NO159025B - PROCEDURE FOR CURRENTLY CREATION OF CORROSION PROTECTIVE ALUMINUM BUILDING PARTS. - Google Patents

PROCEDURE FOR CURRENTLY CREATION OF CORROSION PROTECTIVE ALUMINUM BUILDING PARTS. Download PDF

Info

Publication number
NO159025B
NO159025B NO832077A NO832077A NO159025B NO 159025 B NO159025 B NO 159025B NO 832077 A NO832077 A NO 832077A NO 832077 A NO832077 A NO 832077A NO 159025 B NO159025 B NO 159025B
Authority
NO
Norway
Prior art keywords
zno
building parts
corrosion
naoh
creation
Prior art date
Application number
NO832077A
Other languages
Norwegian (no)
Other versions
NO832077L (en
NO159025C (en
Inventor
Wolfgang Gruhl
Helmut Doelling
Original Assignee
Vaw Ver Aluminium Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaw Ver Aluminium Werke Ag filed Critical Vaw Ver Aluminium Werke Ag
Publication of NO832077L publication Critical patent/NO832077L/en
Publication of NO159025B publication Critical patent/NO159025B/en
Publication of NO159025C publication Critical patent/NO159025C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Building Environments (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

1. A method ,for current free formation of corrosion resistant layers onto aluminium articles containing at least at the welds 6 to 13 % and 0.01 to 2 % BI or 6 to 13 % Si and 0.001 to 1 % Be which comprises the folowing operational steps : - immersing the aluminium articles in an aqueous solution of 100-300 grams per liter NaOH and 10-30 grams per liter ZnO for 1-5 min ; - rinsing and drying.

Description

Oppfinnelsen vedrører en fremgangsmåte til strøm- The invention relates to a method for current

løs frembringelse av korrosjonsbeskyttende sjikt på aluminium-bygningsdeler, spesielt på hullegemebygningsdeler med vokskakestruktur. loose production of a corrosion-protective layer on aluminum construction parts, especially on hollow body construction parts with a wax cake structure.

For fremstilling av korrosjonsbeskyttende bygningsdeler er det kjent å påføre beskyttelsessjikt av sink, resp. sinkholdige legeringer på aluminium. Dette kan eksempelvis foregå ved hjelp av metallsprøyting, ved galvanisering, eller ved valseplettering. Fremgangsmåtene fører riktignok til en god vedhengning og mekanisk motstandsdyktighet av beskyttelses-sjiktet, men er imidlertid forholdsvis omstendelig. For the production of corrosion-protective building parts, it is known to apply a protective layer of zinc, resp. zinc-containing alloys on aluminium. This can, for example, take place by means of metal spraying, by galvanizing, or by roller plating. The methods do indeed lead to good adhesion and mechanical resistance of the protective layer, but are however relatively cumbersome.

Videre er det kjent kromaterings- og fosfateringsfremgangsmåte ved hvis hjelp kan påføres dekksjikt på aluminium. Ved en sur fosfateringsfremgangsmåte anvendes oppløsninger av monosinkfosfat, fosforsyre og fluorider. De dannede sjikt er ca. 1-5 ym tykke, og er oppløselige i syrer samt alkalier. De anvendes derfor overveiende for klebegrunning for påstrykning og kunststoffbelegg. Ved ytre påkjenninger som f. eks. i bygningsverk beskyttes sjiktene med et tynt, klart metakrylat eller celluloseacetat-overtrekk, da det ellers er å frykte et korrosjonsangrep, (se Wernick, Pinner, Zurbrtigg og Weiner, Furthermore, there is a known chromating and phosphating method by means of which a cover layer can be applied to aluminium. In an acid phosphating process, solutions of monozinc phosphate, phosphoric acid and fluorides are used. The formed layers are approx. 1-5 ym thick, and are soluble in acids and alkalis. They are therefore mainly used for adhesive primers for ironing and plastic coatings. In case of external stresses such as in buildings, the layers are protected with a thin, clear methacrylate or cellulose acetate coating, as there is otherwise a risk of corrosion attack, (see Wernick, Pinner, Zurbrtigg and Weiner,

"Die Oberflåchenbehandlung von Aluminium", side 193). "Die Oberflåchenbehandlung von Aluminium", page 193).

Den kjemiske overflatebehandling av derav frem-stil té overtrekk, f. eks. kromatsjikt er forholdsvis lett gjennomførbar, gir imidlertid ingen sikker korrosjonsbeskyttelse i sterk korrosiv omgivelse. Spesielt, når det forlanges høyere slitasjebestandighet og slipefasthet er kjemisk frembrakt oksyd-sjikt bare egnet som underlag for organiske overtrekk. The chemical surface treatment of this forward-style coating, e.g. chromate layer is relatively easy to implement, but does not, however, provide reliable corrosion protection in a strongly corrosive environment. In particular, when higher wear resistance and abrasion resistance are required, a chemically produced oxide layer is only suitable as a substrate for organic coatings.

Oppfinnelsens oppgave er å tilveiebringe en fremgangsmåte til frembringelse av korrosjonsbeskyttede bygningsdeler, hvor overtrekkene er forholdsvis enkelt fremstillbare, har en høy slitasjefasthet og korrosjonsbestandighet. The task of the invention is to provide a method for producing corrosion-protected building parts, where the coatings are relatively easy to produce, have a high wear resistance and corrosion resistance.

Oppfinnelsen vedrører altså en fremgangsmåte til strømløs frembringelse av korrosjonsbeskyttende sjikt på alumlniums-bygningsdeler, som minst ved sømstedene Inneholder 6-13* Sl og 0,01-2* Bl eller 6-13* Si og 0,001-1* Be, The invention therefore relates to a method for the electroless production of a corrosion-protective layer on aluminum building parts, which at least at the seam locations contains 6-13* Sl and 0.01-2* Bl or 6-13* Si and 0.001-1* Be,

spesielt på hullegemebygningsdeler med vokskakestruktur, Idet fremgangsmåten er karakterisert ved aluminiumsbygningsdelen dyppes 1 en vandig oppløsning av 100-300 g/l NaOH og 10-30 g/l ZnO 1 1-5 minutter og underkastes en etterfølgende;spyle- especially on hollow body building parts with a wax cake structure, As the method is characterized by the aluminum building part, 1 is dipped in an aqueous solution of 100-300 g/l NaOH and 10-30 g/l ZnO 1 1-5 minutes and subjected to a subsequent; rinse-

og tørkebehandllng. and drying treatment.

Forholdene NaOH/ZnO er fastlagt ved følgende forhold: The NaOH/ZnO ratios are determined by the following conditions:

1. 100 g NaOH og 10 g ZnO. 1. 100 g NaOH and 10 g ZnO.

2. 200 g NaOH og 20 g ZnO. 2. 200 g of NaOH and 20 g of ZnO.

Ved fremgangsmåten Ifølge oppfinnelsen kan aluminiumsbygningsdelen dyppes i en vandig oppløsning av 150-200 g/l NaOH In the method According to the invention, the aluminum building part can be dipped in an aqueous solution of 150-200 g/l NaOH

og 15-20 g/l ZnO. and 15-20 g/l ZnO.

Sinkatoppløsninger av denne sammensetning er prinr sipielt kjent. Således er det i den allerede siterte bok av Wernick og andre "Die Oberflachenbehandlung von Aluminium", side 501 angitt en lignende sammensetning, idet denne sinkatoppløsning anvendes til frembringelse av tynne sinksjikt for en etter-følgende galvanisering. Zincate solutions of this composition are generally known. Thus, in the already cited book by Wernick and others "Die Oberflachenbehandlung von Aluminium", page 501, a similar composition is indicated, this zincate solution being used to produce thin zinc layers for a subsequent galvanization.

Det har vist seg at tilsetningen av 6-13 % Si og 0,01-I 2 % Bi eller 0,001- 1% Be fører til en forsterket sinkutskillelse. Riktignok er det prinsipielt kjent at legeringssammensetningen utøver en innvirkning på sinkutskillelsen ved sinkatbehandlingen (se "Die Oberflachenbehandlung von Aluminium", Werner og andre, side 502). Disse undersøkelser gjaldt imidlertid ikke for de ifølge oppfinnelsen utvalgte områder. It has been shown that the addition of 6-13% Si and 0.01-I 2% Bi or 0.001-1% Be leads to an enhanced zinc precipitation. Admittedly, it is known in principle that the alloy composition exerts an influence on the zinc separation in the zincate treatment (see "Die Oberflachenbehandlung von Aluminium", Werner and others, page 502). However, these investigations did not apply to the areas selected according to the invention.

I det følgende forklares oppfinnelsen nærmere ved, hjelp av to eksempler: In the following, the invention is explained in more detail by means of two examples:

1. Sammenligningsforsøk mellom en ubehandlet aluminiums-bygningsdel en ved grønnkromatering, beskyttét bygningsdel og en ifølge oppfinnelsen behandlet bygningsdel, som ved sømstedene har lo % Si og 0,01 % Bisrnut. Grønnkroma ter ingen ble gjennom-ført ved 45°C badtemperatur med alodine 401/45 i en inndypnings-tid på 1-2 minutter. Behandlingsfremgangsmåten ifølge oppfinnelsen ble gjennomført i to trinn, nemlig med 200 g/l NaOH og 20 g/l ZnO samt 150 g/l NaOH og 15 g/l ZnO. Etter 4 ukers vekseltype-prøve i 5 %-ig kalsiumkloridoppløsning ble det fastslått føl-gende maksimale korrosjonsdybder i tverrslip: 1. Comparison test between an untreated aluminum building part, a building part protected by green chromating and a building part treated according to the invention, which at the seam points has lo % Si and 0.01 % Bisrnut. Green chromate staining was carried out at 45°C bath temperature with alodine 401/45 for an immersion time of 1-2 minutes. The treatment method according to the invention was carried out in two stages, namely with 200 g/l NaOH and 20 g/l ZnO and 150 g/l NaOH and 15 g/l ZnO. After a 4-week alternating-type test in a 5% calcium chloride solution, the following maximum corrosion depths were determined in transverse grinding:

Av dette sammenligningsforsøk fremgår at den maksimale korrosjonsdybde ved fremgangsmåten ifølge oppfinnelsen tydelig er nedsatt i forhold til den kjente fremgangsmåte. Spesielt fordelaktig er behandlingen ifølge oppfinnelsen med 150 g/l NaOH og 15 g/l ZnO. 2. Til sammenligning med et galvanisk frembragt be-skyttelses j ikt ble det fremstillet et grunnlegeme av AlZnMg med et mellomsjikt av sink, og et galvanisk frembragt dekksjikt av Cu, Ni, Cr. Overfor dette ble det fremstillet en ved fremgangsmåten ifølge oppfinnelsen beskyttet bygningsdel av samme bygningstype med bare et sjikt av sink. From this comparison test, it appears that the maximum corrosion depth with the method according to the invention is clearly reduced compared to the known method. The treatment according to the invention with 150 g/l NaOH and 15 g/l ZnO is particularly advantageous. 2. For comparison with a galvanically produced protective coating, a basic body of AlZnMg with an intermediate layer of zinc, and a galvanically produced cover layer of Cu, Ni, Cr was produced. Against this, a building part of the same building type protected by the method according to the invention was produced with only one layer of zinc.

I en kombinert korrosjons- og slitasjeprøve (salt-forstøvningståke og slitasjeprøve, stenslag) viste Idet seg ved det galvaniserte produkt,etter en til å begynne med god korrosjonsbestandighet> sterke oppløsninger og ødeleggelser av dekksjiktet. Dette er å tilbakeføre på en øket kontaktkorrosjon mellom de galvanisk frembrakte sjikt, spesielt Cu og mellomsjiktets Zn resp. senere aluminiums grunnmateriale. Samlet viser denne prøve at også en komplisert og omstendelig frembragt beskyttelses-behandling ikke kan konkurrere med et forholdsvis tynt sinkat-sjikt i henhold til fremgangsmåten..ifølge oppfinnelsen. In a combined corrosion and wear test (salt spray mist and wear test, stone impact) the galvanized product proved itself, after an initially good corrosion resistance> strong dissolution and destruction of the cover layer. This is attributable to increased contact corrosion between the galvanically produced layers, especially Cu and the intermediate layer's Zn resp. later aluminum base material. Overall, this test shows that even a complicated and laboriously produced protective treatment cannot compete with a relatively thin zincate layer according to the method... according to the invention.

Claims (2)

1. Fremgangsmåte til strømløs frembringelse av korrosjonsbeskyttende sjikt på aluminiumsbygningsdeler, som minst ved sømstedene Inneholder 6-13* Si og 0,01-2* Bl eller 6-13* Sl og 0,001-1* Bi, spesielt på hullegemebygningsdeler med vokskakestruktur, karakterisert ved at alumlnlumsbygningsde-len dyppes 1 en vandig oppløsning av 100-300 g/l NaOH og 10-30 g/l ZnO 1 1-5 minutter og underkastes en etterfølgende spyle- og tørkebehandling.1. Process for the electroless production of a corrosion-protective layer on aluminum building parts, which at least at the seam locations Contains 6-13* Si and 0.01-2* Bl or 6-13* Sl and 0.001-1* Bi, especially on hollow body building parts with a wax cake structure, characterized in that the aluminum alloy building part is dipped in an aqueous solution of 100-300 g/l NaOH and 10-30 g/l ZnO for 1-5 minutes and subjected to a subsequent rinsing and drying treatment. 2. Fremgangsmåte Ifølge krav 1, karakterisert ved at alumlnlumsbygnlngsdelen dyppes 1 en vandig oppløsning av 150-200 g/l NaOH og 15-20 g/l ZnO.2. Method According to claim 1, characterized in that the aluminum alloy building part is dipped in an aqueous solution of 150-200 g/l NaOH and 15-20 g/l ZnO.
NO832077A 1982-06-11 1983-06-08 PROCEDURE FOR CURRENTLY CREATION OF CORROSION PROTECTIVE ALUMINUM BUILDING PARTS. NO159025C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3222140A DE3222140C2 (en) 1982-06-11 1982-06-11 Application of the dip galvanizing process to the production of corrosion-protected aluminum components and corrosion-protected aluminum components

Publications (3)

Publication Number Publication Date
NO832077L NO832077L (en) 1983-12-12
NO159025B true NO159025B (en) 1988-08-15
NO159025C NO159025C (en) 1988-11-23

Family

ID=6165918

Family Applications (1)

Application Number Title Priority Date Filing Date
NO832077A NO159025C (en) 1982-06-11 1983-06-08 PROCEDURE FOR CURRENTLY CREATION OF CORROSION PROTECTIVE ALUMINUM BUILDING PARTS.

Country Status (5)

Country Link
EP (1) EP0096753B1 (en)
JP (1) JPS596383A (en)
AT (1) ATE22934T1 (en)
DE (1) DE3222140C2 (en)
NO (1) NO159025C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220837A (en) * 1986-03-20 1987-09-29 Hitachi Electronics Eng Co Ltd Surface inspection system
EP1718785A2 (en) * 2004-02-17 2006-11-08 Tyco Printed Circuit Group LP Method for zinc coating aluminum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650886A (en) * 1951-01-19 1953-09-01 Aluminum Co Of America Procedure and bath for plating on aluminum
DE2143965C3 (en) * 1971-09-02 1981-11-26 Vereinigte Aluminium-Werke Ag, 5300 Bonn Use of a solder for flux-free brazing of aluminum materials in protective gas, inert gas or vacuum
FR2201350B2 (en) * 1972-09-26 1977-08-26 Chausson Usines Sa
US3982055A (en) * 1974-07-25 1976-09-21 Eltra Corporation Method for zincating aluminum articles

Also Published As

Publication number Publication date
DE3222140C2 (en) 1984-05-30
JPS596383A (en) 1984-01-13
NO832077L (en) 1983-12-12
JPH032952B2 (en) 1991-01-17
ATE22934T1 (en) 1986-11-15
EP0096753A1 (en) 1983-12-28
DE3222140A1 (en) 1983-12-15
NO159025C (en) 1988-11-23
EP0096753B1 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP1433876B1 (en) Chemical conversion coating agent and surface-treated metal
CA1333147C (en) Process of phosphating steel and/or galvanized steel before painting
KR100814489B1 (en) Chemically treated metal plate
KR20040058038A (en) Chemical conversion coating agent and surface-treated metal
JPH11335865A (en) Processing agent for forming protective coating film on metal and its formation
CA1224121A (en) Process for phosphating metals
JPH02101175A (en) Phosphate chemical forming treatment
JP3139795B2 (en) Metal surface treatment agent for composite film formation
US5707505A (en) Method for the electrophoretic dip coating of chromatizable metal surfaces
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
CA2894484C (en) Aqueous agent and coating method for the anticorrosive treatment of metallic substrates
KR100775109B1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
NO159025B (en) PROCEDURE FOR CURRENTLY CREATION OF CORROSION PROTECTIVE ALUMINUM BUILDING PARTS.
Elewa et al. Protective impact of molten zinc coating sheets in contaminated environment-review
AU633728B2 (en) Formation of conversion coatings on surfaces of zinc or zinc alloys
JPS6141987B2 (en)
JPH0121234B2 (en)
JPH0762554A (en) Method for blackening galvanized material
JP2002060959A (en) Galvanized steel sheet excellent in corrosion resistance and adhesive strength of coating, chemically treating solution and chemical conversion treating method
JP2781844B2 (en) Undercoating agent for painting
JPH04505479A (en) Method for forming a manganese-containing phosphate film on metal surfaces
JPH07166371A (en) Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property
JPS58210195A (en) High corrosion resistant zinc alloy plated steel plate and its production
JPH05171461A (en) Method of phosphating al-zn alloy plated metallic sheet
JPH01162780A (en) Zinc phosphate treatment of surface of metal for coating