell A nedenunder. Ethylene oxide and carbon dioxide are supplied at 78°C by immersing the bomb in a dry ice/acetone bath. The bomb is then closed and placed in a 36°C bath so that the internal temperature of the bomb is increased to 30°C and the reaction continues. Stirring takes place on a magnetically driven plate. After a suitable period of time, the bomb is removed from the bathroom and the contents analysed. The results of a number of such trials are shown in Table A below.

Det er funnet at vann kan være tilstede uten dannelse av betydelige glykolmengder, forutsatt at temperaturen er tilstrekkelig lav. Overraskende er det funnet at vann har en fordelaktig virkning på selektiviteten til karbonatet med noen katalysatorer, mens med andre synes selektiviteten undertrykket. It has been found that water can be present without the formation of significant amounts of glycol, provided the temperature is sufficiently low. Surprisingly, it has been found that water has a beneficial effect on the selectivity of the carbonate with some catalysts, while with others the selectivity seems suppressed.

jfrEO = etylenoksyd jfrEO = ethylene oxide

**~EC = etylenkarbonat **~EC = ethylene carbonate

<*>a - trimetylsulfoniumjodid <*>a - trimethylsulfonium iodide

b = metyltrifenylfosfoniumjodid b = methyltriphenylphosphonium iodide

c = tetrafenylantimonbromid c = tetraphenylantimony bromide

d = trifenylantimondiklorid d = triphenylantimony chloride

e - metyltrif emylfosfoniumbromid e - methyltrimethylphosphonium bromide

f = tetraetylammoniumbromid f = tetraethylammonium bromide

Eksempel 2 Example 2

Vanns virkning på katalysatorer The effect of water on catalysts

Fremgangsmåten i Eksempel 1 følges bortsett fra at forskjel-lige vannmengder innføres i "Parr-bomben" med de følgende resultater. The procedure in Example 1 is followed except that different amounts of water are introduced into the "Parr bomb" with the following results.

Tabell B's data viser at nærvær av vann ikke synes å ha noen påvisbar virkning på hele omdannelsen av etylenoksyd, etylenkarbonatets selektivitet reduseres når katalysatoren "c" anvendes, mens når katalysatoren "b" anvendes er etylenkarbonatets selektivitet overraskende forbedret. Katalysator "c" ville være mer egnet for et reaksjonssystem hvori den tilstedeværende vannmengde ikke er stor. Merk at forholdet vann til etylenoksyd er ca. 0,55/1 sammenlignet med det teoretiske forhold 1/1 for hydrolysereaksjonen. Katalysator "b" synes mindre effektiv når vann ikke forekommer (se for-søk 2) men dens utførelse forøkes når vann anvendes. Merk at denne viste katalysators forhold når nesten 4/1 vann/EO. Table B's data show that the presence of water does not seem to have any detectable effect on the entire conversion of ethylene oxide, the selectivity of the ethylene carbonate is reduced when catalyst "c" is used, while when the catalyst "b" is used, the selectivity of the ethylene carbonate is surprisingly improved. Catalyst "c" would be more suitable for a reaction system in which the amount of water present is not large. Note that the ratio of water to ethylene oxide is approx. 0.55/1 compared to the theoretical ratio 1/1 for the hydrolysis reaction. Catalyst "b" seems less effective when water is not present (see experiment 2), but its performance is increased when water is used. Note that this shown catalyst's ratio reaches almost 4/1 water/EO.

* c = tetrafenylantimonbromid * c = tetraphenylantimony bromide

b = metyltrifenylfosfoniumjodid b = methyltriphenylphosphonium iodide

Selv om oppfinnelsens fremgangsmåte er særlig nyttig i forbindelse med etylenkarbonatdannelsen er den mer anvende-lig på andre oksiranforbindelser som man vil se av det etter- Although the method of the invention is particularly useful in connection with the formation of ethylene carbonate, it is more applicable to other oxirane compounds as will be seen from the following

følgende eksempel. the following example.

Eksempel 3 Example 3

Propylenkarbonatdannelse Propylene carbonate formation

Katalysatoren og vann (hvis anvendt) innføres i en 130 cc "Parr-bombe". Propylenoksyd og karbondioksyd tilføres ved The catalyst and water (if used) are introduced into a 130 cc "Parr bomb". Propylene oxide and carbon dioxide are supplied with wood

-78°C ved å neddykke bomben i et tørr-is/acetonbad. Bomben lukkes så og plasseres i et 36°C bad slik at bombens indre temperatur økes til30QC og reaksjonen fortsetter. Etter en egnet tidsperiode fjernes bomben fra badet og innholdet analyseres. Resultatene av en rekke slike forsøk er vist i Tabell C nedenunder. -78°C by immersing the bomb in a dry-ice/acetone bath. The bomb is then closed and placed in a 36°C bath so that the internal temperature of the bomb is increased to 30°C and the reaction continues. After a suitable period of time, the bomb is removed from the bathroom and the contents analysed. The results of a number of such trials are shown in Table C below.

Eksempel 4 Example 4

Dannelse av 1, 2- butylenkarbonat Formation of 1, 2-butylene carbonate

Den eksperimentelle fremgangsmåten i Eksempel 3 følges med tilført 1,2-butylenoksyd i stedet for propylenoksyd. Resultatene av en rekke slike forsøk er vist i Tabell D nedenunder. The experimental procedure in Example 3 is followed with added 1,2-butylene oxide instead of propylene oxide. The results of a number of such trials are shown in Table D below.

Eksempel 5 Example 5

Katalysatoren sammen med E^ O og oppløsningsmidler (når anvendt) innføres i en 300 cc elektrisk oppvarmet rustfri stålautoklav utstyrt med iinpellerrysting fremstilt av Auto-clave Engineers, Inc. Prøver av etylenoksyd og karbondioksyd tilføres ved ^-78oc mens autoklaven neddykkes i et tørr^is/ acetonbad.Autoklaven lukkes så og oppvarmes til den ønskede reaksjonstemperatur. Etter en egnet tidsperiode avkjøles autoklaven og innholdet analyseres. Resultatene av en rekke slike forsøk er vist i Tabell E nedenunder. The catalyst along with E^O and solvents (when used) are introduced into a 300 cc electrically heated stainless steel autoclave equipped with iimpeller shaker manufactured by Auto-clave Engineers, Inc. Samples of ethylene oxide and carbon dioxide are fed at ^-78oC while the autoclave is immersed in a dry^ ice/ acetone bath. The autoclave is then closed and heated to the desired reaction temperature. After a suitable period of time, the autoclave is cooled and the contents analysed. The results of a number of such trials are shown in Table E below.

Tabell E Table E

Inn- mil li- Maks. In- mil li- Max.

matn. moi trykk EO EC<****>Forsøk Badetid kg/cm^ Konv. Sel. nr. EO<*>CO? H20 THF<**>°C timer mmtrykk%%food moi pressure EO EC<****>Try Bath time kg/cm^ Conv. Seal. No. EO<*>CO? H20 THF<**>°C hours mmpressure%%

27 347 1590 346 1262 60 4 52.0 95.6 97.0 28 695 2794 695 — 60 6 104.8 95.8 90.5 29 1157 2113 583 — 50 6 57.7 98.2 95.5 30 349 1590 350 1263 70 2 57.3 99.5 96.0 27 347 1590 346 1262 60 4 52.0 95.6 97.0 28 695 2794 695 - 60 6 104.8 95.8 90.5 29 1157 2113 583 - 50 6 57.7 98.2 95.5 30 349 1590 350 1263 70 27.5.

EO etylenoksyd EO ethylene oxide

THF tetrahydrofuran THF tetrahydrofuran

^ Hver prøve anvendte 20 gram metyltrifenylfosfoniumjodid ^ Each sample used 20 grams of methyltriphenylphosphonium iodide

<****>EC = etylenkarbonat <****>EC = ethylene carbonate

De følgende eksempler demonstrerer at, i strid med teknikkens stand er det mulig å fremstille høye alkylenkarbonatut-bytter over ca. 9 0°C i nærvær av betydelige vannmengder og å undertrykke dannelsen av høyere glykoler. The following examples demonstrate that, contrary to the state of the art, it is possible to produce high alkylene carbonate yields over approx. 9 0°C in the presence of significant amounts of water and to suppress the formation of higher glycols.

Eksempel 6 Example 6

Det opereres over 9 0°C med tilstedeværende vann It is operated above 90°C with water present

En rekke forsøk ble utført ved temperaturer over 90°C med varierende mengder tilstedeværende vann. Etylenoksyd, karbondioksyd, vann og metyltrifenylfosfoniumjodid oppløst i etylenkarbonat ble tilført kontinuerlig til en en-liters, høytrykk-, rystet, elektrisk oppvarmet autoklav. Begge væs-keprodukter og uomdannet damp ble fjernet kontinuerlig fra autoklaven og separert i en ytre damp-væskeseparator. Bland-ingen av både væske- og dampstrømmer ble bestemt ved gass-kromatografi og omdannelsen og selektivitetene ble kalkulert. Resultatene er gitt i Tabell F. A number of experiments were carried out at temperatures above 90°C with varying amounts of water present. Ethylene oxide, carbon dioxide, water, and methyltriphenylphosphonium iodide dissolved in ethylene carbonate were fed continuously to a one-liter, high-pressure, shaken, electrically heated autoclave. Both liquid products and unconverted steam were removed continuously from the autoclave and separated in an external steam-liquid separator. The mixing of both liquid and vapor streams was determined by gas chromatography and the conversion and selectivities were calculated. The results are given in Table F.

Fra den ovenfor angitte tabell kan det sees at selv når man opererer ved temperaturer så høye som 17 0°C at store etylen-karbonatutbytter kan erholdes, selv om mengden av tilstedeværende vann synes å ha større virkning ved 17 0°C enn ved 130°C. Faktum er at resultatene i Tests 40 og 41 foreslår at betingelser kan finnes der hvor glykol blir det fremherskende produkt. Molarforholdet av CC^/EO var større enn 1/1 for hvert forsøk. From the above table it can be seen that even when operating at temperatures as high as 170°C that large yields of ethylene carbonate can be obtained, although the amount of water present appears to have a greater effect at 170°C than at 130° C. The fact is that the results in Tests 40 and 41 suggest that conditions may exist where glycol becomes the predominant product. The molar ratio of CC 2 /EO was greater than 1/1 for each experiment.

Når CC^/EO molarforholdet er under 1/1 erholdes meget for-skjellige resultater som man vil se av de etterfølgende eksempler. When the CC^/EO molar ratio is below 1/1, very different results are obtained, as will be seen from the following examples.

Eksempel 7 Example 7

Virkning av C02/ EO forhold Effect of C02/ EO ratio

De eksperimentelle fremgangsmåter i Eksempel 6 ble gjentatt for å duplisere forsøk 33, bortsett fra at trykket var 25 kp/cm 2 manometertrykk og molarforholdet av CC^/EO skifter fra 2,0 til 0,5. Selektivitetene på 63,2% til etylenkarbonat (EC) og 36% til etylenglykol (MEG) ble erholdt ved et C02/EO forhold på 2, men selektiviteter på 58% til MEG og The experimental procedures of Example 6 were repeated to duplicate Experiment 33, except that the pressure was 25 kp/cm 2 gauge pressure and the molar ratio of CC 2 /EO was changed from 2.0 to 0.5. Selectivities of 63.2% to ethylene carbonate (EC) and 36% to ethylene glycol (MEG) were obtained at a C02/EO ratio of 2, but selectivities of 58% to MEG and

41% til EC ble erholdt når C02/E0 forholdet var 0,5. Også 41% to EC was obtained when the C02/E0 ratio was 0.5. Also

var dannelsen av dietylenglykol (DEG) betydelig ved 1,4% selektivitet når C02/EO forholdet var 0,5, mens bare 0,8% selektivitet til DEG ble detektert i produktene når C02/EO forholdet var 2. Det konkluderes at molarforholdet av C02/EO er en viktig faktor hvis man ønsker å fremstille alkylenkarbonater i stedet for det tilsvarende glykol når et alkylenoksyd omsettes med karbondioksyd i nærvær av vann. For å oppnå slike resultater bør molarforholdet av C02/EO være over ca. 1. Det mest nyttige forhold velges ut avhengig av den tilstedeværende vannmengde og operasjonstemperaturen. the formation of diethylene glycol (DEG) was significant at 1.4% selectivity when the C02/EO ratio was 0.5, while only 0.8% selectivity to DEG was detected in the products when the C02/EO ratio was 2. It is concluded that the molar ratio of C02/EO is an important factor if one wishes to produce alkylene carbonates instead of the corresponding glycol when an alkylene oxide is reacted with carbon dioxide in the presence of water. To achieve such results, the molar ratio of C02/EO should be above approx. 1. The most useful ratio is selected depending on the amount of water present and the operating temperature.

Eksempel 8 Example 8

Virkning av C02 deltrykk Effect of C02 partial pressure

Deltrykkets viktighet ser man i resultatene fra forsøkene ut-ført i henhold til metodene i Eksempel 6 hvori det absolutte trykk og deltrykket varieres. The importance of the partial pressure can be seen in the results from the experiments carried out according to the methods in Example 6, in which the absolute pressure and the partial pressure are varied.

Man kan se at hvis karbondioksydets deltrykk ikke holdes tilstrekkelig høyt vil reaksjonen fremstille betydelige glykolmengder som ikke er ønskelig hvis man vil fremstille etylenkarbonat i steden. Følgelig vil temperaturen, H20/E0 forholdet og C02deltrykket justeres for å fremstille karbo-natets ønskede selektivitet. F.eks. hvis molarforholdet av vann til etylenoksyd i innmatningen var 1/1 og reaksjonstempe-raturen var 130°C så ville karbondioksydets deltrykk holdes ved 65 kp/cm 2 eller til og med høyere for a maksimalisere de fremstilte etylenkarbonatmengder. You can see that if the partial pressure of the carbon dioxide is not kept sufficiently high, the reaction will produce significant amounts of glycol, which is not desirable if you want to produce ethylene carbonate instead. Accordingly, the temperature, the H 2 O/E 0 ratio and the CO 2 partial pressure will be adjusted to produce the desired selectivity of the carbonate. E.g. if the molar ratio of water to ethylene oxide in the feed was 1/1 and the reaction temperature was 130°C, then the partial pressure of the carbon dioxide would be kept at 65 kp/cm 2 or even higher to maximize the amounts of ethylene carbonate produced.

Eksempel 9 Example 9

Virkning av H2 0/ EO forhold Effect of H2 0/ EO ratio

I en annen rekke forsøk tilsvarende fremgangsmåtene i Eksempel 6, ble vannmengden variert med de følgende resultater: In another series of experiments corresponding to the procedures in Example 6, the amount of water was varied with the following results:

Beregning av reaksjonshastighetskonsstanter indikerer at økning av omdannelsen av etylenoksyd fra 92% til 97,5% er lik en økning i reaksjonshastigheten på ca. fire ganger. Så-ledes øker uventet vanntilsetningen til en tørr tilførsel reaksjonshastigheten betydelig mens reaksjonsproduktet frem-deles er fremherskende etylenkarbonat. Calculation of reaction rate constants indicates that increasing the conversion of ethylene oxide from 92% to 97.5% is equal to an increase in the reaction rate of approx. four times. Thus, unexpectedly, the addition of water to a dry feed significantly increases the reaction rate, while the reaction product is still predominantly ethylene carbonate.

Claims (4)

1. Fremgangsmåte ved fremstilling av alkylenkarbonat, særskilt etylenkarbonat, ved å omsette det tilsvarende alkylenoksyd med karbondioksyd i nærvær av en effektiv mengde, opp til 0,1 mol pr. mol alkylenoksyd, av en katalysator og vann, karakterisert vedat selektiviteten for alkylenkarbonat kontrolleres og dannelsen av glykoler med høyere molekylvekt undertrykkes ved å utføre omsetningen ved en temperatur over 20°C, fortrinnsvis ved 90-170°C, med et molforhold mellom karbondioksyd og alkylenoksyd på minst 1:1, fortrinsvis 1:1 - 100:1, et molforhold mellom vann og alkylenoksyd som er større enn 0,01:1, fortrinsvnis 0,1:1 - 4:1, og med et partialtrykk for karbondioksydet som er tilstrekkelig for å oppnå den ønskete selektivitet for alkylenkarbonat, fortrinnsvis overstigende selektiviteten for alkylenglykol.1. Process for the production of alkylene carbonate, particularly ethylene carbonate, by reacting the corresponding alkylene oxide with carbon dioxide in the presence of an effective amount, up to 0.1 mol per moles of alkylene oxide, of a catalyst and water, characterized in that the selectivity for alkylene carbonate is controlled and the formation of higher molecular weight glycols is suppressed by carrying out the reaction at a temperature above 20°C, preferably at 90-170°C, with a molar ratio between carbon dioxide and alkylene oxide of at least 1:1, preferably 1: 1 - 100:1, a molar ratio of water to alkylene oxide greater than 0.01:1, preferably 0.1:1 - 4:1, and with a partial pressure of the carbon dioxide sufficient to achieve the desired selectivity for alkylene carbonate , preferably exceeding the selectivity for alkylene glycol. 2. Fremgangsmåte ifølge krav 1,karakterisert vedat som katalysator anvendes organiske kvartære ammoniumhalogenider, organiske kvartære fosfoniumhalogenider, organiske sulfoniumhalogenider og organiske antimonhalogenider.2. Process according to claim 1, characterized in that organic quaternary ammonium halides, organic quaternary phosphonium halides, organic sulfonium halides and organic antimony halides are used as catalyst. 3. Fremgangsmåte ifølge krav 2,karakterisert vedat som katalysator anvendes et organisk kvartært fosfoniumhalogenid.3. Method according to claim 2, characterized in that an organic quaternary phosphonium halide is used as catalyst. 4. Fremgangsmåte ifølge krav 2,karakterisert vedat som katalysator anvendes metyltrifenylfosfoniumjodid.4. Method according to claim 2, characterized in that methyltriphenylphosphonium iodide is used as catalyst.
NO824030A 1981-12-02 1982-12-01 PROCEDURE FOR THE PREPARATION OF ALKYLENIC CARBONATE. NO162519C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32644781A 1981-12-02 1981-12-02
US06/441,191 US4786741A (en) 1982-11-15 1982-11-15 Preparation of alkylene carbonates

Publications (3)

Publication Number Publication Date
NO824030L NO824030L (en) 1983-06-03
NO162519B true NO162519B (en) 1989-10-02
NO162519C NO162519C (en) 1990-01-10

Family

ID=26985411

Family Applications (1)

Application Number Title Priority Date Filing Date
NO824030A NO162519C (en) 1981-12-02 1982-12-01 PROCEDURE FOR THE PREPARATION OF ALKYLENIC CARBONATE.

Country Status (18)

Country Link
KR (1) KR860001856B1 (en)
AR (1) AR231432A1 (en)
AU (1) AU558415B2 (en)
BG (1) BG48693A3 (en)
BR (1) BR8206977A (en)
CH (1) CH653984A5 (en)
DE (1) DE3244456A1 (en)
ES (1) ES517885A0 (en)
FR (1) FR2517306B1 (en)
GB (1) GB2113207B (en)
IN (1) IN159117B (en)
IT (1) IT1189430B (en)
MX (1) MX163138B (en)
NL (1) NL8204661A (en)
NO (1) NO162519C (en)
RO (1) RO85557A (en)
SE (1) SE454088B (en)
SU (1) SU1574175A3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138073A (en) * 1981-12-02 1992-08-11 Scientific Design Company, Inc. Preparation of alkylene carbonates
US4400559A (en) * 1982-06-14 1983-08-23 The Halcon Sd Group, Inc. Process for preparing ethylene glycol
US4931571A (en) * 1984-10-25 1990-06-05 Scientific Design Company, Inc. Process for preparing alkylene carbonates from alkylene oxides
US4851555A (en) * 1984-10-25 1989-07-25 Scientific Design Company, Inc. Process for preparing alkylene oxides from alkylene carbonates
DE4030283A1 (en) * 1990-09-25 1992-03-26 Ruetgerswerke Ag PROCESS FOR PREPARING CYCLIC CARBONATE
DE4105554A1 (en) 1991-02-22 1992-08-27 Bayer Ag METHOD FOR PRODUCING DIALKYL CARBONATES
JP3823149B2 (en) 2002-03-06 2006-09-20 独立行政法人産業技術総合研究所 Alkylene carbonate synthesis catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE740366C (en) * 1939-03-11 1943-10-19 Ig Farbenindustrie Ag Process for the production of glycol carbonate
US2773070A (en) * 1952-10-31 1956-12-04 Jefferson Chem Co Inc Catalytic process for producing alkylene carbonates
US2994705A (en) * 1958-12-08 1961-08-01 Pure Oil Co Preparation of cyclic alkylene carbonates in the presence of organic phosphonium compounds

Also Published As

Publication number Publication date
GB2113207B (en) 1986-05-08
ES8401435A1 (en) 1983-12-16
AU9084282A (en) 1983-06-09
KR840002762A (en) 1984-07-16
IT8249611A0 (en) 1982-12-02
KR860001856B1 (en) 1986-10-24
IN159117B (en) 1987-03-28
AU558415B2 (en) 1987-01-29
FR2517306B1 (en) 1986-02-28
CH653984A5 (en) 1986-01-31
DE3244456C2 (en) 1990-07-05
IT1189430B (en) 1988-02-04
SU1574175A3 (en) 1990-06-23
NO162519C (en) 1990-01-10
MX163138B (en) 1991-08-30
SE8206848D0 (en) 1982-12-01
SE8206848L (en) 1983-06-03
DE3244456A1 (en) 1983-06-23
NL8204661A (en) 1983-07-01
SE454088B (en) 1988-03-28
NO824030L (en) 1983-06-03
BR8206977A (en) 1983-10-11
BG48693A3 (en) 1991-04-15
ES517885A0 (en) 1983-12-16
RO85557A (en) 1985-03-15
GB2113207A (en) 1983-08-03
AR231432A1 (en) 1984-11-30
FR2517306A1 (en) 1983-06-03

Similar Documents

Publication Publication Date Title
CA1248119A (en) Preparation of alkylene carbonates
EP1115714B1 (en) Process for the preparation of glycidylesters of branched carboxylic acids
US2380185A (en) Production of hydroxy ethers
EP1110935B1 (en) Catalyzed liquid phase fluorination of 1,1,3,3-tetrachloro-2-propene
NO791600L (en) PROCEDURE FOR PREPARING ETHYL ACETATE
WO2005014512A2 (en) LOW TEMPERATURE PRODUCTION OF 1-CHLORO-3, 3,3-TRIFLUOROPROPENE (HCFC-1233zd)
NO162519B (en) PROCEDURE FOR THE PREPARATION OF ALKYLENIC CARBONATE.
US2070990A (en) Treatment of halogenated polyhydric alcohols
TW201008918A (en) Process for producing epoxides
US2861084A (en) Process for the production of
US2134102A (en) Dehydrochlorination of 1,1,2-trichlorpropane
JPS6334176B2 (en)
US3954884A (en) Method for producing beta hydroxy ethylene glycol ethers
JPS58210078A (en) Novel epoxy resin and its preparation
Burgin et al. Derivatives of allylic chlorides
US4810808A (en) Process for preparing polyglycidyl compounds
US4841072A (en) Preparation of alkylene carbonates
NO144886B (en) PROCEDURE FOR THE PREPARATION OF OXIR SIRANTS
US5138073A (en) Preparation of alkylene carbonates
US4092364A (en) Caustic hydrolysis of chlorobenzene to diphenyl oxide
JPS58126884A (en) Manufacture of carbonic alkylene
SU602501A1 (en) Method of preparing vinyloxyethyl ether of glycidol
SU1129208A1 (en) Process for preparing viniloxyethyl ester of glycidyl
US5023345A (en) Preparation of alkylene carbonates
US2031228A (en) Process for the production of alkyl halides