NO161058B - PROCEDURE FOR THE PREPARATION OF A WINDOW TURTLE SHEET. - Google Patents

PROCEDURE FOR THE PREPARATION OF A WINDOW TURTLE SHEET. Download PDF

Info

Publication number
NO161058B
NO161058B NO794184A NO794184A NO161058B NO 161058 B NO161058 B NO 161058B NO 794184 A NO794184 A NO 794184A NO 794184 A NO794184 A NO 794184A NO 161058 B NO161058 B NO 161058B
Authority
NO
Norway
Prior art keywords
heated
melted
auxiliary charge
heat
cold state
Prior art date
Application number
NO794184A
Other languages
Norwegian (no)
Other versions
NO161058C (en
NO794184L (en
Inventor
David Harvey Blaney
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of NO794184L publication Critical patent/NO794184L/en
Publication of NO161058B publication Critical patent/NO161058B/en
Publication of NO161058C publication Critical patent/NO161058C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/64Winding of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/583Winding and joining, e.g. winding spirally helically for making tubular articles with particular features
    • B29C53/584Winding and joining, e.g. winding spirally helically for making tubular articles with particular features having a non-circular cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8041Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H81/00Methods, apparatus, or devices for covering or wrapping cores by winding webs, tapes, or filamentary material, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3085Wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)

Description

Fremgangsmåte til oppvarmning og smelting ved elektrisk høyfrekvensinduksjon. Method of heating and melting by electric high-frequency induction.

Oppvarmning og smelting ved elektrisk høy-frekvensinduksjon har fordelen av å muliggjøre Heating and melting by electric high-frequency induction has the advantage of enabling

en oppvarmntøg tvers igjennom massen som skal a heating cloth across the mass to be

smeltes, under samtidig omhvirvling og blir meget anvendt i den metallurgiske industri. is melted, while simultaneously swirling and is widely used in the metallurgical industry.

Det vil være meget ønskelig å anvende denne oppvarmningsmåte til smelting av materialer It would be very desirable to use this heating method for melting materials

av vilkårlig art. of any kind.

Imidlertid er der visse materialer som, skj ønt However, there are certain materials that, although

de har en egnet elektrisk ledningsevne såsnart de they have a suitable electrical conductivity as soon as they

har nådd en forholdsvis høy temperatur, har for has reached a relatively high temperature, has for

lav ledningsevne i kald tilstand til at deres masse kan lede induserte strømmer som er istand low conductivity in the cold state so that their mass can conduct induced currents that are stable

til å heve deres temperatur til smelting. to raise their temperature to melting.

Dette er særlig tilfellet med varmefaste oksyder som aluminium-, zirkonium-, magnesiumoksyd osv. hvormed man fremstiller varmefaste This is particularly the case with heat-resistant oxides such as aluminum, zirconium, magnesium oxide, etc., with which heat-resistant

produkter som støpes ved elektrisk oppvarmning, og mer generelt ved oksyder med høyt products that are cast by electric heating, and more generally by oxides with high

smeltepunkt som oksydene av uran og thorium melting point as the oxides of uranium and thorium

og alle dem som ifølge publiserte undersøkelser først blir ledere når deres temperatur er bragt på en verdi av-størrelsesordenen 1200—1800°C. and all those which, according to published research, only become conductors when their temperature is brought to a value of the order of magnitude 1200-1800°C.

For å smelte slike materialer i en induksjons-ovn har man foreslått å forvarme dem til den temperatur hvor de blir ledere. For gjennom-føring av en slik forvarmning kjenner man for-skjellige midler. In order to melt such materials in an induction furnace, it has been proposed to preheat them to the temperature where they become conductors. Different means are known for carrying out such preheating.

Et av disse midler består i å benytte en så-kalt inltiator, bestående av et godt elektrisk ledende materiale, f. eks. i form av større stykker, blokker, korn eller pulver av metall, grafitt, ke-ramisk materiale i blanding med grafitt eller et metall, og først ved hjelp av høyfrekvensinduk-sjon å varme opp dette materiale, som så i sin tur ved stråling varmer opp det materiale som skal behandles. Initiatoren kan ha form av en hylse og være innsatt mellom induktoren og smeltedigelen som inneholder det materiale som skal smeltes, eller initiatoren kan være formet som en plate og innsatt i smeltedigelen over materialet som skal behandles. Initiatoren blir fjer-net når den har tjent sitt formål, altså når den har bragt det materiale som skal behandles, på en temperatur hvor det er blitt tilstrekkelig elektrisk ledende til å varmes opp av induksjons-strømmene. One of these means consists in using a so-called initiator, consisting of a good electrically conductive material, e.g. in the form of larger pieces, blocks, grains or powders of metal, graphite, ceramic material mixed with graphite or a metal, and first by means of high-frequency induction to heat this material, which then in turn heats by radiation up the material to be processed. The initiator can take the form of a sleeve and be inserted between the inductor and the crucible containing the material to be melted, or the initiator can be shaped like a plate and inserted into the crucible above the material to be processed. The initiator is removed when it has served its purpose, i.e. when it has brought the material to be treated to a temperature where it has become sufficiently electrically conductive to be heated by the induction currents.

Et annet middel består i å varme opp materialet som skal behandles, til en temperatur hvor det ved hjelp av en ekstra varmekilde, f. eks. en elektrisk lysbue, kan gjøres tilstrekkelig elektrisk ledende. Another means is to heat the material to be treated to a temperature where, with the help of an additional heat source, e.g. an electric arc, can be made sufficiently electrically conductive.

Enda et annet middel består i å spre splin-tene av elektrisk ledende materiale som har ut-gjort flere små initiatorer, i massen av det pulverformede ikke-ledende produkt som skal opphetes, slik at de ledende splinter varmer seg opp ved induksjon og høyner temperaturen av massen av det ikke-ledende produkt ved termisk led-ning inntil det sistnevnte smelter eller i sin tur blir elektrisk ledende. Yet another means consists in spreading the splinters of electrically conductive material, which have formed several small initiators, in the mass of the powdered non-conductive product to be heated, so that the conductive splinters heat up by induction and raise the temperature of the mass of the non-conductive product by thermal conduction until the latter melts or in turn becomes electrically conductive.

Den foreliggende oppfinnelse går ut på en fremgangsmåte til ved hjelp av høyfrekvens-induksjon å opphete og smelte materialer hvis elektriske ledningsevne er liten i kald tilstand, men betraktelig i varm tilstand, og særlig tungt-smeltelig oksyder som skal inngå i tungtsmelte-lige ildfaste produkter, hvor man til de i kald tilstand svakt- eller ikke-ledende materialer som skal opphetes eller smeltes, føyer en hjelpecharge som i kald tilstand har tilstrekkelig elektrisk ledningsevne til å kunne opphetes ved høyfre-kvensinduksjon. Ifølge oppfinnelsen blir der som hjelpecharge anvendt et stoff som, opphetet i kontakt med luften, utvikler en eksoterm reaksjon som bringer de materialer som skal opphetes eller smeltes, på en temperatur hvor de selv er tilstrekkelig ledende til å kunne lede induserte strømmer. The present invention concerns a method for using high-frequency induction to heat and melt materials whose electrical conductivity is low in a cold state, but considerable in a hot state, and in particular low-fusible oxides which are to be included in low-fusible refractory products , where to the weakly or non-conducting materials in the cold state to be heated or melted, an auxiliary charge is added which in the cold state has sufficient electrical conductivity to be able to be heated by high-frequency induction. According to the invention, a substance is used as an auxiliary charge which, when heated in contact with the air, develops an exothermic reaction which brings the materials to be heated or melted to a temperature where they themselves are sufficiently conductive to be able to conduct induced currents.

Sammenholdt med hva som tidligere er kjent, oppnås ved oppfinnelsen en vesentlig for-enkling. Man behøver ikke noe grovt materiale 1 større eller mindre stykker som initiator. Videre er det mulig å bringe starten av prosessen til å forløpe raskere og å gjøre den nær intens. Compared with what is previously known, the invention achieves a significant simplification. You don't need any coarse material 1 larger or smaller pieces as an initiator. Furthermore, it is possible to speed up the start of the process and to make it close to intense.

Den nevnte hjelpecharge til å innlede opp-varmningen kan anbringes på chargen av materiale som skal smeltes, eller enda bedre kan f. eks. utgjøres av pulver eller granulat av et materiale som når det varmes opp av induksjonsstrømme-ne i kontakt med luftens oksygen, blir oksydert under utvikling av en meget stor varmemengde. Blant egnede materialer kan nevnes aluminium, zirkonium, silicium, magnesium og uran. The aforementioned auxiliary charge to initiate the heating can be placed on the charge of material to be melted, or even better can e.g. consists of powder or granules of a material which, when heated by the induction currents in contact with the oxygen of the air, is oxidized during the development of a very large amount of heat. Suitable materials include aluminium, zirconium, silicon, magnesium and uranium.

Det er på denne måte lykkes søkerne å smelte aluminiumoksyd ved høyfrekvens-induksjons-opphetning ved å fylle en liten grop utformet i den pulverformede charge av aluminiumoksyd som fyller ovnen, med granulat av aluminium, hvis sterkt eksotermiske oksydasjon gjør det mulig i løpet av meget kort tid å varme opp alumi-niumoksydet som omgir det, for å bringe det på en temperatur hvor det selv fører strømmer som induseres i dens masse. Det aluminuim som bru-kes for starten, gir aluminiumoksyd, som smelter og føyer seg til chargen. It is in this way that the applicants succeed in melting aluminum oxide by high-frequency induction heating by filling a small pit formed in the powdered charge of aluminum oxide that fills the furnace, with granules of aluminum, whose highly exothermic oxidation makes it possible in a very short time time to heat the aluminum oxide that surrounds it, to bring it to a temperature where it itself carries currents induced in its mass. The aluminum used for the start gives aluminum oxide, which melts and joins the charge.

Man vil selvsagt ha interesse av blant de ovennevnte elementer å velge slike hvis oksyd utgjør eller skal utgjøre en av bestanddelene av den smeltede blanding, så man dermed unngår enhver forurensning av blandingen med uheldig stoff. It will of course be in the interest of among the above-mentioned elements to choose those whose oxide constitutes or will constitute one of the constituents of the molten mixture, so that any contamination of the mixture with undesirable substances is thereby avoided.

Videre vil man ha interesse av å unngå at vedkommende element går i kjemisk reaksjon med et av oksydene som skal smeltes, i det inn-ledende tidsrom da det er uvirksomt. Furthermore, there will be an interest in avoiding the element in question entering into a chemical reaction with one of the oxides to be melted, during the initial period when it is inactive.

Fremgangsmåten har den betydelige fordel å gjøre det mulig å smelte varmefaste oksyder ved temperaturer opp til ca. 3000°C. Til forskjell fra metodene med utvendig forvarmning, som medfører betydelige energitap, gjør den nye fremgangsmåte det mulig å bringe chargen av varmefaste oksyder på meget høye temperaturer i nærheten av deres smeltepunkt, noe som er nødvendig f. eks. når det gjelder å smelte aluminiumoksyd og magnesiumoksyd, idet hjelpechargen avgir varmeenergien fra sin reaksjon med luftens oksygen inne i selve blandingen som skal smeltes, med ypperlig termisk virkningsgrad. The method has the significant advantage of making it possible to melt refractory oxides at temperatures up to approx. 3000°C. Unlike the methods with external preheating, which entail significant energy losses, the new method makes it possible to bring the charge of heat-resistant oxides to very high temperatures close to their melting point, which is necessary e.g. when it comes to melting aluminum oxide and magnesium oxide, as the auxiliary charge emits the heat energy from its reaction with the oxygen of the air inside the mixture to be melted, with excellent thermal efficiency.

Claims (4)

1. Fremgangsmåte til ved hjelp av høyfre-kvens-lnduksjon å opphete og smelte materialer hvis elektriske ledningsevne er liten i kald tilstand, men betraktelig i varm tilstand, og særlig tungtsmeltellge oksyder som skal inngå i tungt-smeltelige ildfaste produkter, hvor man til de i kald tilstand svakt- eller ikke-ledende materialer som skal opphetes eller smeltes, føyer en hjelpecharge som i kald tilstand har tilstrekkelig elektrisk ledningsevne til å kunne opphetes ved høy-frekvensinduksjon, karakterisert ved at der som hj elpecharge anvendes et stoff som, opphetet i kontakt med luften, utvikler en eksoterm reaksjon som bringer de materialer som skal opphetes eller smeltes, på en temperatur hvor de selv er tilstrekkelig ledende til å kunne lede induserte strømmer.1. Method for using high-frequency induction to heat and melt materials whose electrical conductivity is low in the cold state, but considerable in the hot state, and in particular low-melting oxides that are to be included in low-melting refractory products, where to the in the cold state, weakly or non-conducting materials to be heated or melted, add an auxiliary charge which in the cold state has sufficient electrical conductivity to be able to be heated by high-frequency induction, characterized in that where the auxiliary charge is used a substance which, heated in contact with the air, develops an exothermic reaction that brings the materials to be heated or melted to a temperature where they themselves are sufficiently conductive to be able to conduct induced currents. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at hjelpechargen anbringes i en liten fordypning som på forhånd er til-, veiebragt i midten av det i en elektrisk induk-sjonsovn innbragte stoff som skal smeltes.2. Method as set forth in claim 1, characterized in that the auxiliary charge is placed in a small recess that is previously created, provided in the middle of the substance brought into an electric induction furnace to be melted. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at hjelpechargen utgjøres av pulverformet eller kornet aluminium, zirkonium, silicium, magnesium eller uran, som i kontakt med luftens oksygen oksyderer under avgivelse av en meget stor varmemengde når den opphetes ved hjelp av induserte strømmer.3. Method as stated in claim 1 or 2, characterized in that the auxiliary charge consists of powdered or granular aluminum, zirconium, silicon, magnesium or uranium, which in contact with the oxygen of the air oxidizes while giving off a very large amount of heat when it is heated using induced currents. 4. Fremgangsmåte som angitt i et av krav-ene 1—3, karakterisert ved at hjelpechargen består av et metall hvis oksyd utgjør en av bestanddelene av materialet som skal smeltes, eller skal utgjøre en av bestanddelene av det smeltede materiale.4. Method as set forth in one of claims 1-3, characterized in that the auxiliary charge consists of a metal whose oxide constitutes one of the constituents of the material to be melted, or shall constitute one of the constituents of the melted material.
NO794184A 1978-12-22 1979-12-20 PROCEDURE FOR THE PREPARATION OF A WINDOW TURTLE SHEET. NO161058C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97256778A 1978-12-22 1978-12-22

Publications (3)

Publication Number Publication Date
NO794184L NO794184L (en) 1980-06-24
NO161058B true NO161058B (en) 1989-03-20
NO161058C NO161058C (en) 1989-06-28

Family

ID=25519821

Family Applications (1)

Application Number Title Priority Date Filing Date
NO794184A NO161058C (en) 1978-12-22 1979-12-20 PROCEDURE FOR THE PREPARATION OF A WINDOW TURTLE SHEET.

Country Status (17)

Country Link
JP (1) JPS5598057A (en)
KR (1) KR880001892B1 (en)
AU (1) AU526900B2 (en)
BR (1) BR7908386A (en)
CA (1) CA1165104A (en)
DE (1) DE2951795A1 (en)
DK (1) DK150972C (en)
FI (1) FI82296C (en)
FR (1) FR2444562A1 (en)
GB (1) GB2041324B (en)
IL (1) IL58875A (en)
IN (1) IN154454B (en)
IT (1) IT1125927B (en)
NL (1) NL188241C (en)
NO (1) NO161058C (en)
SE (1) SE441823B (en)
ZA (1) ZA796555B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA827460B (en) * 1981-12-28 1983-08-31 United Technologies Corp Method of manufacturing a filament wound article
CN102145354B (en) * 2010-11-20 2012-11-14 无锡透平叶片有限公司 Unigraphics NX-based blade profile software reshaping method
DE102016006632A1 (en) * 2016-06-03 2017-12-07 Senvion Gmbh Method for determining a positioning of a rotor blade belt, rotor blade and wind energy plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534396A (en) * 1965-10-27 1970-10-13 Gen Motors Corp Computer-aided graphical analysis
US4081220A (en) * 1976-12-17 1978-03-28 United Technologies Corporation Semi-spar wound blade

Also Published As

Publication number Publication date
CA1165104A (en) 1984-04-10
NL7909018A (en) 1980-06-24
IL58875A0 (en) 1980-03-31
FR2444562A1 (en) 1980-07-18
JPS5598057A (en) 1980-07-25
FI793947A (en) 1980-06-23
GB2041324B (en) 1983-04-13
DK150972C (en) 1988-06-06
AU526900B2 (en) 1983-02-03
SE441823B (en) 1985-11-11
JPS6236952B2 (en) 1987-08-10
DK150972B (en) 1987-10-05
BR7908386A (en) 1980-07-22
IT1125927B (en) 1986-05-14
FI82296B (en) 1990-10-31
GB2041324A (en) 1980-09-10
DK541179A (en) 1980-06-23
AU5342679A (en) 1980-06-26
NL188241B (en) 1991-12-02
IT7928112A0 (en) 1979-12-18
IL58875A (en) 1984-01-31
ZA796555B (en) 1980-11-26
NO161058C (en) 1989-06-28
NO794184L (en) 1980-06-24
KR880001892B1 (en) 1988-09-27
SE7910361L (en) 1980-06-23
IN154454B (en) 1984-10-27
FI82296C (en) 1991-02-11
DE2951795A1 (en) 1980-07-03
FR2444562B1 (en) 1982-02-19
KR830001120A (en) 1983-04-29
DE2951795C2 (en) 1989-02-09
NL188241C (en) 1992-05-06

Similar Documents

Publication Publication Date Title
Ünlü et al. Comparison of salt-free aluminum dross treatment processes
US5785923A (en) Apparatus for continuous feed material melting
EP2966039B1 (en) Preparation of samples for XRF using flux and platinum crucible
AU2002363728B2 (en) Method and apparatus for melting metals
US3789126A (en) Electric furnace for heating and melting scrap iron and steel
NO161058B (en) PROCEDURE FOR THE PREPARATION OF A WINDOW TURTLE SHEET.
Lawrence et al. Digital twin methodology improves performance and yield in an aluminum tilt rotary furnace
NO138056B (en) PROCEDURE FOR THE MANUFACTURE OF ANIMAL FEED
NO116958B (en)
US1068643A (en) Method of heating material by electricity.
JP6616474B1 (en) Method for melting inorganic industrial waste
US3116997A (en) Process for making aluminumsilicon alloys
CA1075475A (en) Aluminothermic process
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
SU1242532A1 (en) Method of melting aluminium alloy waste
JPH0248420A (en) Method and equipment for thermally melting corrosive material
US2720454A (en) Method of reducing mgo in the solid phase
SU1527300A1 (en) Method of separating bimetallic waste
US1337305A (en) A coxpqbation oe con
Persson Conduction characteristics of electric furnaces
Suresh et al. Hydrogen reduction of single pellet nickel oxide under microwave irradiation
GB2020402A (en) Furnace
Volokitin et al. Electroplasma installation for producing high-temperature silicate melts
JPH02309188A (en) Heating and melting furnace for disposal or the like
SU706669A1 (en) Electric salt furnace