NO159641B - HYDROGENATION CATALYST OF PALLADIUM AND RHENIUM ON A CARBON CARBON, PROCEDURE FOR THE PREPARATION OF THIS, AND PROCEDURE FOR THE PREPARATION OF TETRAHYDROFURAN, 1,4-BUTANDIOL OR MIXTURES THEREOF. - Google Patents

HYDROGENATION CATALYST OF PALLADIUM AND RHENIUM ON A CARBON CARBON, PROCEDURE FOR THE PREPARATION OF THIS, AND PROCEDURE FOR THE PREPARATION OF TETRAHYDROFURAN, 1,4-BUTANDIOL OR MIXTURES THEREOF. Download PDF

Info

Publication number
NO159641B
NO159641B NO845196A NO845196A NO159641B NO 159641 B NO159641 B NO 159641B NO 845196 A NO845196 A NO 845196A NO 845196 A NO845196 A NO 845196A NO 159641 B NO159641 B NO 159641B
Authority
NO
Norway
Prior art keywords
catalyst
hours
carbon
palladium
rhenium
Prior art date
Application number
NO845196A
Other languages
Norwegian (no)
Other versions
NO159641C (en
NO845196L (en
Inventor
Melinda Ann Mabry
William W Prichard
Stanislaw Bogdan Ziemecki
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24254195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO159641(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Du Pont filed Critical Du Pont
Publication of NO845196L publication Critical patent/NO845196L/en
Publication of NO159641B publication Critical patent/NO159641B/en
Publication of NO159641C publication Critical patent/NO159641C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Fats And Perfumes (AREA)
  • Tea And Coffee (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Palladium/rhenium-on-carbon catalyst; a method employing said catalyst to produce tetrahydrofuran, 1,4-butanediol or mixtures thereof in selectable ratios from a number of starting reactants; and a method for making the Pd/Re/C catalyst.

Description

Foreliggende oppfinnelse angår en hydrogeneringskatalysator av palladium og rhenium på en carbonbærer, fremgangsmåte for fremstilling av denne, og fremgangsmåte for fremstilling av tetrahydrofuran, 1,4-butandiol eller blandinger derav ved hydrogenering av et utall hydrogenerbare forløpere slik som maleinsyre, maleinsyreanhydrid, fumarsyre, ravsyre, eplesyre, dimethylsuccinat, Y-butyrolacton eller blandinger derav. Disse forløpere kan beskrives som dicar-boxylsyrer, dicarboxylsyreestere, lactoner eller blandinger av angitte syrer, estere, lactoner og/eller anhydrider. The present invention relates to a hydrogenation catalyst of palladium and rhenium on a carbon carrier, a method for producing this, and a method for producing tetrahydrofuran, 1,4-butanediol or mixtures thereof by hydrogenating a number of hydrogenable precursors such as maleic acid, maleic anhydride, fumaric acid, succinic acid , malic acid, dimethylsuccinate, Y-butyrolactone or mixtures thereof. These precursors can be described as dicarboxylic acids, dicarboxylic acid esters, lactones or mixtures of indicated acids, esters, lactones and/or anhydrides.

Også en kontinuerlig katalytisk prosess for fremstilling av tetrahydrofuran, 1,4-butandiol eller blandinger derav fra et normalt C^-hydrocarbon slik som n-butan, beskrives i det etterfølgende. Also a continuous catalytic process for the production of tetrahydrofuran, 1,4-butanediol or mixtures thereof from a normal C 1 -hydrocarbon such as n-butane is described in the following.

Det er beskrevet en rekke metoder for fremstilling av tetrahydrofuran og 1,4-butandiol. Det foreligger publikasjoner vedrørende hydrogenering av maleinsyre eller maleinsyreanhydrid som også beskriver forskjellige forsøk på å maksimere produktutbyttene. Det henvises i denne sammenheng til US-patenter 4 155 919, 3 957 827, 3 370 067 og 3 133 138; japanske patentpublikasjoner 32439/74 og 43683/69; tyske patentskrifter 2 519 817 og 2 715 66 7, og britisk patentskrift 1 5 34 2 32. Følgende publikasjoner beskriver katalytiske pro-sesser for fremstilling av maleinsyre/maleinsyreanhydrid: US patentskrifter 4 251 390, 4 231 943, 4 244 878 og 4 283 288. A number of methods for the production of tetrahydrofuran and 1,4-butanediol have been described. There are publications relating to the hydrogenation of maleic acid or maleic anhydride which also describe various attempts to maximize product yields. Reference is made in this context to US patents 4,155,919, 3,957,827, 3,370,067 and 3,133,138; Japanese Patent Publications 32439/74 and 43683/69; German patents 2 519 817 and 2 715 66 7, and British patent 1 5 34 2 32. The following publications describe catalytic processes for the production of maleic acid/maleic anhydride: US patents 4 251 390, 4 231 943, 4 244 878 and 4 283 288.

Fransk patentskrift 2 505 819 beskriver hydrogene-ringsreaksjoner under anvendelse av opplagrede Pd/Re-katalysatorer. Selv om katalysatorene kan fremstilles ved sekvensavsetning av Pd og Re-metall, er ingen mellomliggende reduksjon beskrevet. French patent document 2,505,819 describes hydrogenation reactions using stored Pd/Re catalysts. Although the catalysts can be prepared by sequential deposition of Pd and Re metal, no intermediate reduction is described.

De beskrevne metoder anvender en utvalgt katalysator for å fremstille høye utbytter av tetrahydrofuran og 1,4-butandiol med høy produktivitet. Prosessene forløper fra dicarboxylsyre eller dicarboxylsyreester-utgangsreak-tanter. Ved hjelp av foreliggende hydrogeneringskatalysa- The described methods use a selected catalyst to produce high yields of tetrahydrofuran and 1,4-butanediol with high productivity. The processes proceed from dicarboxylic acid or dicarboxylic acid ester starting reactants. By means of the present hydrogenation catalysis-

tor kan prosessen rettes, som ønsket, mot produksjon av høye forhold mellom tetrahydrofuran og 1,4-butandiol og vice versa. tor, the process can be directed, as desired, towards the production of high ratios of tetrahydrofuran to 1,4-butanediol and vice versa.

Oppfinnelsen angår således en hydrogeneringskatalysator av palladium og rhenium på en carbonbærer, hvilken katalysator er kjennetegnet ved at katalysatoren omfatter 0,5 til 10% palladium og 1 til 10% rhenium av totalvekt, hvor palladiumet er til stede i form av krystallitter med en midlere størrelse på 10 nm til 25 nm og hvor rheniumet er til stede i form av en sterkt dispergert fase av krystallitter med en midlere størrelse på mindre enn 2,5 nm. En foretrukket katalysator inneholder 1 til 6% Pd og 3 til 6% Re, og en spesielt foretrukket katalysator inneholder ca. 3% Pd og ca. 3% Re. The invention thus relates to a hydrogenation catalyst of palladium and rhenium on a carbon support, which catalyst is characterized in that the catalyst comprises 0.5 to 10% palladium and 1 to 10% rhenium by total weight, where the palladium is present in the form of crystallites of an average size of 10 nm to 25 nm and where the rhenium is present in the form of a highly dispersed phase of crystallites with an average size of less than 2.5 nm. A preferred catalyst contains 1 to 6% Pd and 3 to 6% Re, and a particularly preferred catalyst contains approx. 3% Pd and approx. 3% Re.

Pd krystallitt-størrelsen er blitt bestemt ved H2/02-titrering, og Re krystallitt-størrelsen ved transmisjonselektron-mikroskopi-scanning (STEM). The Pd crystallite size has been determined by H2/02 titration, and the Re crystallite size by scanning transmission electron microscopy (STEM).

De sterkt dispergerte Re krystallitter er for små til å kunne påvises ved røntgendiffraksjon eller ved STEM. The highly dispersed Re crystallites are too small to be detected by X-ray diffraction or STEM.

Oppfinnelsen angår også en fremgangsmåte for fremstilling av en hydrogeneringskatalysator av palladium og rhenium på en carbonbærer, hvilken fremgangsmåte er kjennetegnet ved at den omfatter følgende trinn: (i) impregnering av carbonbæreren med en kilde av palladium, hvilket palladium er i løsning, (ii) fjerning av løsningsmidlet og oppvarming av det palladiumimpregnerte carbon til en temperatur på 150 til 550°C under reduserende betingelser, (iii) tilføring til det palladiumimpregnerte carbon av en kilde av rhenium som er i løsning, og (iv) fjerning av løsningsmidlet fra trinn (iii), (v) oppvarming av katalysatoren fra trinn (iv) til en temperatur på 150 til 550°C under reduserende betingelser. The invention also relates to a method for the production of a hydrogenation catalyst of palladium and rhenium on a carbon carrier, which method is characterized in that it comprises the following steps: (i) impregnation of the carbon carrier with a source of palladium, which palladium is in solution, (ii) removing the solvent and heating the palladium-impregnated carbon to a temperature of 150 to 550°C under reducing conditions, (iii) adding to the palladium-impregnated carbon a source of rhenium in solution, and (iv) removing the solvent from step ( iii), (v) heating the catalyst from step (iv) to a temperature of 150 to 550°C under reducing conditions.

Det foretrekkes å oppvarme Pd/Re/C-katalysatoren It is preferred to heat the Pd/Re/C catalyst

fra trinn (iv) til en temperatur på 150 - 550° C, fortrinnsvis 200 til 300° C under reduksjonsbetingelser, vanligvis i 2 til 5 timer. Denne reduksjon kan utføres umiddelbart etter trinn (iv), eller kan utføres i hydrogenatoren like før reaksjonen utføres eller samtidig med starten av reaksjonen. from step (iv) to a temperature of 150 - 550° C, preferably 200 to 300° C under reducing conditions, usually for 2 to 5 hours. This reduction can be carried out immediately after step (iv), or can be carried out in the hydrogenator just before the reaction is carried out or simultaneously with the start of the reaction.

Det foretrekkes å ha et Gruppe IA eller IIA-metall slik som kalium, natrium, lithium, calsium eller magnesium til stede under katalysatorsyntesen. Foretrukne mengder er 0,1 til 1 mol% basert på antall mol carbon i bæreren. Foretrukne bærere har et overflateareal over 650 m <2>/g og helst It is preferred to have a Group IA or IIA metal such as potassium, sodium, lithium, calcium or magnesium present during the catalyst synthesis. Preferred amounts are 0.1 to 1 mol% based on the number of moles of carbon in the carrier. Preferred carriers have a surface area above 650 m <2>/g and preferably

2 2

over 900 m /g. over 900 m/g.

Oppfinnelsen angår også en fremgangsmåte for fremstilling av tetrahydrofuran, 1,4-butandiol eller blandinger derav fra en oxyderbar maleinsyreanhydridforløper omfattende oxydering av forløperen under dannelse av maleinsyreanhydrid og omsetning av maleinsyreanhydridet med hydrogen i nærvær av en hydrogeneringskatalysator, hvilken fremgangsmåte er kjennetegnet ved at den omfatter: (i) oppsamling av maleinsyreanhydridet fra oxyda-sjonstrinnet i vann under dannelse av en vandig løsning av maleinsyre, og (ii) omsetning av den vandige løsning av maleinsyre med hydrogen i nærvær av en katalysator ifølge kravene 1 og 2. The invention also relates to a method for the production of tetrahydrofuran, 1,4-butanediol or mixtures thereof from an oxidizable maleic anhydride precursor comprising oxidizing the precursor to form maleic anhydride and reacting the maleic anhydride with hydrogen in the presence of a hydrogenation catalyst, which method is characterized in that it comprises : (i) collecting the maleic anhydride from the oxidation step in water while forming an aqueous solution of maleic acid, and (ii) reacting the aqueous solution of maleic acid with hydrogen in the presence of a catalyst according to claims 1 and 2.

Reaksjonstemperaturen er 130 til 285°C, hydrogen-trykket 2 MPa til 35 MPa, hydrogenromtiden 1 til 10 minutter og kontakttiden 0,5 til 7 timer. Representative, organiske media innbefatter dioxan, 7-butyrolacton og lignende. De foretrukne forløpere er maleinsyre og maleinsyreanhydrid. The reaction temperature is 130 to 285°C, the hydrogen pressure 2 MPa to 35 MPa, the hydrogen space time 1 to 10 minutes and the contact time 0.5 to 7 hours. Representative organic media include dioxane, 7-butyrolactone and the like. The preferred precursors are maleic acid and maleic anhydride.

Katalysatoren ifølge oppfinnelsen gir (a) hovedsakelig 100 % omdannelse av forløperne, (b) høy selektivitet overfor og høyt utbytte av THF/BD0-produkt, og (c) den fordel at den er i stand til å kontrollere produktforholdet THF/BDO ved variering av temperaturen, kontakttiden og/eller hydrogenromtiden innen de beskrevne operasjonsområ-der slik at generelt jo høyere temperaturen er, jo lengere er kontakttiden, og/eller jo høyere hydrogenromtiden er, jo høyere er forholdet THF til BD0 og vice versa. Hydrogenromtid er definert som reaksjonsvolumet dividert med hydrogen-strømningshastigheten under reaksjonsbetingelser. The catalyst according to the invention provides (a) essentially 100% conversion of the precursors, (b) high selectivity towards and high yield of THF/BD0 product, and (c) the advantage that it is able to control the product ratio THF/BDO by variation of the temperature, contact time and/or hydrogen space time within the described operational areas so that generally the higher the temperature, the longer the contact time, and/or the higher the hydrogen space time, the higher the ratio of THF to BD0 and vice versa. Hydrogen space time is defined as the reaction volume divided by the hydrogen flow rate under reaction conditions.

En kontinuerlig prosess for fremstilling av tetrahydrofuran, 1,4-butandiol eller en blanding derav fra et normalt C4-hydrocarbon eller et aromatisk hydrocarbon, omfatter: (i) oxydering av hydrocarbonet under dannelse av maleinsyreanhydrid, (ii) oppsamling av maleinsyreanhydridproduktet fra trinn A continuous process for the production of tetrahydrofuran, 1,4-butanediol or a mixture thereof from a normal C4 hydrocarbon or an aromatic hydrocarbon comprises: (i) oxidation of the hydrocarbon to form maleic anhydride, (ii) collection of the maleic anhydride product from step

(i) i en vandig løsning, og (i) in an aqueous solution, and

(iii) omsetning av den vandige løsning av maleinsyre med hydrogen i nærvær av Pd/Re/C-katalysatoren ifølge oppfinnelsen under de beskrevne betingelser. (iii) reaction of the aqueous solution of maleic acid with hydrogen in the presence of the Pd/Re/C catalyst according to the invention under the described conditions.

Det er den hovedsakelige fullstendige omdannelse av maleinsyre og den høye selektivitet overfor og utbyttet av THF/BDO i et vandig medium som oppnås med den carbon-opplågre-de palladium-rhenium-katalysator som gjør denne kontinuerlige prosess effektiv og anvendbar. It is the essentially complete conversion of maleic acid and the high selectivity to and yield of THF/BDO in an aqueous medium achieved with the carbon-burnt palladium-rhenium catalyst that makes this continuous process efficient and applicable.

En metode for fremstilling av katalysatoren omfatter (a) påføring av en løsning av en palladiumforbindelse på en carbonbærer og fjerning av løsningsmidlet; (b) oppvarming av carbonet impregnert med palladiumforbindelsen dannet i (a) til én temperatur på 150 til 550° C, fortrinnsvis 200 - 300° C, under reduserende betingelser, av-kjøling av det carbon-understøttede palladiummateriale (Pd/C) fremstilt i (b) , og (c) påføring av en løsning av en rheniumforbindelse på dette materiale og fjerning av løsningsmidlet. A method of preparing the catalyst comprises (a) applying a solution of a palladium compound to a carbon support and removing the solvent; (b) heating the carbon impregnated with the palladium compound formed in (a) to a temperature of 150 to 550° C, preferably 200 - 300° C, under reducing conditions, cooling the carbon-supported palladium material (Pd/C) produced in (b), and (c) applying a solution of a rhenium compound to said material and removing the solvent.

Det foretrekkes å oppvarme Pd/C impregnert med rheniumforbindelsen dannet i trinn (c) til en temperatur på 150 til 550° C, fortrinnsvis 200 til 300° C under reduserende betingelser i 2 til 5 timer. Dette kan utføres umiddelbart etter trinn (c), eller kan utføres i hydrogeneringsapparaturen like før reaksjonen utføres eller samtidig med starten av reaksjonen. It is preferred to heat the Pd/C impregnated with the rhenium compound formed in step (c) to a temperature of 150 to 550°C, preferably 200 to 300°C under reducing conditions for 2 to 5 hours. This can be carried out immediately after step (c), or can be carried out in the hydrogenation apparatus just before the reaction is carried out or simultaneously with the start of the reaction.

Fortrinnsvis utføres fremstilling av Pd/Re/C-katalysatoren i nærvær av Gruppe IA eller IIA metaller slik som kalium, natrium, lithium, calsium eller magnesium. Den sist-nevnte kan være tilstede i carbonet som erholdt, eller kan tilsettes - om fraværende - ved impregnering av carbonbæreren med en løsning av en metallforbindelse fra Gruppe IA eller IIA, for eksempel LiCl, NaCl, KCl, KOH, NaOH, CaCl2 eller MgCl2'6H20. Det antas at metallet fra Gruppe IA eller IIA har en gunstig effekt på katalysator-mikrostrukturen. Preferably, production of the Pd/Re/C catalyst is carried out in the presence of Group IA or IIA metals such as potassium, sodium, lithium, calcium or magnesium. The latter can be present in the carbon obtained, or can be added - if absent - by impregnating the carbon carrier with a solution of a metal compound from Group IA or IIA, for example LiCl, NaCl, KCl, KOH, NaOH, CaCl2 or MgCl2 '6H20. It is believed that the Group IA or IIA metal has a beneficial effect on the catalyst microstructure.

Alternativt kan metallet fra Gruppe IA eller Gruppe IIA tilsettes sammen med palladiumet ved tilsetning av metal1-forbindelsen av Gruppe IA eller Gruppe IIA til løsningen av palladiumforbindelsen, eller ved anvendelse av en palladiumforbindelse som også inneholder metallet fra Gruppe IA eller Gruppe IIA, for eksempel K2PdCl4 eller Na2PdCl4- Det foretrekkes å tilsette metallet fra Gruppe IA eller Gruppe IIA til carbonbæreren og calsinere det impregnerte carbon ved temperaturer i området fra 200 til 4 00° C i 2 til 6 timer før impregnering av carbonbæreren med kilden av palladium. Alternatively, the Group IA or Group IIA metal can be added together with the palladium by adding the Group IA or Group IIA metal1 compound to the solution of the palladium compound, or by using a palladium compound that also contains the Group IA or Group IIA metal, for example K2PdCl4 or Na2PdCl4- It is preferred to add the Group IA or Group IIA metal to the carbon support and calcine the impregnated carbon at temperatures in the range of 200 to 400°C for 2 to 6 hours before impregnating the carbon support with the source of palladium.

Løsningene av palladiumforbindelsen og rheniumforbindelsen kan tilføres carbonet ved dypping eller suspendering av bærematerialet i løsningen, eller ved sprøyting av løsnin-gen på carbonet. Løsningen inneholdende palladiumforbindelsen er typisk et surt vandig medium inneholdende HCl og en mengde av palladiumforbindelse tilstrekkelig til å gi et katalysator-produkt med den krevde mengde palladium. Palladiumforbindelsen er et typisk PdCl2, men kan også være en palladiumforbindelse slik som et nitrat, carbonat, carboxylat, acetat, acetylacetonat eller amin. Løsningen inneholdende rheniumforbindelsen er typisk en vandig løsning inneholdende en mengde av rheniumforbindelsen tilstrekkelig til å gi et katalysa-torprodukt med den krevde mengde av rhenium. Rheniumforbindelsen er typisk Re20^, men kan være et perrhenat av ammonium eller av et alkalimetall. The solutions of the palladium compound and the rhenium compound can be added to the carbon by dipping or suspending the carrier material in the solution, or by spraying the solution on the carbon. The solution containing the palladium compound is typically an acidic aqueous medium containing HCl and an amount of palladium compound sufficient to give a catalyst product with the required amount of palladium. The palladium compound is typically PdCl 2 , but can also be a palladium compound such as a nitrate, carbonate, carboxylate, acetate, acetylacetonate or amine. The solution containing the rhenium compound is typically an aqueous solution containing an amount of the rhenium compound sufficient to give a catalyst product with the required amount of rhenium. The rhenium compound is typically Re 2 O 4 , but may be a perrhenate of ammonium or of an alkali metal.

Ved oppvarming under reduserende betingelser menes oppvarming i et reduserende miljø, fortrinnsvis hydrogen. Typisk er prøven blitt redusert ved først å oppvarme i strøm-mende He ved 150° C i 1 time, deretter oppvarme til 150° C i strømmende He/H2 (50:50 molforhold) i 1 time og sluttelig oppvarming til 150° til 550° C i strømmende He/H2 (50:50 molforhold) i opp til 3 timer. Heating under reducing conditions means heating in a reducing environment, preferably hydrogen. Typically, the sample has been reduced by first heating in flowing He at 150° C for 1 hour, then heating to 150° C in flowing He/H2 (50:50 molar ratio) for 1 hour and finally heating to 150° to 550 ° C in flowing He/H2 (50:50 molar ratio) for up to 3 hours.

Når et metall fra Gruppe IA eller Gruppe IIA er tilstede i carbonbæreren under katalysatorfremstillingen, er store (ca. 0,2 ym) krystallitter av saltene av ReO~ tilstede i katalysatoren som observert ved røntgendiffraksjon og transmisjonselektron-mikroskopi. Hvis denne katalysator ytterligere utsettes for reduserende betingelser, f<y>eks. under hydrogeneringen av maleinsyre og deretter undersøkes på nytt, kan ingen salter av ReO~ eller noen fase inneholdende et salt av Gruppe IA eller Gruppe IIA påvises. Imidlertid er katalysatoren fremdeles omfattet av Pd og Re krystallitter som her beskrevet. When a Group IA or Group IIA metal is present in the carbon support during catalyst preparation, large (about 0.2 um) crystallites of the salts of ReO~ are present in the catalyst as observed by X-ray diffraction and transmission electron microscopy. If this catalyst is further exposed to reducing conditions, e.g. during the hydrogenation of maleic acid and then reexamined, no salts of ReO~ or any phase containing a salt of Group IA or Group IIA can be detected. However, the catalyst is still comprised of Pd and Re crystallites as described here.

Når utgangsreaktanten er et normalt C4-hydrocarbon forløper prosessen uten behov for utstyr, energi og reaksjons-tid som vanligvis kreves for å isolere og rense maleinsyreanhydridet som beskrevet ved kjente hydrogeneringer. En typisk metode for utførelse av prosessen omfatter (a) omsetning av n-buten eller benzen i en oxygen-holdig gass i nærvær av en vanadium/fosfor-blandet oxydkatalysator for å oxydere i dampfasen n-butenet til maleinsyreanhydrid, (b) oppsamling av maleinsyreanhydridet ved en vannbehandling for å danne maleinsyre i en vandig løsning i en konsentrasjon på ca. 4 0 vekt%, og (c) omsetning av løsningen erholdt i (b) med hydrogen i nærvær av Pd/Re/C hydrogeneringskatalysatoren. When the starting reactant is a normal C4 hydrocarbon, the process proceeds without the need for equipment, energy and reaction time which is usually required to isolate and purify the maleic anhydride as described in known hydrogenations. A typical method of carrying out the process comprises (a) reaction of n-butene or benzene in an oxygen-containing gas in the presence of a vanadium/phosphorus mixed oxide catalyst to oxidize in the vapor phase the n-butene to maleic anhydride, (b) collection of the maleic anhydride by a water treatment to form maleic acid in an aqueous solution in a concentration of approx. 40% by weight, and (c) reacting the solution obtained in (b) with hydrogen in the presence of the Pd/Re/C hydrogenation catalyst.

Fortrinnsvis drives oxydasjonstrinn. (a) ved en temperatur på 300 til 600° C og et trykk på 50 til 2000 kPa, og hydrogeneringstrinn (c) utføres ved en temperatur på 150 til 2 75° C og et hydrogentrykk på 2 MPa til 35 MPa. Preferably, oxidation steps are carried out. (a) at a temperature of 300 to 600° C and a pressure of 50 to 2000 kPa, and hydrogenation step (c) is carried out at a temperature of 150 to 275° C and a hydrogen pressure of 2 MPa to 35 MPa.

Væskefase-hydrogeneringen kan The liquid phase hydrogenation can

utføres under anvendelse av konvensjonell apparatur og tek-nikk i en omrørt tankreaktor eller i en reaktor med stasjonært skikt. Hydrogen til' føres kontinuerlig, generelt i betydelig støkiometrisk overskudd uten noen inert fortynningsgass. is carried out using conventional equipment and technology in a stirred tank reactor or in a reactor with a stationary bed. Hydrogen is added continuously, generally in significant stoichiometric excess without any inert diluent gas.

Uomsatt hydrogen kan returneres til reaktoren som en resir-kulasjonsstrøm. Forløperløsningen, f.eks. maleinsyreløs-ning, mates kontinuerlig i konsentrasjoner varierende fra fortynnede løsninger til tilnærmet maksimalt oppløselighets-het, typisk 30 til 40 vekt%. Katalysatorens carbonbærer har en partikkelstørrelse på ca. 200 mesh for anvendelse i en omrørt tankreaktor eller er større bærergranuler (0,64 cm) til 60 mesh for anvendelse i en reaktor med stasjonært skikt. Den nødvendige mengde av katalysator vil variere vidt og er avhengig av et uttall faktorer slik som reaktorstørrelse og design, kontakttid og lignende. For en 60 cm^s reaktor anvendes for eksempel 25 g av den foretrukne katalysator, 3 % Pd/3% Re/C. Unreacted hydrogen can be returned to the reactor as a recirculation stream. The precursor solution, e.g. maleic acid solution, is fed continuously in concentrations varying from dilute solutions to approximately maximum solubility, typically 30 to 40% by weight. The catalyst's carbon carrier has a particle size of approx. 200 mesh for use in a stirred tank reactor or are larger carrier granules (0.64 cm) to 60 mesh for use in a fixed bed reactor. The required amount of catalyst will vary widely and is dependent on a number of factors such as reactor size and design, contact time and the like. For a 60 cm 2 reactor, for example, 25 g of the preferred catalyst, 3% Pd/3% Re/C, is used.

De etterfølgende eksempler illustrerer oppfinnelsen. Temperaturene er angitt i grader Celsium med mindre annet er angitt. Med mindre annet er angitt ble alle hydrogenerings-forsøk utført i en reaktor med en diameter på 1,2 7 cm og en lengde på 76 cm. Reaktoren var konstruert fra BWG 20, 1,2 7 cm Hastelloy C-rør med veggtykkelse 0,0 9 cm, ID = 1,1 cm. Reaktorvolumet ble beregnet basert på det pakkede katalysator-volum. For alle eksempler var den pakkede skiktlengde 6 3 cm. Hul volumet ble fylt med inert siliconcarbid. Det resultereri.de katalysatorreaksjonsvolum ble beregnet å være 59,49 cm som er den verdi som ble anvendt for bestemmelse av overflate-reaksjonsoppholdstiden, dvs. kontakttiden. The following examples illustrate the invention. Temperatures are given in degrees Celsius unless otherwise stated. Unless otherwise stated, all hydrogenation experiments were carried out in a reactor with a diameter of 1.27 cm and a length of 76 cm. The reactor was constructed from BWG 20, 1.2 7 cm Hastelloy C tubing with wall thickness 0.0 9 cm, ID = 1.1 cm. The reactor volume was calculated based on the packed catalyst volume. For all examples, the packed layer length was 6 3 cm. The hollow volume was filled with inert silicon carbide. The resulting catalyst reaction volume was calculated to be 59.49 cm, which is the value used for determining the surface reaction residence time, i.e. the contact time.

Reaktoren ble drevet på en sam-strøms, oppstrøms-måte. Væskeformig maleinsyre eller hvilken som helst av de andre forløperutgangsmaterialer og hydrogen ble oppmålt sepa-rat og deretter innført i et blande-T-rør i bunnen av reaktoren. Begynnelsesblanding, såvel som forvarming, ble utført i en inert, pakket skiktseksjon. Produkter såvel som overskudd av hydrogen ble fjernet gjennom en ventil hvori trykket ble redusert ned til atmosfæretrykk fra reaksjons-trykket. Den oppsamlede væske var hovedmengden av produkt inneholdende tetrahydrofuran (THF) og 1,4-butandiol (BDO) med mindre mengder av biprodukt. Reaksjonsdampstrømmen ble ført gjennom en serie av damp/væske-frigjøringskar: Det første ble holdt ved romtemperatur etterfulgt av en vann/isfelle, etterfulgt av to (i serie) tørris/acetonfeller. Det oppsamlede produkt var primært THF med mindre mengder av raono-alkoholer og butyrolacton. Disse feller ble anvendt ■ på grunn av vanskeligheten med anveindeise av væske/damp-frigjøringskar i liten målestokk. The reactor was operated in a co-current, upstream fashion. Liquid maleic acid or any of the other precursor starting materials and hydrogen were measured separately and then introduced into a mixing T-tube at the bottom of the reactor. Initial mixing, as well as preheating, was carried out in an inert, packed bed section. Products as well as excess hydrogen were removed through a valve in which the pressure was reduced down to atmospheric pressure from the reaction pressure. The collected liquid was the main amount of product containing tetrahydrofuran (THF) and 1,4-butanediol (BDO) with smaller amounts of by-product. The reaction vapor stream was passed through a series of vapor/liquid release vessels: the first held at room temperature followed by a water/ice trap, followed by two (in series) dry ice/acetone traps. The collected product was primarily THF with smaller amounts of raono-alcohols and butyrolactone. These traps were used ■ because of the difficulty of using liquid/vapor release vessels on a small scale.

Med mindre annet er angitt, ble maleinsyretilfør-selen fremstilt ved tilsetning av 500 g malinsyreanhydrid av bekreftet kvalitet (Fisher Scientific Co.) til 1190 g destillert vann. Hydrogenet ble tatt fra hydrogensylindre med 99 % renhet og ble komprimsert til reaksjonstrykk på 17 MPa. Hydrogentilførselshastigheten var 1000 cm<3>/min (STP) som er ekvivalent med en hydrogenromtid på 6 minutter ved reaksjonsbetingelsene, dvs. 17 MPa og 200° C. Med mindre annet er angitt, var hydrogenromtiden 6 minutter. Katalysatoren var partikkelformet og hadde en størrelse på mindre enn 20 mesh. Enheten i hvilken "romtidutbyttet" uttrykkes i alle tabelloverskrifter og eksempler er g produkt Unless otherwise stated, the maleic acid feed was prepared by adding 500 g of certified grade maleic anhydride (Fisher Scientific Co.) to 1190 g of distilled water. The hydrogen was taken from hydrogen cylinders with 99% purity and was compressed to a reaction pressure of 17 MPa. The hydrogen feed rate was 1000 cm<3>/min (STP) which is equivalent to a hydrogen space time of 6 minutes at the reaction conditions, ie 17 MPa and 200° C. Unless otherwise stated, the hydrogen space time was 6 minutes. The catalyst was particulate and had a size of less than 20 mesh. The unit in which the "space-time yield" is expressed in all table headings and examples is g product

kg kat-hr. kg cat-hr.

Eksempel 1 Example 1

En 3 vekt% Pd/3 vekt% Re/carbon-oppladet katalysator (3 % Pd/3 % Re/C) ble fremstilt på følgende måte. Calgon PCB 12 x 30 carbon ble calsinert ved 200° C i 2 timer og deretter ved 400° C i 2 timer. Dette behandlede carbon hadde et overflateareal på 1000 til 1300 m<2>/g med porevolum på A 3 wt% Pd/3 wt% Re/carbon loaded catalyst (3% Pd/3% Re/C) was prepared as follows. Calgon PCB 12 x 30 carbon was calcined at 200°C for 2 hours and then at 400°C for 2 hours. This treated carbon had a surface area of 1000 to 1300 m<2>/g with a pore volume of

0,6 cm<3>/g. En sekvensavsetning av Pd og Re på det behandlede carbon ble utført som følger: 50 g av det behandlede carbon ble tilsatt til en løsning av 2,5 g PdCl2 i 10 ml konsentrert HC1 og 80 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemmingen tørket i 18 timer ved 110° C. 0.6 cm<3>/g. A sequential deposition of Pd and Re on the treated carbon was carried out as follows: 50 g of the treated carbon was added to a solution of 2.5 g of PdCl2 in 10 ml of concentrated HCl and 80 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried for 18 hours at 110°C.

Prøven ble redusert ved at den første ble oppvarmet til 150° C i strømmende He (1000 cm /min) i 1 time, ble deretter oppvarmet til 150° C i strømmende He/H2 (50:50 molforhold, 1000 cm^/min) i 1 time, og til slutt oppvarmet til 300° C i strømmende He/H2 (50:50 molforhold, 1000 cm<3>/min) i 3 timer. Prøven ble hurtig avkjølt.til 50° C i He/H2 atmos-færen. Nitrogen ble innført mens prøven ble avkjølt til romtemperatur. Etter 30 minutter i strømmende nitrogen ble prø-ven passivisert ved romtemperatur ved innføring av strømmende 1:99 (molforhold) 02/<N>2 i 2 timer. The sample was reduced by first heating to 150°C in flowing He (1000 cm/min) for 1 hour, then heating to 150°C in flowing He/H2 (50:50 molar ratio, 1000 cm^/min) for 1 h, and finally heated to 300° C in flowing He/H2 (50:50 molar ratio, 1000 cm<3>/min) for 3 h. The sample was quickly cooled to 50° C in the He/H2 atmosphere. Nitrogen was introduced while the sample was cooled to room temperature. After 30 minutes in flowing nitrogen, the sample was passivated at room temperature by introducing flowing 1:99 (molar ratio) 02/<N>2 for 2 hours.

Deretter ble 5 g Re20^ tilsatt til 50 ml destillert vann og deretter ble 19,7 ral av denne løsning og 70 ml destillert vann innført i en 1000 ml's kolbe sammen med 50 g Pd/C-katalysator. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket, redusert og passivisert på samme måte som beskrevet for Pd/C-katalysatoren. Det resulterende materiale var 3 % Pd/3 % Re/C-katalysatoren. Then 5 g of Re 2 O 3 was added to 50 ml of distilled water and then 19.7 ral of this solution and 70 ml of distilled water were introduced into a 1000 ml flask together with 50 g of Pd/C catalyst. After 3 hours at room temperature with occasional stirring, the slurry was dried, reduced and passivated in the same way as described for the Pd/C catalyst. The resulting material was the 3% Pd/3% Re/C catalyst.

Pd/Re/C-katalysatoren fremstilt ifølge dette eksempel ble undersøkt ved røntgendifraksjon, elektromikro-skopi-transmisjonsscanning og H2/C>2-titrering og ble funnet å ha palladium-krystallitter med en midlere størrelse på The Pd/Re/C catalyst prepared according to this example was examined by X-ray diffraction, transmission scanning electromicroscopy and H2/C>2 titration and was found to have palladium crystallites with an average size of

150 Å til 200 Å (15 til 20 nm). Partiklene av rhenium var under den størrelse ved hvilken de kunne påvises ved røntgen-difraksjon eller ved elektrontransmisjonsscanningsmikroskopi. Det ble derfor antatt at rheniumpartikkelstørrelsen var under 25 Å (2,5 nm) . 150 Å to 200 Å (15 to 20 nm). The particles of rhenium were below the size at which they could be detected by X-ray diffraction or by electron transmission scanning microscopy. It was therefore assumed that the rhenium particle size was below 25 Å (2.5 nm).

Ved de beskrevne' mikroskopi og krystallograf-teknikker ble KRe04-krystallitter med en midlere størrelse på 0,2 ym påvist. Mikroskopiobservasjoner viste at den sterkt dispergerte rheniumfase av små krystallitter diskutert ovenfor er i kontakt med noen palladiumkrystallitter. Carbonbæreren anvendt ved fremstilling av denne katalysator inne-holdt 0,36 mol% K. By the described microscopy and crystallographic techniques, KReO 4 crystallites with an average size of 0.2 µm were detected. Microscopy observations showed that the highly dispersed rhenium phase of small crystallites discussed above is in contact with some palladium crystallites. The carbon carrier used in the production of this catalyst contained 0.36 mol% K.

Eksempel 2- 14 Example 2- 14

3 % Pd/3 % Re/C-katalysatoren fremstilt som beskrevet i Eksemepel 1 ble fylt i en reaktor med diameter 1,2 7 cm. Maleinsyre-tilførselshastigheten ble justert for å gi kontakttider på fra 0,9 timer til 5,5 timer (eksempelvis i en maleinsyre-tilførselshastighet på 0,5 cm<3>/min en reaksjons- eller kontakttid på 2,0 timer) og hydrogen-strømningshastigheten ble justert til å gi en hydrogenroratid på enten 3 eller 6 minutter. Hydrogeneringsreaksjonen ble utført ved reaksjonstemperaturer på 175° C, 180° C, 190° C, 200° C, 215° C og 225° C. Prøver på reaksjonsproduktet ble tatt kontinuerlig. Fordelingen av produkt THF og BDO og mono-alkoholbiprodukt slik som butanol, propanol etc. og Y-butyrolacton-mellomprodukt i mol% basert på carbonartene er vist i Tabell 1 for de forskjellige reaksjonsbetingelser. Disse er de midlere verdier av flere målinger tatt etter at likevektstilstandene ble nådd. The 3% Pd/3% Re/C catalyst prepared as described in Example 1 was filled into a reactor with a diameter of 1.27 cm. The maleic acid feed rate was adjusted to give contact times of from 0.9 h to 5.5 h (for example, in a maleic acid feed rate of 0.5 cm<3>/min a reaction or contact time of 2.0 h) and hydrogen - the flow rate was adjusted to give a hydrogen rotation time of either 3 or 6 minutes. The hydrogenation reaction was carried out at reaction temperatures of 175° C, 180° C, 190° C, 200° C, 215° C and 225° C. Samples of the reaction product were taken continuously. The distribution of product THF and BDO and mono-alcohol by-product such as butanol, propanol etc. and Y-butyrolactone intermediate in mol% based on the carbon species is shown in Table 1 for the different reaction conditions. These are the average values of several measurements taken after the equilibrium conditions were reached.

Ingen påvisbar mengde av maleinsyre ble funnet, hvilket indikerer at hovedsakelig alt var omdannet. Derfor er den viste molprosent selektiviteten såvel som utbyttet av den bestemte komponent. Også vist er romtidutbyttet. Romtidutbyttet er den mengde erholdt produkt pr. tidsnhet pr. vektenhet innført metallkatalysator. Resultatene viser at det oppnås høy selektivitet overfor og høyt utbytte av THF/BDO og at THF/BDO-produktforholdet øker ettersom temperaturen øker, ettersom kontakttiden øker og/eller ettersom hydrogenromtiden øker, og at produktforholdet kan justeres over et område fra hovedsakelig bare BDO til hovedsakelig bare THF. No detectable amount of maleic acid was found, indicating that essentially all of it was converted. Therefore, the mole percent shown is the selectivity as well as the yield of the particular component. Also shown is the space-time yield. The space-time yield is the amount of product obtained per time unit per unit weight introduced metal catalyst. The results show that high selectivity to and high yield of THF/BDO is achieved and that the THF/BDO product ratio increases as the temperature increases, as the contact time increases and/or as the hydrogen space time increases, and that the product ratio can be adjusted over a range from essentially only BDO to mainly just THF.

Eksempel 15- 18 Example 15-18

En 1% Pd/3 % Re/C-katalysator ble fremstilt under anvendelse av den metode som er beskrevet i Eksempel 1 med det unntak at mengden av PdCl2 var 1/3 av den som er anqitt og at den høyeste temperatur ved reduksjonen etter Pd-avsetning var 350° C, og at den høyeste temperatur ved reduksjonen etter Re-avsetningen var 150° C. A 1% Pd/3% Re/C catalyst was prepared using the method described in Example 1 with the exception that the amount of PdCl2 was 1/3 of that required and that the highest temperature in the reduction after Pd -deposition was 350° C, and that the highest temperature during the reduction after the Re-deposition was 150° C.

Hydrogeneringen ble utført som beskrevet i Eksempel 2-14 med en reaksjonstemperatur på 180° C. Maleinsyre-strømningshastigheten ble justert slik at kontakttiden varier-te fra 2,1 til 3,5 timer. Resultatene angitt i Tabell 2 viser at THF/BDO-produktforholdet øket ettersom kontakttiden øket. The hydrogenation was carried out as described in Example 2-14 with a reaction temperature of 180° C. The maleic acid flow rate was adjusted so that the contact time varied from 2.1 to 3.5 hours. The results given in Table 2 show that the THF/BDO product ratio increased as the contact time increased.

Eksempel 19- 24 Example 19-24

En 3% Pd/1% Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at mengden av Re20^ bar 1/3 av den som var notert i Eksempel 1. Hydrogeneringen ble utført som beskrevet i Eksempel 2-14 med forskjellige reaksjonstemperaturer og reaksjonskontakttider. Resultatene angitt i Tabell 3 viser at forøket reaksjons temperatur og/eller øket reaksjonskontakttider resulterer i høyere THF/BDO. Ingen målbar mengde av maleinsyre ble funnet, hvilket indikerer hovedsakelig fullstendig omdannelse. A 3% Pd/1% Re/C catalyst was prepared by the method described in Example 1, with the exception that the amount of Re 2 O 3 was 1/3 of that noted in Example 1. The hydrogenation was carried out as described in Example 2-14 with different reaction temperatures and reaction contact times. The results shown in Table 3 show that increased reaction temperature and/or increased reaction contact times result in higher THF/BDO. No measurable amount of maleic acid was found, indicating essentially complete conversion.

Eksempel 25 Example 25

En 10% Pd/3 % Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at mengden av PdCl2 var 10/3 av den angitt i Eksempel 1. 53,76 g dimethylsuccinat og 6,0 g vann ble anbragt i et trykkar og bragt i kontakt med 30 g 10% Pd/3% Re/C-katalysatoren ved et hydrogentrykk på 175,7 kg/cm og en temperatur på 2 85° C i 2 timer. Reaksjonsproduktet basert på carbonartene utviste 62,2 mol% THF, 17,6 mol% butanol, 4,7 mol% propanol og 14,5 mol% Y~butyrolacton. A 10% Pd/3% Re/C catalyst was prepared by the method described in Example 1, with the exception that the amount of PdCl2 was 10/3 of that stated in Example 1. 53.76 g of dimethyl succinate and 6, 0 g of water was placed in a pressure vessel and brought into contact with 30 g of the 10% Pd/3% Re/C catalyst at a hydrogen pressure of 175.7 kg/cm and a temperature of 285° C. for 2 hours. The reaction product based on the carbon species exhibited 62.2 mol% THF, 17.6 mol% butanol, 4.7 mol% propanol and 14.5 mol% Y~butyrolactone.

Eksempel 26 og 2 7 Example 26 and 2 7

En 3% Pd/3% Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at den høyeste temperatur ved begge reduksjonstrinn var 200° C i stedet for 300° C. Hydrogenering ble utført som beskrevet i Eksempel 2-14, men med de reaksjonsbetingelser som er angitt i Tabell 4. Resultatene viser at lengre kontakttid resulterer i høyere THF til BDO-forhold. A 3% Pd/3% Re/C catalyst was prepared by the method described in Example 1, with the exception that the highest temperature in both reduction steps was 200° C instead of 300° C. Hydrogenation was carried out as described in Example 2-14, but with the reaction conditions indicated in Table 4. The results show that a longer contact time results in a higher THF to BDO ratio.

Eksempel 28- 32 Example 28-32

En 3% Pd/3% Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at reak-sjonstrinnet .etter palladium-avsetningen ble utført ved en høyeste temperatur på 500° C i stedet for 300° C. Hydrogeneringen ble utført som beskrevet i Eksempel 2-14, men de reaksjonsbetingelser som er angitt i Tabell 5. Resultatene viser de fordeler som oppnås med katalysatoren ifølge oppfinnelsen. A 3% Pd/3% Re/C catalyst was prepared by the method described in Example 1, with the exception that the reaction step after the palladium deposition was carried out at a maximum temperature of 500° C instead of 300 ° C. The hydrogenation was carried out as described in Example 2-14, but the reaction conditions are indicated in Table 5. The results show the advantages achieved with the catalyst according to the invention.

Eksempel 33 Example 33

En 6% Pd/3% Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at mengden av PdCl2 var den doble enn den som er angitt i Eksempel 1. Hydrogeneringen ble utført som beskrevet i Eksempel 2 - 14. Ved en reaksjonstemperatur på 180° C og en kontakttid på 2,1 timer, var produkt//biprodukt-fordelingen i mol% THF-6 7/BDO-19//monoalkoholer-8/Y-butyrolacton-5/ravsyre-l og romtidutbyttet var 2 39. A 6% Pd/3% Re/C catalyst was prepared by the method described in Example 1, with the exception that the amount of PdCl2 was double that indicated in Example 1. The hydrogenation was carried out as described in Example 2 - 14. At a reaction temperature of 180° C and a contact time of 2.1 hours, the product//byproduct distribution in mol% was THF-6 7/BDO-19//monoalcohols-8/Y-butyrolactone-5/ succinic acid-l and the space-time yield was 2 39.

Eksempel 34 Example 34

En 6% Pd/6% Re/C-katalysator ble fremstilt ved den metode som er beskrevet i Eksempel 1, med det unntak at mengden av PdCl2 var den doble av den som er angitt i Eksempel 1. og at mengden av Re20^ også var dobbelt så stor. Hydrogeneringen ble utført som beskrevet i Eksempel 2 - 14. Ved en reaksjonstemperatur på 180° C og en kontakttid på 2,0 timer var produkt//biprodukt-fordelingen i mol% THF-4 0/BDO-50/- monoalkohol-9/Y-butyrolacton-l og romtidytbyttet var 300. A 6% Pd/6% Re/C catalyst was prepared by the method described in Example 1, with the exception that the amount of PdCl2 was double that stated in Example 1. and that the amount of Re2O^ also was twice as large. The hydrogenation was carried out as described in Examples 2 - 14. At a reaction temperature of 180° C and a contact time of 2.0 hours, the product/by-product distribution in mol% THF-4 0/BDO-50/- monoalcohol-9/ γ-butyrolactone-1 and the space-time exchange was 300.

Eksempel 35 Example 35

Katalysatoren ifølge Eksempel 1 ble anvendt ved en hydrogenering identisk med den som er beskrevet i Eksempel 2 - 14 med det unntak at matingen var furaarsyre i vandig løsning i en konsentrasjon på 9 vekt%. Reaksjonstemperaturen var 180° c og reaksjonstiden 2,0 timer. THF/BDO//mohoalkohol/- Btyl-fordelingen i mol% var 19/71//8/2. Romtidutbyttet var 72. The catalyst according to Example 1 was used in a hydrogenation identical to that described in Examples 2 - 14, with the exception that the feed was furic acid in aqueous solution in a concentration of 9% by weight. The reaction temperature was 180°C and the reaction time 2.0 hours. The THF/BDO//moho alcohol/- Btyl distribution in mol% was 19/71//8/2. The space-time yield was 72.

Eksempel 36 Example 36

En kontinuerlig prosess for fremstilling av THF/BDO fra n-butan via et uisolert maleinsyre-mellomprodukt er som følger: Preaktivert katalysator med V/P/Ox: 3 atora% med 2 vekt% Si02 i form av pellets med diameter 0,32 cm og som veide ca. 70 g ble fylt i en vertikal 316 rustfri reaktor med stajon-nært vekt med diameter på 2,54 cm og en høyde på 30,4 8 cm, A continuous process for the production of THF/BDO from n-butane via an unisolated maleic acid intermediate is as follows: Preactivated catalyst with V/P/Ox: 3 atora% with 2 wt% SiO2 in the form of pellets with a diameter of 0.32 cm and which weighed approx. 70 g was charged into a vertical 316 stainless stationary weight reactor of 2.54 cm diameter and 30.4 8 cm height,

som ble oppvarmet i et fluidisert sandbad for å oppnå tempera-turkontroll. Denne reaktor ble koblet for å muliggjøre di-rekte transport av (1) matestrømmen omfattende 1,5 % n-butan i luft fra et tilførselsmanifold gjennom en forvarmingsspiral inneholdende i sandbadet og deretter inn i bunnen av reaktoren for å kontakte katalysatorskiktet, og (2) produktstrøm-men gjennom en utløpsledning oppvarmet til en temperatur noe over 200° C (for å unngå avsetning av maleinsyreanhydrid) og deretter til en splitter som førte ca. 80 % av avløpsgassene gjennom vann for å absorbere ut maleinsyreanhydridet for etterfølgende hydrogenering. which was heated in a fluidized sand bath to achieve temperature control. This reactor was coupled to enable direct transport of (1) the feed stream comprising 1.5% n-butane in air from a feed manifold through a preheating coil contained in the sand bath and then into the bottom of the reactor to contact the catalyst bed, and (2 ) product flow-but through an outlet line heated to a temperature somewhat above 200° C (to avoid deposition of maleic anhydride) and then to a splitter which led approx. 80% of the waste gases through water to absorb out the maleic anhydride for subsequent hydrogenation.

Den gjenværende del av produktstrømmen ble trans-portert gjennom en oppvarmet ledning til en dobbel gass-kromatograf (GC) for produktanalyse. Innføring av en oppvarmet tilbaketrykksventil i utløpsledningen over GC-anord-ningen tillot operasjon av dette system fra atmosfæretrykk The remaining portion of the product stream was transported through a heated line to a dual gas chromatograph (GC) for product analysis. Introduction of a heated back pressure valve in the outlet line above the GC device allowed operation of this system from atmospheric pressure

(100 kPa) til et maksimum på 870 kPa. Driftstemperaturer (100 kPa) to a maximum of 870 kPa. Operating temperatures

var i området 380 til 450° C og kontakttider, uttrykt ved standard temperatur og trykk, i området 1 til 7 sekunder. were in the range of 380 to 450°C and contact times, expressed at standard temperature and pressure, in the range of 1 to 7 seconds.

Den analytiske anordning muliggjorde bestemmelse av N2, 02, The analytical device enabled the determination of N2, 02,

CO, C02, H20, n-butan, maleinsyreanhydrid, ethylen, furan, methyl-ethyl-keton, eddiksyre, og acrylsyre. Maleinsyre-løsningen var farveløs. CO, C02, H20, n-butane, maleic anhydride, ethylene, furan, methyl-ethyl-ketone, acetic acid, and acrylic acid. The maleic acid solution was colorless.

Hydrogenering av urent maleinsyre-mellompordukt Hydrogenation of impure maleic acid intermediate

ble utført som beskrevet i Eksempel 2-14 under anvendelse av 3 Pd/3% Re/C-katalysatoren ifølge Eksempel 1. Maleinsyre-konsentrasjonen var 33 vekt% og maleinsyre-matehastigheten var 0,5 cm<3>/min svarende til en kontakttid på 2 timer. Reaksjons temperatruen var 200° c. Produkt//biprodukt (THF/BDO// monoalkohol)-fordelingen i mol% var 30/58//12. Romtidutbyttet var 2 80. was carried out as described in Examples 2-14 using the 3 Pd/3% Re/C catalyst of Example 1. The maleic acid concentration was 33% by weight and the maleic acid feed rate was 0.5 cm<3>/min corresponding to a contact time of 2 hours. The reaction temperature was 200° C. The product/by-product (THF/BDO//monoalcohol) distribution in mol% was 30/58//12. The space-time yield was 2 80.

Eksempel 3 7 og sammenligningseksempel A og B Example 3 7 and comparative examples A and B

Dette eksempel og sammenligningseksemplene ble ut-ført for å demonstrere aktiviteten av en katalysator ifølge oppfinnelsen (Eksempel 37) mot de lavere aktiviteter av to katalysatorer utenfor oppfinnelsens ramme (Eksempel A og B). This example and the comparative examples were carried out to demonstrate the activity of a catalyst according to the invention (Example 37) against the lower activities of two catalysts outside the scope of the invention (Examples A and B).

I eksemplet og i sammenlingningeeksemplene omfattet katalysatoren 3 vekt% Pd og 3 vekt% Re opplagret på carbon. Katalysatoren ifølge oppfinnelsen ble fremstilt som beskrevet i Eksempel 1. In the example and in the comparative examples, the catalyst comprised 3 wt% Pd and 3 wt% Re stored on carbon. The catalyst according to the invention was prepared as described in Example 1.

Katalysatoren ifølge sammenligningseksempel A ble fremstilt som følger: iOO g aktivert carbon ble kalsinert i en luftatmosfære, først ved 200° C i 2 timer, deretter ved 400° C i 2 timer. Carbonet ble avkjølt og deretter siktet resulterende i 54,0 g kalsinert carbon, 20 mesh. En 0,0 76 g Re/ml løsning ble fremstilt ved tilsetning av 5,0 g Re2Oy The catalyst according to comparative example A was prepared as follows: iOO g of activated carbon was calcined in an air atmosphere, first at 200° C. for 2 hours, then at 400° C. for 2 hours. The carbon was cooled and then sieved resulting in 54.0 g of calcined carbon, 20 mesh. A 0.0 76 g Re/ml solution was prepared by adding 5.0 g Re2Oy

til 50 ml destillert vann. Deretter ble 19,7 ml av løsningen, 10 ml konsentrert HC1, 50 ml destillert vann, 2,5 g PdCl2 og to 50 ml of distilled water. Then 19.7 ml of the solution, 10 ml of concentrated HCl, 50 ml of distilled water, 2.5 g of PdCl2 and

50 g kalsinert carbon tilsatt til en 1000 ml kolbe. Etter 50 g of calcined carbon added to a 1000 ml flask. After

3 timer med leilighetsvis omrøring ble oppslemningen tørket ved 110° C i 18 timer. Pd/Re/C-katalysatoren ble deretter redusert ved følgende prosedyre: Oppvarming til 150° C i nitrogen i 1 time, deretter til 150° C i 50%/50% N2/H2 i 1 time, deretter til 300° C i 50%/50% N2H2 i 3 timer. Etter avkjøling ble katalysatoren passivisert i 1% 02/N2 atmosfære i 3 timer. After 3 hours with occasional stirring, the slurry was dried at 110° C. for 18 hours. The Pd/Re/C catalyst was then reduced by the following procedure: Heating to 150°C in nitrogen for 1 h, then to 150°C in 50%/50% N2/H2 for 1 h, then to 300°C for 50 %/50% N2H2 for 3 hours. After cooling, the catalyst was passivated in a 1% O 2 /N 2 atmosphere for 3 hours.

Katalysatoren ifølge sammenligningseksempel B ble fremstilt som følger: 100 g aktivert carbon ble kalsinert i en luftatmosfære, først til 20 0° C i 2 timer, deretter til 400° C i 2 timer. Carbonet ble avkjølt og deretter siktet resulterende i 61,0 g kalsinert carbon, 20 mesh. En 0,076 g Re/ml løsning ble fremstilt ved tilsetning av 5,0 g Re-jO^ The catalyst according to comparative example B was prepared as follows: 100 g of activated carbon was calcined in an air atmosphere, first at 200° C. for 2 hours, then at 400° C. for 2 hours. The carbon was cooled and then sieved resulting in 61.0 g of calcined carbon, 20 mesh. A 0.076 g Re/ml solution was prepared by adding 5.0 g Re-jO^

til 50 ml destillert vann. Deretter ble 19,7 ml av løsningen tilsatt til en 1000 ml kolbe og 50 g kalsinert carbon og 70 ml destillert vann ble tilsatt. Etter 4 gimer med leilighetsvis omrøring ble oppslemningen tørket ved 110° C i 18 timer. to 50 ml of distilled water. Then 19.7 ml of the solution was added to a 1000 ml flask and 50 g of calcined carbon and 70 ml of distilled water were added. After 4 hours with occasional stirring, the slurry was dried at 110° C. for 18 hours.

Re/C-materialet ble redusert ved følgende metode: Oppvarming til 150° C i nitrogen i 1 time, deretter til 150°C The Re/C material was reduced by the following method: Heating to 150°C in nitrogen for 1 hour, then to 150°C

i 50%/50% N2/H2 i 1 time, deretter til 300° C i 50%/50% in 50%/50% N2/H2 for 1 hour, then to 300° C in 50%/50%

N2H2 i 3 timer. Re/C-materialet ble passivisert i 1% 02/N2N2H2 for 3 hours. The Re/C material was passivated in 1% 02/N2

1 3 timer. Deretter ble 2,5 g PdCl2, 70 ml destillert vann og 10 ml konsentrert HC1 innført i en 1000 ml's kolbe. Re/C-materialet ble tilsatt til løsningen og oppslemningen fikk stå ved omgivende temperatur i 3 timer. Oppslemningen ble tørket i 18 timer ved 110° C og ble redusert under føl-gende betingelser: Oppvarming til 150° C i nitrogen i 1 time, deretter til 150° C i 50%/50% N2/H2 i 1 time, deretter til 300° C i 50%/50% <N>2/<H>2 i 3 timer. Etter avkjøling ble katalysatoren passivisert i 1 % 02/N2 i 3 timer. Hydrogeneringen ble utført som følger: I hvert tilfelle ble den carbon-opplagrede katalysator inneholdende 3% Pd og 3% Re, som veide 18 g, fylt i et Hastelloy C, høy-trykks reaksjonsrør med en diameter på 0,94 cm og en lengde på ca. 60 cm. Reaksjonsrøret ble oppvarmet med en tresones, elektrisk, vertikal ovn. En nitrogenspyling av reaksjons-systemet ble fullført og reaktoren ble deretter komprimert til 175,8 kg/cm 2med hydrogen. En jevn hydrogenstrøm på 2 1/rain, S.T.P., ble fortsatt mens reaktoren langsomt ble oppvarmet til den temperatur ved hvilken reaksjonen skulle finne sted, og ble holdt i 1 time for å bevirke katalysator-kondisjonering. Når kondisjoneringen var fullført, ble en 35 vekt% maleinsyreløsning innført ved en gitt strømnings-hastighet. Reaktantene ble innført sam-strøms i oppstrøms-retning. Reaksjonsprodukter og overskudd hydrogen ble fjernet gjennom en tilbaketrykks reguleringsventil, hvor prøver av reaksjonsproduktet ble tatt hver halve time. 1 3 hours. Then 2.5 g of PdCl 2 , 70 ml of distilled water and 10 ml of concentrated HCl were introduced into a 1000 ml flask. The Re/C material was added to the solution and the slurry was allowed to stand at ambient temperature for 3 hours. The slurry was dried for 18 hours at 110°C and was reduced under the following conditions: Heating to 150°C in nitrogen for 1 hour, then to 150°C in 50%/50% N2/H2 for 1 hour, then to 300° C in 50%/50% <N>2/<H>2 for 3 hours. After cooling, the catalyst was passivated in 1% O 2 /N 2 for 3 hours. The hydrogenation was carried out as follows: In each case, the carbon-supported catalyst containing 3% Pd and 3% Re, weighing 18 g, was filled into a Hastelloy C, high-pressure reaction tube with a diameter of 0.94 cm and a length of approx. 60 cm. The reaction tube was heated with a three-zone electric vertical oven. A nitrogen purge of the reaction system was completed and the reactor was then compressed to 175.8 kg/cm 2 with hydrogen. A steady hydrogen flow of 2 1/rain, S.T.P., was maintained while the reactor was slowly heated to the temperature at which the reaction was to take place, and was held for 1 hour to effect catalyst conditioning. When conditioning was complete, a 35% by weight maleic acid solution was introduced at a given flow rate. The reactants were introduced co-currently in the upstream direction. Reaction products and excess hydrogen were removed through a back pressure control valve, where samples of the reaction product were taken every half hour.

Mikrostrukturen av katalysatoren fremstilt ved fremgangsmåten ifølge sammenligningseksempel A hvori Re og Pd ble avsatt samtidig omfattet Pd-krystallitter med en midlere størrelse på bare 7 nm og en sterkt dispergert Re-fase. Etter bruk var Pd-krystallittene større og ble påvist ved røntgendifraksjon, men ikke noe metallisk Re kunne påvises. Mikrostrukturen av katalysatoren ifølge sammenligningseksempel B hbori Re og Deretter Pd ble avsatt i rekkefølge, omfattet Pd-krystallitter med midlere størrelse på bare 8 nm og Re i store krystallitter med en midlere størrelse på 50 nm før bruk. I tillegg var kontakt mellom Pd og Re-faser ikke tydelig. Etter bruk var Pd og Re-fasene amorfe og kunne således ikke påvises ved røntgendiffraksjon. The microstructure of the catalyst produced by the method according to comparative example A in which Re and Pd were deposited simultaneously comprised Pd crystallites with an average size of only 7 nm and a highly dispersed Re phase. After use, the Pd crystallites were larger and were detected by X-ray diffraction, but no metallic Re could be detected. The microstructure of the catalyst according to comparative example B hbori Re and then Pd were deposited in order, comprised Pd crystallites with an average size of only 8 nm and Re in large crystallites with an average size of 50 nm before use. In addition, contact between Pd and Re phases was not evident. After use, the Pd and Re phases were amorphous and thus could not be detected by X-ray diffraction.

Reaksjonstemperaturene, kontakttider og produkt// biprodukt//tilførselsfordelinger er vist i Tabell 6. Det observeres at katalysatoren ifølge oppfinnelsen gir fullstendig maleinsyreomdannelse og høy selektivitet overfor THF/BDO, mens katalysatorene ifølge sammenligningseksemplene A og B gir ufullstendige omdannelser og lave selektiviteter. The reaction temperatures, contact times and product//byproduct//feed distributions are shown in Table 6. It is observed that the catalyst according to the invention gives complete maleic acid conversion and high selectivity towards THF/BDO, while the catalysts according to comparative examples A and B give incomplete conversions and low selectivities.

Eksempel 38- 47 Example 38-47

De følgende eksempler ble utført med katalysatoren ifølge Eksempel 1 for å demonstrere anvendelse av forskjellige utgangsmaterialer, forskjellige styrker på løsninger, og vann og organiske løsningsmidler. Utgangsmaterialene, løs-ningene og reaksjonsbetingelsene og resultatene er vist i Tabell 7 og 8. Hydrogenromtiden var 6 minutter i alle til-feller. The following examples were carried out with the catalyst of Example 1 to demonstrate the use of different starting materials, different strengths of solutions, and water and organic solvents. The starting materials, the solutions and the reaction conditions and the results are shown in Tables 7 and 8. The hydrogen space time was 6 minutes in all cases.

Sammenligningseksempel C Comparative example C

Eksempel 1 ble gjentatt med det inntak at carbonbæreren ble lutet med HCl for å nedsette nivået av K til mindre enn 0,001 mol% før avsetningen av Pd og Re- Kataly-satormikrostrukturen var forandret ved at Pd krystallinstør-relsen, som besemt ved H2/O2 titrering, bare var ca. 5 nm. Hydrogenering ved den generélle prosedyre som er beskrevet i eksempel 2-14 ved en temperatur på 180° C og oppholdstid på 2 timer og 2,2 timer ga en selektivitet på 13/79 (THF/BDO) og et romtidutbytte på 325 med katalysatoren ifølge Eksempel 1 mot en selektivitet på 33/19 (THF/BDO) og et romtidutbytte på 210 med katalysatoren fra hvilken K var utl.utet. Example 1 was repeated with the assumption that the carbon support was leached with HCl to reduce the level of K to less than 0.001 mol% before the deposition of Pd and the catalyst microstructure was changed in that the Pd crystal size, as determined by H2/O2 titration, was only approx. 5 nm. Hydrogenation by the general procedure described in example 2-14 at a temperature of 180° C and a residence time of 2 hours and 2.2 hours gave a selectivity of 13/79 (THF/BDO) and a space-time yield of 325 with the catalyst according to Example 1 against a selectivity of 33/19 (THF/BDO) and a space-time yield of 210 with the catalyst from which K was excluded.

Eksempel 4 8 Example 4 8

En 3 vekt% Pd/3 vekt% Re/carbonopplagrat katalysator hvori 0,5 mol% natrium var tilsatt til det kalium-utlutede carbon ble fremstilt på følgende måte. Calgon^ A 3 wt% Pd/3 wt% Re/carbon supported catalyst in which 0.5 mol% sodium was added to the potassium leached carbon was prepared in the following manner. Calgon^

PCB 12 x 30 carbon ble kalsinert ved 200° C i 2 timer og deretter ved 4 00° C i 2 timer. Aske og fine partikler ble fra-skilt ved sikting på en 20 mesh sikt. Deretter ble 200 g av det resulterende carbon tilsatt til 4 liter IM HC1. Oppslemningen fikk stå i 24 timer. Carbonet ble deretter oppsamlet på en filtertrakt og vasket med 4 liter destillert vann. Syrevaskingen ble gjentatt og carbonet ble deretter tørket ved 110° C i 18 timer. Utbyttet var 190,3 g kalium-utlutet carbon. Det kalium-fri carbon (50,0 g) ble tilsatt til en løsning av 1,3 g NaCl i 70 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket ved 110° C i 18 timer. Carbonet méd tilsatt Na ble tilsatt til en løsning av 2,5 g PdCl2 og 10 ml konsentrert HC1 i 65 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket ved 110° C i 18 timer. Pd/C-prøven ble deretter oppvarmet i 1 time til 150° C i helium ved 100 cm<3>/min, deretter i 1 time til 150° C i helium/hydrogen til 100 cm<3>/min av hver, og til slutt i 3 timer ved 300° C i samme helium/hydrogen-atmosfære. Etter avkjøling i strømmende helium/hydrogen ble det faste materiale passivisert med 1,5 % oxygen i nitrogen i 18 timer. PCB 12 x 30 carbon was calcined at 200°C for 2 hours and then at 400°C for 2 hours. Ash and fine particles were separated by sieving on a 20 mesh sieve. Then 200 g of the resulting carbon was added to 4 liters of 1M HC1. The slurry was allowed to stand for 24 hours. The carbon was then collected on a filter funnel and washed with 4 liters of distilled water. The acid wash was repeated and the carbon was then dried at 110° C. for 18 hours. The yield was 190.3 g of potassium leached carbon. The potassium-free carbon (50.0 g) was added to a solution of 1.3 g of NaCl in 70 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried at 110° C. for 18 hours. Carbonate with added Na was added to a solution of 2.5 g of PdCl2 and 10 ml of concentrated HCl in 65 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried at 110° C. for 18 hours. The Pd/C sample was then heated for 1 h to 150°C in helium at 100 cm<3>/min, then for 1 h to 150°C in helium/hydrogen at 100 cm<3>/min each, and finally for 3 hours at 300° C in the same helium/hydrogen atmosphere. After cooling in flowing helium/hydrogen, the solid material was passivated with 1.5% oxygen in nitrogen for 18 hours.

Det passiviserte faste Pd/carbon (48,3 g) ble tilsatt til en løsning av 19 ml 0,2M Re207 i 51 ml vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket ved 110° C i 18 timer. Prøven ble deretter redusert og passivisert som ovenfor beskrevet, og 4 7,8 g Pd/Re/C-katalysator ble fremstilt. The passivated solid Pd/carbon (48.3 g) was added to a solution of 19 mL of 0.2 M Re 2 O 7 in 51 mL of water. After 3 hours at room temperature with occasional stirring, the slurry was dried at 110° C. for 18 hours. The sample was then reduced and passivated as described above, and 47.8 g of Pd/Re/C catalyst was prepared.

Hydrogeneringen ble utført under anvendelse av 2 7 g av denne katalysator med en 35 vekt%-ig vandig løsning av maleinsyre ved en temperatur på 190° C, et H2~trykk på 17 mPa, en kontakttid på 2,2 timer og en hydrogenromtid på 6,0 minutter. Reaksjonsproduktet i mol% basert på carbonpartene var THF-55BDO-34//monoalkoholer-8/7-butyrolacton-3, og romtidutbytte t var 24 0. The hydrogenation was carried out using 27 g of this catalyst with a 35% by weight aqueous solution of maleic acid at a temperature of 190° C, an H2 pressure of 17 mPa, a contact time of 2.2 hours and a hydrogen space time of 6.0 minutes. The reaction product in mol% based on the carbon parts was THF-55BDO-34//monoalcohols-8/7-butyrolactone-3, and the space-time yield t was 24 0.

Eksempel 49 til 51 Examples 49 to 51

En 3 vekt% Pd/3 vekt% Re/carbon-opplagret katalysator ble fremstilt på følgende måte: 100 g Westates CC-521-G carbon ble tilsatt til en løsning av 9,6 g Na2PdCl4•3H20 i 86 ml destillert vann. Etter 1 time ved romtemperatur ble oppslemningen tørket under omrøring ved hjelp av et dampbad. Carbonet ble impregnert med 4,0 g NaOH i 88 ml destillert vann i 2 timer. Carbonet ble deretter vasket med destillert vann inntil det var kloridfritt, og 150 g Pd-på-carbonprøve ble gjenvunnet etter tørking. 45 g av materialet ble tørket ved 110° C i 18 timer. Det ble deretter oppvarmet i 1 time til 150° C i He som strømmet med en hastighet på 100 cm /min, etterfulgt av 1 time ved 150° C i helium/hydrogen hver ved 100 cm<3>/min, og til slutt i 3 timer ved 300° C i strømmende helium/hydrogenatmosfære. Etter avkjøling under strømmende helium/hydrogen ble prøven passivisert med 1,5 % oxygen i nitrogen i 18 timer. Deretter ble 29,38 g av det reduserte Pd/C tilsatt til en løsning av 11,5 g 0,2M Re-^O^ Qg 38,5 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket ved 110° C i 18 timer. Den resulterende Pd/Re/C-katalysator ble redusert og passivisert som ovenfor beskrevet under dannelse av 29,44 g katalysator. A 3 wt% Pd/3 wt% Re/carbon supported catalyst was prepared as follows: 100 g of Westates CC-521-G carbon was added to a solution of 9.6 g of Na2PdCl4•3H20 in 86 ml of distilled water. After 1 hour at room temperature, the slurry was dried with stirring using a steam bath. The carbon was impregnated with 4.0 g of NaOH in 88 ml of distilled water for 2 hours. The carbon was then washed with distilled water until it was chloride-free, and 150 g of Pd-on-carbon sample was recovered after drying. 45 g of the material was dried at 110° C. for 18 hours. It was then heated for 1 hour at 150°C in He flowing at a rate of 100 cm/min, followed by 1 hour at 150°C in helium/hydrogen each at 100 cm<3>/min, and finally in 3 hours at 300° C in a flowing helium/hydrogen atmosphere. After cooling under flowing helium/hydrogen, the sample was passivated with 1.5% oxygen in nitrogen for 18 hours. Then 29.38 g of the reduced Pd/C was added to a solution of 11.5 g of 0.2 M Re-^O^ Q in 38.5 ml of distilled water. After 3 hours at room temperature, the slurry was dried at 110° C. for 18 hours. The resulting Pd/Re/C catalyst was reduced and passivated as described above to yield 29.44 g of catalyst.

Hydrogeneringen ble utført som beskrevet i Eksempel 2-14 med de reaksjonstemperaturer og kontakttider som vist i Tabell 9.. Hy dro gen trykket var 17 MPa og hydrogenromtiden var 6,0 minutter for alle tre eksempler. The hydrogenation was carried out as described in Example 2-14 with the reaction temperatures and contact times shown in Table 9. The hydrogen pressure was 17 MPa and the hydrogen space time was 6.0 minutes for all three examples.

Sammenligningseksempel D til H Comparative example D to H

Sekvensvis Pd/ Re avsetning uten mellomliggende reduksjon Sequential Pd/Re deposition without intermediate reduction

En katalysator sammensatt av 3 vekt% Pd og 3 vekt% Re opplagret på carbon, ble fremstilt på følgende måte. A catalyst composed of 3 wt% Pd and 3 wt% Re stored on carbon was prepared in the following way.

100 g carbon (Calgon PCB 12 x 30) ble kalsinert ved 200°C i 2 timer og deretter ved 400°C i 2 timer. Deretter ble 65,25 g av carbonet gjenvunnet på en 20 mesh sikt. Sekvensavsetning av Pd og Re på det gjenvundne, kalsinerte carbon ble utført som følger: 50 g av det kalsinerte carbon ble tilsatt til en løsning av 2,5 g PdCl2 og 10 ml konsentrert HC1 i 75 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemmingen tørket ved 110°C i 18 timer, 1 g av den tørkede Pd/C-prøve ble fjernet for analyse, og resten, 50,31 g, ble tilsatt til 19,86 ml av en løs-ning av 0/2 M Re207 1 65 ml destillert vann. Etter 3 timer med leilighetsvis omrøring ved romtemperatur ble oppslemningen tørket ved 110°C i 18 timer. 1 g av den tørkede Pd/Re/C-prøve ble fjernet for analyse, og resten ble oppvarmet ved 150°C i 1 time i 100 cm~Vmin helium, og deretter ved 150°C i 1 time i 100 cm 3/min hver av helium og hydrogen, og til slutt ved 300°C i 3 timer i strømmende He/H2-atmosfære. Prøven ble deretter avkjølt til romtemperatur. Den reduserte Pd/Re/C-prøve ble passivisert i 1,5% oxygen i nitrogen i 18 timer. Utbyttet var 46,68 g passivisert, redusert Pd/Re/C-katalysator. 100 g of carbon (Calgon PCB 12 x 30) was calcined at 200°C for 2 hours and then at 400°C for 2 hours. Then 65.25 g of the carbon was recovered on a 20 mesh sieve. Sequential deposition of Pd and Re on the recovered calcined carbon was carried out as follows: 50 g of the calcined carbon was added to a solution of 2.5 g of PdCl 2 and 10 ml of concentrated HCl in 75 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried at 110°C for 18 hours, 1 g of the dried Pd/C sample was removed for analysis, and the residue, 50.31 g, was added to 19.86 mL of a solution of 0/2 M Re 2 O 7 1 65 ml distilled water. After 3 hours with occasional stirring at room temperature, the slurry was dried at 110°C for 18 hours. 1 g of the dried Pd/Re/C sample was removed for analysis, and the residue was heated at 150°C for 1 h in 100 cm~Vmin helium, and then at 150°C for 1 h in 100 cm 3 /min each of helium and hydrogen, and finally at 300°C for 3 hours in a flowing He/H2 atmosphere. The sample was then cooled to room temperature. The reduced Pd/Re/C sample was passivated in 1.5% oxygen in nitrogen for 18 hours. The yield was 46.68 g of passivated, reduced Pd/Re/C catalyst.

Hydrogeneringen ble utført som beskrevet i eksempel 2 til 14 med de reduksjonstemperaturer, reaksjonskontakttider og resultater som er vist i tabell 10, hvilke resultater viser ufullstendig omdannelse og lave selektiviteter. The hydrogenation was carried out as described in Examples 2 to 14 with the reduction temperatures, reaction contact times and results shown in Table 10, which results show incomplete conversion and low selectivities.

Eksempel 52 til 56 Examples 52 to 56

400 g carbon (Calgon PCB 12 x 30) ble tilsatt til 400 g of carbon (Calgon PCB 12 x 30) was added

1 M HC1. Etter 24 timer ble carbonet oppsamlet på en filtertrakt og ble deretter vasket med destillert vann inntil det var kloridfritt. Syrebehandlingen og vaskingen ble gjentatt, og carbonet ble deretter tørket ved 110°C i 48 timer. Det syrevaskede carbon ble gjenvunnet i en mengde på 385,3 g og ble deretter anvendt som følger. 1 M HCl. After 24 hours, the carbon was collected on a filter funnel and was then washed with distilled water until it was free of chloride. The acid treatment and washing were repeated, and the carbon was then dried at 110°C for 48 hours. The acid-washed carbon was recovered in an amount of 385.3 g and was then used as follows.

En katalysator omfattende 3% Pd/3% Re/C inneholdende 0,30 molprosent Mg (eksempel 52), ble fremstilt som følger. Først ble 96,0 g av det syreutlutede carbon tilsatt til en løsning av 4,82 g MgCl2-6H20 i 150 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket med hyppig omrøring ved 110°C i 18 timer. Mg/C-prøven ble kalsinert ved 200°C i 2 timer og deretter ved 400°C i ytterligere 2 timer. Den resulterende kalsinerte Mg/C-prøve ble oppsamlet på en 20 mesh sikt. A catalyst comprising 3% Pd/3% Re/C containing 0.30 mole percent Mg (Example 52) was prepared as follows. First, 96.0 g of the acid leached carbon was added to a solution of 4.82 g of MgCl 2 -6H 2 O in 150 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried with frequent stirring at 110°C for 18 hours. The Mg/C sample was calcined at 200°C for 2 hours and then at 400°C for another 2 hours. The resulting calcined Mg/C sample was collected on a 20 mesh sieve.

50,0 5 av det kalsinerte Mg/C ble tilsatt til en løsning av 2,5 g PdCl2 + 10 ml konsentrert HC1 i 75 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket under hyppig omrøring ved 110°C i 18 timer. Pd/C-Mg-prøven ble deretter redusert ved oppvarming til 150°C i 1 time i 100 cm<3>/min helium, deretter til 150°C i 1 time i 100 cm 3/min av hver av helium og hydrogen, og til slutt ved 300 o C i 3 timer i strømmende helium/hydrogeyn<.> Prøven ble avkjølt til romtemperatur i strømmende helium/hydrogen og ble deretter passivisert i 1,5% 02/N2 i 18 timer. 50.0 5 of the calcined Mg/C was added to a solution of 2.5 g PdCl 2 + 10 ml concentrated HCl in 75 ml distilled water. After 3 hours at room temperature, the slurry was dried with frequent stirring at 110°C for 18 hours. The Pd/C-Mg sample was then reduced by heating to 150°C for 1 hour in 100 cm<3>/min helium, then to 150°C for 1 hour in 100 cm 3/min each of helium and hydrogen, and finally at 300 o C for 3 hours in flowing helium/hydrogeyn<.> The sample was cooled to room temperature in flowing helium/hydrogen and was then passivated in 1.5% 02/N2 for 18 hours.

Deretter ble 47,9 5 g av den reduserte Pd/C-Mg-prøve tilsatt til 19 ml 0,2 M Re207 og 60 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemmingen tørket ved 110°C Then 47.95 g of the reduced Pd/C-Mg sample was added to 19 ml of 0.2 M Re 2 O 7 and 60 ml of distilled water. After 3 hours at room temperature, the slurry was dried at 110°C

i 18 timer. Pd/Re/C-Mg-prøven ble deretter redusert som ovenfor beskrevet etter Pd-tilsetningen, og den reduserte Pd/Re/C-Mg-katalysator ble passivisert i 1,5% oxygen i nitrogen i 18 timer. Den passiviserte, reduserte Pd/Re/C-Mg-katalysator ble fremstilt i en mengde på 48,34 g. for 18 hours. The Pd/Re/C-Mg sample was then reduced as described above after the Pd addition, and the reduced Pd/Re/C-Mg catalyst was passivated in 1.5% oxygen in nitrogen for 18 hours. The passivated reduced Pd/Re/C-Mg catalyst was prepared in an amount of 48.34 g.

En katalysator omfattende 3% Pd/3% Re/C inneholdende 0,30 m<p>lprosent Ca (eksempel 53), ble fremstilt som følger. A catalyst comprising 3% Pd/3% Re/C containing 0.30 mole percent Ca (Example 53) was prepared as follows.

Først ble 96,0 g syreutlutet carbon tilsatt til en løsning av 2,66 g CaCl2 i 150 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket under hyppig omrøring ved 110°C i 18 timer. Ca/C-prøven ble kalsinert ved 200°C i 2 timer, deretter ved 400°C i ytterligere 2 timer. Den resulterende, kalsinerte Ca/C-prøve ble oppsamlet på en 20 mesh sikt. First, 96.0 g of acid leached carbon was added to a solution of 2.66 g of CaCl2 in 150 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried with frequent stirring at 110°C for 18 hours. The Ca/C sample was calcined at 200°C for 2 hours, then at 400°C for another 2 hours. The resulting calcined Ca/C sample was collected on a 20 mesh sieve.

50,0 g av det kalsinerte Ca/C ble tilsatt til en løsning av 2,5 g PdCl2 + 10 ml konsentrert HC1 i 75 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket under hyppig omrøring ved 110°C i 18 timer. Pd/C-Ca-prøven ble deretter redusert ved oppvarming til 50.0 g of the calcined Ca/C was added to a solution of 2.5 g of PdCl 2 + 10 ml of concentrated HCl in 75 ml of distilled water. After 3 hours at room temperature, the slurry was dried with frequent stirring at 110°C for 18 hours. The Pd/C-Ca sample was then reduced by heating to

150°C i 1 time i 100 cm<3>/min helium, deretter til 150°C i 1 time i 100 cm 3/min av hver av helium og hydrogen, og til slutt ved 300°C i 3 timer i den strømmende helium/hydrogen-atmosfære. Prøven ble avkjølt til romtemperatur i strømmende 150°C for 1 hour in 100 cm<3>/min helium, then to 150°C for 1 hour in 100 cm 3/min each of helium and hydrogen, and finally at 300°C for 3 hours in the flowing helium/hydrogen atmosphere. The sample was cooled to room temperature in flowing water

helium/hydrogen og ble deretter passivisert i 1,5% 02/N2 i 18 timer. helium/hydrogen and was then passivated in 1.5% 02/N2 for 18 hours.

Deretter ble 49,0 g av den reduserte Pd/C-Ca-prøve tilsatt til 19,35 ml 0,2 M Re207 og 65 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket ved 110°C i 18 timer. Pd/Re/C-Ca-prøven ble deretter redusert som ovenfor beskrevet etter Pd-tilsetningen, og den reduserte Pd/Re/C-Ca-katalysator ble passivisert i 1,5% oxygen i nitrogen i 18 timer. Den passiviserte, reduserte Pd/Re/C-Ca-katalysator ble fremstilt i en mengde på 50,28 g. Then 49.0 g of the reduced Pd/C-Ca sample was added to 19.35 ml of 0.2 M Re 2 O 7 and 65 ml of distilled water. After 3 hours at room temperature, the slurry was dried at 110°C for 18 hours. The Pd/Re/C-Ca sample was then reduced as described above after the Pd addition, and the reduced Pd/Re/C-Ca catalyst was passivated in 1.5% oxygen in nitrogen for 18 hours. The passivated reduced Pd/Re/C-Ca catalyst was prepared in an amount of 50.28 g.

En katalysator omfattende 3% Pd/3% Re/C inneholdende 0,30 molprosent K (eksempel 54), ble fremstilt som følger. Først ble 96,0 g av det syre-utlutede carbon tilsatt til en løsning av 1,38 g KOH i 150 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket under hyppig omrøring ved 110°C i 18 timer. K/C-prøven ble kalsinert ved 200°C i 2 timer, deretter ved 400°C i ytterligere 2 timer. Den resulterende kalsinerte K/C-prøve ble oppsamlet på en 20 mesh sikt. A catalyst comprising 3% Pd/3% Re/C containing 0.30 mole percent K (Example 54) was prepared as follows. First, 96.0 g of the acid-leached carbon was added to a solution of 1.38 g of KOH in 150 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried with frequent stirring at 110°C for 18 hours. The K/C sample was calcined at 200°C for 2 hours, then at 400°C for another 2 hours. The resulting calcined K/C sample was collected on a 20 mesh sieve.

50,0 g av det kalsinerte K/C ble tilsatt til en løs-ning av 2,5 g PdCl2 + 10 ml konsentrert HC1 i 75 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket under hyppig omrøring til 110°C i 18 timer. Pd/C-K-prøven ble deretter redusert ved oppvarming til 150°C i 1 time i 100 cm<3>/min helium, deretter til 150°C i 1 time i 100 cm 3/min av hver av helium og hydrogen, og til slutt til 300°C i 3 timer i strømmende helium/hydrogen, og deretter passivisert i 1,5% ©2/N0 i 18 timer. 50.0 g of the calcined K/C was added to a solution of 2.5 g of PdCl2 + 10 ml of concentrated HCl in 75 ml of distilled water. After 3 hours at room temperature, the slurry was dried with frequent stirring at 110°C for 18 hours. The Pd/C-K sample was then reduced by heating to 150°C for 1 h in 100 cm<3>/min helium, then to 150°C for 1 h in 100 cm 3/min each of helium and hydrogen, and to finally at 300°C for 3 hours in flowing helium/hydrogen, and then passivated in 1.5% ©2/N0 for 18 hours.

Deretter ble 48,4 g av den reduserte Pd/C-K-prøve tilsatt til 19,10 ml 0,2 M Re207 og 65 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket ved 110°C i 18 timer. Pd/Re/C-K-prøven ble deretter redusert Then 48.4 g of the reduced Pd/C-K sample was added to 19.10 ml of 0.2 M Re 2 O 7 and 65 ml of distilled water. After 3 hours at room temperature, the slurry was dried at 110°C for 18 hours. The Pd/Re/C-K sample was then reduced

som ovenfor beskrevet etter Pd-tilsetningen, og den reduserte Pd/Re/C-K-katalysator ble passivisert i 1,5% oxygen i nitrogen i 18 timer. Den passiviserte, reduserte Pd/Re/C-K-katalysator ble fremstilt i en mengde på 48,67 g. as described above after the Pd addition, and the reduced Pd/Re/C-K catalyst was passivated in 1.5% oxygen in nitrogen for 18 hours. The passivated reduced Pd/Re/C-K catalyst was prepared in an amount of 48.67 g.

En katalysator omfattende 3% Pd/3% Re/C inneholdende 0,36 molprosent Li (eksempel 55), ble fremstilt som følger. Først ble 96,0 g av det syre-lutede carbon tilsatt til en løsning av 1,17 g LiCl i 150 ml destillert vann. Etter 3 timer ved romtemperatur med leilighetsvis omrøring ble oppslemningen tørket med hyppig omrøring ved 110°C i 18 timer. Li/C-prøven ble kalsinert ved 200°C i 2 timer, deretter ved 400°C i ytterligere 2 timer. Den resulterende kalsinerte Li/C-prøve ble oppsamlet på en 20 mesh sikt. A catalyst comprising 3% Pd/3% Re/C containing 0.36 mole percent Li (Example 55) was prepared as follows. First, 96.0 g of the acid-alcohol carbon was added to a solution of 1.17 g of LiCl in 150 ml of distilled water. After 3 hours at room temperature with occasional stirring, the slurry was dried with frequent stirring at 110°C for 18 hours. The Li/C sample was calcined at 200°C for 2 h, then at 400°C for another 2 h. The resulting calcined Li/C sample was collected on a 20 mesh sieve.

50,0 g av det kalsinerte Li/C ble tilsatt til en løsning av 2,5 g PdCl2 + 10 ml konsentrert HC1 i 80 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket med hyppig omrøring ved 110°C i 18 timer. Pd/C-Li-prøven ble deretter redusert ved oppvarming til 50.0 g of the calcined Li/C was added to a solution of 2.5 g of PdCl 2 + 10 ml of concentrated HCl in 80 ml of distilled water. After 3 hours at room temperature, the slurry was dried with frequent stirring at 110°C for 18 hours. The Pd/C-Li sample was then reduced by heating to

150°C i 1 time i 100 cm<3>/min helium, deretter til 150°C i 1 time i 100 cm /min hver av helium og hydrogen, og til slutt til 300°C i 3 timer i strømmende helium/hydrogenatmosfære. Prøven ble avkjølt til romtemperatur i strømmende helium/hydrogen og ble deretter passivisert i 1,5% 02/N2 i 18 timer. 150°C for 1 hour in 100 cm<3>/min helium, then to 150°C for 1 hour in 100 cm/min each of helium and hydrogen, and finally to 300°C for 3 hours in a flowing helium/hydrogen atmosphere . The sample was cooled to room temperature in flowing helium/hydrogen and was then passivated in 1.5% O 2 /N 2 for 18 hours.

Deretter ble 49,5 g av den reduserte Pd/C-Li-prøve tilsatt til 19,5 ml 0,2 M Re902 og 60 ml destillert vann. Etter 3 timer ved romtemperatur ble oppslemningen tørket ved 110°C i 18 timer. Pd/Re/C-Li-prøven ble deretter redusert som ovenfor beskrevet etter Pd-tilsetning, og den reduserte Pd/Re/C-Li-katalysator ble passivisert i 1,5% oxygen i nitrogen i 18 timer. Den passiviserte, reduserte Pd/Re/C-Li-katalysator ble fremstilt i en mengde på 49,97 g. Then, 49.5 g of the reduced Pd/C-Li sample was added to 19.5 ml of 0.2 M Re902 and 60 ml of distilled water. After 3 hours at room temperature, the slurry was dried at 110°C for 18 hours. The Pd/Re/C-Li sample was then reduced as described above after Pd addition, and the reduced Pd/Re/C-Li catalyst was passivated in 1.5% oxygen in nitrogen for 18 hours. The passivated reduced Pd/Re/C-Li catalyst was prepared in an amount of 49.97 g.

Disse katalysatorer sammen med en katalysator fremstilt ifølge eksempel 48 og omfattende 3% Pd/3% Re/C inneholdende 0,5 molprosent Na (eksempel 56), ble anvendt i hydro-generingsfor.søk utført som beskrevet i eksempel 2 til 14 med de reaksjonstemperaturer, reaksjonskontakttider og resultater som er vist i tabell 11. These catalysts, together with a catalyst prepared according to Example 48 and comprising 3% Pd/3% Re/C containing 0.5 mole percent Na (Example 56), were used in hydrogenation trials carried out as described in Examples 2 to 14 with the reaction temperatures, reaction contact times and results shown in Table 11.

Claims (3)

1. Hydrogeneringskatalysator av palladium og rhenium på en carbonbærer, karakterisert ved at katalysatoren omfatter 0,5 til 10% palladium og 1 til 10% rhenium av totalvekt, hvor palladiumet er til stede i form av krystallitter med en midlere størrelse, på 10 nm til 25 nm og hvor rheniumet er til stede i form av en sterkt dispergert fase av krystallitter med en midlere størrelse på mindre enn 2,5 nm.1. Hydrogenation catalyst of palladium and rhenium on a carbon support, characterized in that the catalyst comprises 0.5 to 10% palladium and 1 to 10% rhenium by total weight, where the palladium is present in the form of crystallites with an average size of 10 nm to 25 nm and where the rhenium is present in the form of a highly dispersed phase of crystallites with an average size of less than 2.5 nm. 2. Fremgangsmåte for fremstilling av en hydrogeneringskatalysator av palladium og rhenium på en carbonbærer, karakterisert ved at den omfatter følgende trinn: (i) impregnering av carbonbæreren med en kilde av palladium, hvilket palladium er i løsning, (ii) fjerning av løsningsmidlet og oppvarming av det palladiumimpregnerte carbon til en temperatur på 150 til 550°C under reduserende betingelser, (iii) tilføring til det palladiumimpregnerte carbon av en kilde av rhenium som er i løsning, og (iv) fjerning av løsningsmidlet fra trinn (iii) , (v) oppvarming av katalysatoren fra trinn (iv) til en temperatur på 150 til 550°C under reduserende betingelser.2. Process for producing a hydrogenation catalyst of palladium and rhenium on a carbon support, characterized in that it comprises the following steps: (i) impregnation of the carbon support with a source of palladium, which palladium is in solution, (ii) removal of the solvent and heating of the palladium-impregnated carbon to a temperature of 150 to 550°C under reducing conditions, (iii) adding to the palladium-impregnated carbon a source of rhenium in solution, and (iv) removing the solvent from step (iii), (v ) heating the catalyst from step (iv) to a temperature of 150 to 550°C under reducing conditions. 3. Fremgangsmåte for fremstilling av tetrahydrofuran, 1,4-butandiol eller blandinger derav fra en oxyderbar malein-syreanhydridforløper omfattende oxydering av forløperen under dannelse av maleinsyreanhydrid og omsetning av maleinsyreanhydridet med hydrogen i nærvær av en hydrogeneringskatalysator, karakterisert ved at den omfatter: (i) oppsamling av maleinsyreanhydridet fra oxyda- sjonstrinnet i vann under dannelse av en vandig løsning av maleinsyre, og (ii) omsetning av den vandige løsning av maleinsyre med hydrogen i nærvær av en katalysator ifølge kravene 1 og 2.3. Process for the production of tetrahydrofuran, 1,4-butanediol or mixtures thereof from an oxidizable maleic anhydride precursor comprising oxidizing the precursor to form maleic anhydride and reacting the maleic anhydride with hydrogen in the presence of a hydrogenation catalyst, characterized in that it comprises: (i ) collection of the maleic anhydride from oxyda- the ion step in water while forming an aqueous solution of maleic acid, and (ii) reacting the aqueous solution of maleic acid with hydrogen in the presence of a catalyst according to claims 1 and 2.
NO845196A 1983-12-22 1984-12-21 HYDROGENERATION CAT A CA BONBARER, PROCEDURE FOR THE PREPARATION OF THIS, AND FREQUENTLY MAKED TEA FOR THE PREPARATION OF TETRAHYDROFURAN, IOL OR MIXTURES THEREOF. NO159641C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/564,372 US4550185A (en) 1983-12-22 1983-12-22 Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst

Publications (3)

Publication Number Publication Date
NO845196L NO845196L (en) 1985-06-24
NO159641B true NO159641B (en) 1988-10-17
NO159641C NO159641C (en) 1989-01-25

Family

ID=24254195

Family Applications (1)

Application Number Title Priority Date Filing Date
NO845196A NO159641C (en) 1983-12-22 1984-12-21 HYDROGENERATION CAT A CA BONBARER, PROCEDURE FOR THE PREPARATION OF THIS, AND FREQUENTLY MAKED TEA FOR THE PREPARATION OF TETRAHYDROFURAN, IOL OR MIXTURES THEREOF.

Country Status (13)

Country Link
US (1) US4550185A (en)
EP (1) EP0147219B1 (en)
AT (1) ATE41609T1 (en)
AU (3) AU3708084A (en)
BR (1) BR8406586A (en)
CA (1) CA1268752A (en)
DE (1) DE3477350D1 (en)
HK (1) HK81589A (en)
MY (1) MY100910A (en)
NO (1) NO159641C (en)
NZ (1) NZ210651A (en)
SG (1) SG44989G (en)
TR (1) TR24399A (en)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659686A (en) * 1983-12-22 1987-04-21 E. I. Du Pont De Nemours And Company Method for treating carbon supports for hydrogenation catalysts
US4609636A (en) * 1983-12-22 1986-09-02 E. I. Du Pont De Nemours And Company Pd/Re hydrogenation catalyst for making tetrahydrofuran and 1,4-butanediol
US4656297A (en) * 1985-03-11 1987-04-07 Amoco Corporation Coproduction of butanediol and tetrahydrofuran and their subsequent separation from the reaction product mixture
GB8509530D0 (en) * 1985-04-13 1985-05-15 Bp Chem Int Ltd Hydrogenation of carboxylic acids
US4772729A (en) * 1987-01-23 1988-09-20 E. I. Du Pont De Nemours And Company Hydrogenation of citric acid and substituted citric acids to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactones and mixtures thereof
US4782167A (en) * 1987-01-23 1988-11-01 E. I. Du Pont De Nemours And Company Process for preparing butyrolactones and butanediols
US5149680A (en) * 1987-03-31 1992-09-22 The British Petroleum Company P.L.C. Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
US4795733A (en) * 1987-11-27 1989-01-03 Gaf Corporation Hydrogenation catalyst and process for its preparation
US4797382A (en) * 1987-11-27 1989-01-10 Gaf Corporation Hydrogenation catalyst and process for preparing the catalyst
GB8808831D0 (en) * 1988-04-14 1988-05-18 Shell Int Research Process for preparation of alkanediols
GB8811009D0 (en) * 1988-05-10 1988-06-15 Bp Chem Int Ltd Chemical process
JP2666151B2 (en) * 1988-12-14 1997-10-22 東燃株式会社 Method for producing 1,4-butanediol
DE4009029A1 (en) * 1990-03-21 1991-09-26 Basf Ag METHOD FOR PRODUCING 1,4-BUTANDIOL
WO1992002298A1 (en) * 1990-07-27 1992-02-20 E.I. Du Pont De Nemours Company Hydrogenation catalyst and method for preparing tetrahydrofuran
DE4138792A1 (en) * 1991-11-26 1993-05-27 Basf Ag METHOD FOR PRODUCING 1,2-PROPYLENE GLYCOL
DE4139607A1 (en) * 1991-11-30 1993-06-03 Basf Ag METHOD FOR PRODUCING N-SUBSTITUTED LACTAMES
DE4243722A1 (en) * 1992-12-23 1994-06-30 Basf Ag Process for the preparation of polyether glycols
US5473086A (en) * 1995-01-17 1995-12-05 The Standard Oil Co. Process for the hydrogenation of maleic acid to 1,4-butanediol
US5478952A (en) * 1995-03-03 1995-12-26 E. I. Du Pont De Nemours And Company Ru,Re/carbon catalyst for hydrogenation in aqueous solution
DE19520258A1 (en) * 1995-06-02 1996-12-05 Bayer Ag Process for the preparation of 2-pyrrolidones
US5698749A (en) * 1995-09-06 1997-12-16 The Standard Oil Company Catalysts for the hydrogenation of aqueous maleic acid to 1,4-butanediol
US6225477B1 (en) * 1997-02-05 2001-05-01 E. I. Du Pont De Nemours And Company Process for regeneration of carbon-supported, rhenium-containing catalysts
US6486367B1 (en) 1997-12-01 2002-11-26 The Standard Oil Company Process for the hydrogenation of maleic acid to 1,4-butanediol
US5883266A (en) * 1998-01-16 1999-03-16 Battelle Memorial Institute Hydrogenated 5-carbon compound and method of making
US6008384A (en) * 1998-03-03 1999-12-28 E. I. Du Pont De Nemours And Company Method and Ru,Re,Sn/carbon catalyst for hydrogenation in aqueous solution
CN1114488C (en) * 1999-08-30 2003-07-16 标准石油公司 Improved catalyst for preparing 1,4-butanediol by hydrogenation of maleic acid
US7019155B2 (en) * 2001-11-13 2006-03-28 Invista North America S.A.R.L. Hydrogenation of tetrahydroxybutane to tetrahydrofuran
US6593481B1 (en) * 2001-11-13 2003-07-15 E. I. Du Pont De Nemours And Company Hydrogenation of 3,4-tetrahydrofurandiol to tetrahydrofuran
DE10357718A1 (en) 2003-12-09 2005-07-21 Basf Ag Process for the preparation of tricyclodecanedialdehyde
DE102004007499A1 (en) 2004-02-13 2005-09-01 Basf Ag Process for the preparation of optically active alcohols or carboxylic acids
US7935834B2 (en) * 2004-07-01 2011-05-03 Isp Investments Inc. Catalysts for maleic acid hydrogenation to 1,4-butanediol
ES2587402T3 (en) 2007-08-17 2016-10-24 Basf Se Carboxylic acid producing member of the Pasteurellaceae family
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US7816565B2 (en) 2008-07-31 2010-10-19 Celanese International Corporation Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
ES2560534T3 (en) * 2008-12-23 2016-02-19 Basf Se Bacterial cells that show dehydrogenase activity for the manufacture of succinic acid
EP2202294B1 (en) * 2008-12-23 2015-10-21 Basf Se Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid
US8178715B2 (en) * 2008-12-31 2012-05-15 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via acetaldehyde
WO2010092155A1 (en) 2009-02-16 2010-08-19 Basf Se Novel microbial succinic acid producers and purification of succinic acid
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
WO2011053367A1 (en) * 2009-10-26 2011-05-05 Celanese International Corporation Catalysts for making ethyl acetate from acetic acid
US8680321B2 (en) * 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
KR20120112852A (en) 2010-02-02 2012-10-11 셀라니즈 인터내셔날 코포레이션 Preparation and use of a catalyst for producing ethanol comprising a crystalline support modifier
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US20140342420A1 (en) * 2011-08-22 2014-11-20 Suganit Systems, Inc. Production of bio-butanol and related products
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
WO2013103399A1 (en) 2012-01-06 2013-07-11 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
GB201318175D0 (en) 2013-10-14 2013-11-27 Johnson Matthey Davy Technologies Ltd Process
BR112017011750A2 (en) * 2014-12-04 2017-12-26 Shell Int Research process for the production of 1,4-butanediol and tetrahydrofuran from furan
US9597667B2 (en) 2015-03-26 2017-03-21 North Carolina State University Palladium, rhenium and alumina catalysts for the selective hydrogenation of carbonyls, their synthesis, and methods of using the same
EP3559156A1 (en) * 2016-12-20 2019-10-30 SABIC Global Technologies B.V. Utilization of normal carbon 4 (nc4) recycle stream for secondary and tertiary products
KR102287646B1 (en) * 2018-12-31 2021-08-06 한화솔루션 주식회사 Carbon-based noble metal-transition metal complex catalyst and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113138A (en) * 1961-12-20 1963-12-03 Fmc Corp Preparation of butyrolactone
US3370067A (en) * 1967-04-07 1968-02-20 Shell Oil Co Hydrogenolysis of butyrolactone and gamma-valerolactone to the corresponding cyclic ethers
US3759841A (en) * 1971-05-10 1973-09-18 Universal Oil Prod Co P metal rhenium or group iv-a metal method of manufacturing a supported catalyst containing platinum grou
US3957827A (en) * 1974-10-17 1976-05-18 Sun Ventures, Inc. Hydrogenation of carboxylic acid anhydrides to lactones or esters by homogeneous catalysis
DE2519817A1 (en) * 1975-05-03 1976-11-11 Hoechst Ag PROCESS FOR THE PRODUCTION OF BUTANDIOL- (1.4)
DE2605107C3 (en) * 1976-02-10 1983-12-29 Chemische Werke Hüls AG, 4370 Marl Process for the preparation of diols by catalytic hydrogenation of the corresponding dicarboxylic acids
GB1587198A (en) * 1976-11-23 1981-04-01 Ucb Sa Process for the production of butane-1,4 diol and tetrahydrofuran
DE2715667A1 (en) * 1977-04-07 1978-10-12 Hoechst Ag 1,4-Butane-diol prodn. by hydrogenolysis of maleic anhydride - or maleic or fumaric acids, over a mixed metal catalyst on silico-acetate carrier
US4165276A (en) * 1977-09-14 1979-08-21 Uop Inc. Hydrocarbon conversion with a superactive multimetallic catalytic composite
US4176088A (en) * 1978-03-20 1979-11-27 Uop Inc. Superactive multimetallic catalytic composite comprising platinum group metal and rhenium
US4244878A (en) * 1978-08-04 1981-01-13 Halcon Research And Development Corporation Preparation of maleic anhydride
US4231943A (en) * 1979-05-31 1980-11-04 Chevron Research Company Maleic anhydride production
US4251390A (en) * 1979-06-11 1981-02-17 Denka Chemical Corporation Partial oxidation catalyst
US4342644A (en) * 1979-06-29 1982-08-03 Exxon Research & Engineering Co. Reforming with multimetallic catalysts
US4283288A (en) * 1980-05-14 1981-08-11 Standard Oil Company (Indiana) Oxidation of butane to maleic anhydride
FR2505819A1 (en) * 1981-05-12 1982-11-19 Inst Francais Du Petrole PROCESS FOR PRODUCING ALCOHOLS BY CATALYTIC HYDROGENATION OF ORGANIC ACID ESTERS

Also Published As

Publication number Publication date
AU3708084A (en) 1986-06-26
EP0147219A2 (en) 1985-07-03
TR24399A (en) 1991-09-27
MY100910A (en) 1991-05-31
NO159641C (en) 1989-01-25
NO845196L (en) 1985-06-24
US4550185A (en) 1985-10-29
HK81589A (en) 1989-10-20
NZ210651A (en) 1988-05-30
EP0147219A3 (en) 1985-11-21
BR8406586A (en) 1985-10-15
SG44989G (en) 1989-11-17
AU1405692A (en) 1992-06-18
EP0147219B1 (en) 1989-03-22
DE3477350D1 (en) 1989-04-27
AU3172789A (en) 1989-07-20
ATE41609T1 (en) 1989-04-15
CA1268752A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
NO159641B (en) HYDROGENATION CATALYST OF PALLADIUM AND RHENIUM ON A CARBON CARBON, PROCEDURE FOR THE PREPARATION OF THIS, AND PROCEDURE FOR THE PREPARATION OF TETRAHYDROFURAN, 1,4-BUTANDIOL OR MIXTURES THEREOF.
US4609636A (en) Pd/Re hydrogenation catalyst for making tetrahydrofuran and 1,4-butanediol
CN108299358B (en) Process for the selective oxidation of furan alcohols or aldehydes
EP2382179B1 (en) Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
NO316363B1 (en) Process for the preparation of a catalyst for the production of vinyl acetate from ethylene, acetic acid and oxygen
JPS61183237A (en) Hydrogenation of acetic acid
NZ522267A (en) Process for the production of vinyl acetate using palladium and/or nickel based metal complex as catalyst
US4659686A (en) Method for treating carbon supports for hydrogenation catalysts
CN101432254B (en) Integrated process for the production of acetic acid and vinyl acetate
EP0031244A1 (en) Process for producing methanol from synthesis gas with palladium-calcium catalysts
CN111187238B (en) Synthetic method of 2, 5-furandicarboxylic acid
NO328031B1 (en) Integrated process for the production of vinyl acetate
EP0277562B1 (en) Hydrogenation of citric acid and substituted citric acids to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactones and mixtures thereof
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
NO841348L (en) PROCEDURE FOR THE PREPARATION OF METHANOL
KR100932416B1 (en) Ethane oxidation catalyst and process utilising the catalyst
EP0133778B1 (en) Methanol conversion process
JPS6113689B2 (en)
Firdavsiy et al. ACTIVE CATALYSTS FOR PRODUCING VINYL ACETATE MONOMERS
CN101462081A (en) Method for preparing catalyst for synthesizing dimethyl oxalate
JPH0453585B2 (en)
JPH0468976B2 (en)
US3932549A (en) Process for preparing tert-butylstyrene
KR930005305B1 (en) Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use
CN118577302A (en) Preparation method of efficient integrated catalyst for preparing acetic acid from synthesis gas