NO156127B - 1-pyridinyl-2 (dialkylamino) -ETENYLALKYLKETONER. - Google Patents

1-pyridinyl-2 (dialkylamino) -ETENYLALKYLKETONER. Download PDF

Info

Publication number
NO156127B
NO156127B NO85854001A NO854001A NO156127B NO 156127 B NO156127 B NO 156127B NO 85854001 A NO85854001 A NO 85854001A NO 854001 A NO854001 A NO 854001A NO 156127 B NO156127 B NO 156127B
Authority
NO
Norway
Prior art keywords
propeller
stated
blade
rotation
axis
Prior art date
Application number
NO85854001A
Other languages
Norwegian (no)
Other versions
NO156127C (en
NO854001L (en
Inventor
George Yohe Lesher
Richard Everett Philion
Donald Frederick Page
Chester Joseph Opalka Jr
Original Assignee
Sterling Drug Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/135,100 external-priority patent/US4297360A/en
Priority claimed from US06/198,461 external-priority patent/US4313951A/en
Publication of NO854001L publication Critical patent/NO854001L/en
Application filed by Sterling Drug Inc filed Critical Sterling Drug Inc
Publication of NO156127B publication Critical patent/NO156127B/en
Publication of NO156127C publication Critical patent/NO156127C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

l-pyridinyl-2(dialkylamino)etenylalkylketon-mellomprodukter for bruk ved fremstilling av terapeu-tisk virksomme pyridinonforbindelser. Disse mellom-produkter har den generelle formel:. hvor R er laverealkyl, Rog R 4 hver er laverealkyl, og PY er 4- eller 3- eller 2-pyridinyl eller 4- eller 3-eller 2-pyridinyl med en eller to lavere alkylsubstituenter. En fremgangsmåte for fremstilling av mellomproduktene er også beskrevet.1-Pyridinyl-2 (dialkylamino) ethenylalkyl ketone intermediates for use in the preparation of therapeutically effective pyridinone compounds. These intermediates have the general formula :. wherein R is lower alkyl, Rog R 4 is each lower alkyl and PY is 4- or 3- or 2-pyridinyl or 4- or 3- or 2-pyridinyl having one or two lower alkyl substituents. A process for the preparation of the intermediates is also described.

Description

Fremgangsmåte til manøvrering av en propeller med innstillbare blad, Procedure for maneuvering a propeller with adjustable blades,

samt anordning til utførelse av fremgangsmåten. as well as a device for carrying out the method.

En fartøyspropeller arbeider i alminne-lighet i et strømningsfelt med varierende A vessel propeller generally works in a flow field with varying

tilstrømningshastigheter og tilstrømnings-retninger. Propellerbladseksjonene kommer inflow rates and inflow directions. The propeller blade sections are coming

derved til å arbeide med varierende inn-fallsvinkler under hver omdreining av bladet. Den varierende innfallsvinkel er ugun-stig med hensyn til kavitasjon og propeller-virkningsgrad og kan forårsake alvorlige thereby to work with varying angles of incidence during each revolution of the blade. The varying angle of incidence is unfavorable with regard to cavitation and propeller efficiency and can cause serious

vibrasjoner av aksel og skrog. Ved tilpasning av propellerbladenes stigning efter vibrations of axle and hull. When adjusting the pitch of the propeller blades after

den varierende strømning under en omdreining kan disse ulemper reduseres. Dette kan the varying flow during one revolution, these disadvantages can be reduced. This can

man oppnå ved under propellerens rotasjon one obtains during the rotation of the propeller

å la stigningsvinkelen for hvert propellerblad variere periodisk om en grunnverdi. allowing the pitch angle of each propeller blade to vary periodically by a basic value.

Den momentane stigningsvinkel avhenger The instantaneous pitch angle depends

da av bladets vinkelstilling om propellerens then of the blade's angular position about the propeller's

rotasjonsakse, og bladene blir efter tur ved axis of rotation, and the blades stay on in turn

samme vinkelstilling innstilt på samme same angle position set to same

stigningsvinkel. pitch angle.

Det viser seg imidlertid at den effekt However, it turns out that the effect

som er nødvendig for å variere et propellerblads stigningsvinkel under propellerens rotasjon og fartøyets bevegelse, er så stor at which is necessary to vary the pitch angle of a propeller blade during the rotation of the propeller and the motion of the vessel, is so large that

det i praksis vil være umulig å realisere en in practice it will be impossible to realize one

styrt bladbevegelse i denne form hvis man controlled blade movement in this form if one

vil anvende en separat kraftkilde for indi-viduelle variasjoner i bladenes stigningsvinkel. will use a separate power source for individual variations in the pitch angle of the blades.

Hensikten med den foreliggende opp-finnelse er derfor å gi anvisning på en The purpose of the present invention is therefore to provide guidance on a

fremgangsmåte og en anordning til å realisere en bladbevegelse av den nevnte art method and a device for realizing a blade movement of the aforementioned kind

ved en propeller, med betydelig mindre ef-fektforbruk og uten behov for noen som by a propeller, with significantly less power consumption and without the need for someone who

helst ekstra kraftkilde for bladbevegelsen. Oppfinnelsen baserer seg på den erkjen-nelse at der, hvis man forsøker å variere et propellerblads stigningsvinkel periodisk i avhengighet av bladets vinkelstilling om propellerens rotasjonsakse, bare under be-stemte faser av propellerens omdreining kreves en krafttilførsel for tilpasning av bladets stigningsvinkel, mens bladet under de øvrige faser av propellerens omdreining vil avgi kraft til organer for innstilling av stigningsvinkelen. Ved en propeller med flere blad inntar de forskjellige blad forskjellige vinkelstillinger om propellerens rotasjonsakse og befinner seg således i forskjellige faser av den periodiske tilpasning av bladenes stigningsvinkel. Derfor vil en-del av bladene i det minste i visse tidsrum kreve en krafttilførsel for innstillingen av stigningsvinkelen, mens de øvrige blad avgir kraft ved innstillingen. Følgen er at den kraft som avgis av visse av propellerbladene til organene for innstilling av deres stigningsvinkel, allerede ved en propeller med fem blad under hele perioden for en omdreining av propelleren vil være større enn den kraft som må tilføres for innstilling av stigningsvinkelen for de øvrige blad. Og selv ved et mindre antall propellerblad, f. eks. tre eller fire, får man et samspill som i det minste under store deler av en omdreining av propelleren i betraktelig grad reduserer den totale resulterende kraft som kreves tilført i hvert øyeblikk for å innstille stigningsvinkelen for samtlige propellerblad. preferably an additional source of power for the blade movement. The invention is based on the recognition that, if one tries to vary the pitch angle of a propeller blade periodically depending on the angular position of the blade about the propeller's axis of rotation, only during certain phases of the propeller's revolution is a power supply required to adapt the pitch angle of the blade, while the blade during the other phases of the propeller's revolution will deliver power to organs for setting the pitch angle. In the case of a propeller with several blades, the different blades assume different angular positions about the axis of rotation of the propeller and are thus in different phases of the periodic adjustment of the pitch angle of the blades. Therefore, part of the blades will at least for certain periods of time require a power supply for the setting of the pitch angle, while the other blades emit power during the setting. The consequence is that the force emitted by some of the propeller blades to the means for setting their pitch angle, already in the case of a five-blade propeller during the entire period of one revolution of the propeller, will be greater than the force that must be supplied to set the pitch angle for the others blade. And even with a smaller number of propeller blades, e.g. three or four, one obtains an interaction which, at least during large parts of a revolution of the propeller, considerably reduces the total resultant force required to be supplied at each moment to set the pitch angle of all the propeller blades.

Det særegne ved fremgangsmåten iføl-ge oppfinnelsen består således i første rek-ke i at den kraft som av et propellerblad under en del av propellerens omdreining ut-øves på manøvreringsorganer for den periodiske endring av bladenes stigningsvinkel, tilføres tilsvarende manøvreringsorga-ner for de propellerblad som på samme tidspunkt krever tilførsel av forstillingskraft for endring av sin stigningsvinkel. The peculiarity of the method according to the invention thus consists primarily in the fact that the force exerted by a propeller blade during part of the propeller's rotation on maneuvering means for the periodic change of the pitch angle of the blades is supplied to corresponding maneuvering means for the propeller blades which, at the same time, requires the supply of power to change its pitch angle.

Anordningen til gjennomførelse av denne fremgangsmåte er ifølge oppfinnelsen karakterisert ved at den omfatter en i seg selv sluttet føringsbane som opptar bå-de trykk- og strekk-krefter, og som er anordnet rundt propellerens rotasjonsakse og ikke roterer med propellerakselen, og hvori der løper et til bladenes antall svarende antall glideelementer som er anordnet rundt propellerens rotasjonsakse og roterer sammen med propelleren, og som ved hjelp av kraftoverførende forbindelser er forbundet med lagertappen for hvert sitt tilhørende blad på en slik måte at hvert blad blir dreiet om sin lengdeakse i overensstemmelse med det tilhørende glideelements bevegelse i føringsbanen med hensyn på propellerens rotasjonsakse. The device for carrying out this method is, according to the invention, characterized by the fact that it comprises a self-contained guide path which absorbs both compressive and tensile forces, and which is arranged around the propeller's axis of rotation and does not rotate with the propeller shaft, and in which runs a to the number of blades corresponding to the number of sliding elements which are arranged around the axis of rotation of the propeller and rotate together with the propeller, and which are connected by means of power-transmitting connections to the bearing pin for each associated blade in such a way that each blade is rotated about its longitudinal axis in accordance with associated sliding element movement in the guide path with respect to the propeller's axis of rotation.

I det følgende vil oppfinnelsen bli be-skrevet nærmere under henvisning til teg-ningen, som dels omfatter diagrammer til belysning av manøvreringsmåten ifølge oppfinnelsen, og dels, som et eksempel, en utførelsesform av en anordning i henhold til oppfinnelsen. Fig. 1 er et diagram over det moment som kreves for å variere et propellerblads stigningsvinkel sinusformet om en middelverdi i avhengighet av bladets vinkelstilling om propellerens rotasjonsakse i løpet av én omdreining av propelleren. Fig. 2 er et diagram som viser den effekt som må tilføres propellerbladet, resp. som propellerbladet avgir ved en slik variasjon av bladets stigningsvinkel. Fig. 3 viser som funksjon av propeller-rens dreiningsvinkel under én omdreining effektbehovets variasjon for de forskjellige propellerblad ved en propeller med fem blad. Fig. 4 er et diagram over det totale effektbehov for variasjonen av samtlige blads stigningsvinkel som funksjon av propellerens dreiningsvinkel under én omdreining av propelleren ved den fembladede propeller som diagrammet på fig. 3 refere-rer seg til. Fig. 5 viser skjematisk og delvis i aksi-alt snitt en propeller med en anordning som tjener til å styre variasjonen av propellerbladenes stigningsvinkel i samsvar med oppfinnelsen og omfatter et eksentrisk radiallager. Fig. 6 er et radialt snitt gjennom selve styremekanismen for variasjonen av propellerbladenes stigningsvinkel, tatt delvis efter linjen A—A, delvis efter linjen B—B og delvis efter linjen C—C på fig. 5. Fig. 7 og 8 er snitt gjennom spesielle detaljer av styremekanismen, tatt efter lin-jene henholdsvis E—E og F—F på fig. 6. In what follows, the invention will be described in more detail with reference to the drawing, which partly includes diagrams for illustrating the method of maneuvering according to the invention, and partly, as an example, an embodiment of a device according to the invention. Fig. 1 is a diagram of the torque required to vary a propeller blade's pitch angle sinusoidally about a mean value depending on the blade's angular position about the propeller's axis of rotation during one revolution of the propeller. Fig. 2 is a diagram showing the power that must be supplied to the propeller blade, resp. which the propeller blade emits with such a variation of the pitch angle of the blade. Fig. 3 shows, as a function of the propeller's angle of rotation during one revolution, the power demand variation for the different propeller blades for a propeller with five blades. Fig. 4 is a diagram of the total power requirement for the variation of the pitch angle of all blades as a function of the angle of rotation of the propeller during one revolution of the propeller for the five-bladed propeller as the diagram in fig. 3 refers to. Fig. 5 shows schematically and partially in axial section a propeller with a device which serves to control the variation of the pitch angle of the propeller blades in accordance with with the invention and comprises an eccentric radial bearing. Fig. 6 is a radial section through the control mechanism itself for the variation of the pitch angle of the propeller blades, taken partly along the line A—A, partly along the line B—B and partly along the line C—C in fig. 5. Fig. 7 and 8 are sections through special details of the steering mechanism, taken along the lines E—E and F—F respectively in fig. 6.

I diagrammet på fig. 1 representerer kurve G variasjonen av et propellerblads stigningsvinkel om en middelverdi som funksjon av bladets vinkelstilling om propellerens rotasjonsakse under én omdreining av propelleren. Bladets stigningsvinkel varierer sinusformet med en periode svarende til én omdreining av propelleren. Kurve H representerer vinkelhastigheten av propellerbladets dreining om sin lengdeakse, dvs. den hastighet hvormed bladets stigningsvinkel forandres som funksjon av bladets vinkelstilling om propellerens rotasjonsakse under én omdreining av propelleren. Sluttelig viser kurve J det moment som propellerbladet utvikler om sin lengdeakse når man søker å endre dets stigningsvinkel i samsvar med kurvene G og H. Dette moment stammer fra vannets inn-virkning på propellerbladet under propellerens rotasjon og under fartøyets bevegelse og fra propellerbladets masse samt fra friksjon i navmekanismen. Kurvene er opp-ført for konstant omdreiningstall for propelleren og konstant hastighet av fartøyet ved en propeller med fem blad, men er i sin generelle form gyldig også for et propellerblad på en propeller med et annet antall blad og er også i det vesentlige uavhengig av den middelverdi som propellerbladets stigningsvinkel varierer om. Som det frem-går av kurvene på fig. 1, er det moment som propellerbladet utøver om sin lengdeakse, under visse deler av propellerens omdreining rettet i samme retning som bladets stigningsvinkel ønskes endret, mens det under andre deler av omdreiningen er rettet motsatt den ønskede retningsforandring for stigningsvinkelen. Herav følger at man under visse deler av propellerens omdreining må tilføres en effekt for å endre bladets stigningsvinkel på ønsket måte, mens bladet selv under andre deler av omdreiningen vil medvirke til endringen av sin stigningsvinkel og således avgi en effekt til de organer som styrer variasjonene av stigningsvinkelen. Da effekten er proporsjonal med produktet av momentet og vinkelhastigheten av stigningsvinkelendringen, viser kurve K på fig. 2 den for endringen av bladets stigningsvinkel nødvendige momentane ef- In the diagram in fig. 1, curve G represents the variation of a propeller blade's pitch angle about a mean value as a function of the blade's angular position about the propeller's axis of rotation during one revolution of the propeller. The pitch angle of the blade varies sinusoidally with a period corresponding to one revolution of the propeller. Curve H represents the angular speed of the propeller blade's rotation about its longitudinal axis, i.e. the speed with which the pitch angle of the blade changes as a function of the blade's angular position about the propeller's axis of rotation during one revolution of the propeller. Finally, curve J shows the moment that the propeller blade develops about its longitudinal axis when you try to change its pitch angle in accordance with curves G and H. This moment originates from the water's effect on the propeller blade during the propeller's rotation and during the movement of the vessel and from the mass of the propeller blade as well as from friction in the hub mechanism. The curves are listed for constant speed of the propeller and constant speed of the vessel for a propeller with five blades, but are in their general form also valid for a propeller blade on a propeller with a different number of blades and are also essentially independent of the mean value by which the pitch angle of the propeller blade varies. As can be seen from the curves in fig. 1, the moment that the propeller blade exerts about its longitudinal axis, during certain parts of the propeller's rotation is directed in the same direction as the pitch angle of the blade is desired to change, while during other parts of the rotation it is directed opposite to the desired change in direction of the pitch angle. It follows that during certain parts of the propeller's rotation an effect must be added to change the pitch angle of the blade in the desired way, while the blade itself during other parts of the revolution will contribute to the change of its pitch angle and thus emit an effect to the organs that control the variations of the pitch angle. As the effect is proportional to the product of the moment and the angular velocity of the pitch angle change, curve K in fig. 2 the instantaneous ef-

fekt som funksjon av bladets vinkelstilling om propellerens rotasjonsakse under én fect as a function of the blade's angular position about the propeller's axis of rotation below one

omdreining av propelleren. Positive verdier av kurven K på fig. 2 angir at propellerbladet avgir effekt til de organer som dreier propellerbladet om dets lengdeakse, mens negative verdier angir at der må tilføres effekt fra disse dreieorganer. rotation of the propeller. Positive values of the curve K in fig. 2 indicates that the propeller blade emits power to the organs that turn the propeller blade about its longitudinal axis, while negative values indicate that power must be added from these turning organs.

I diagrammet på fig. 3 er de individu-elle effektbehov for alle propellerens fem blad inntegnet som funksjon av propellerens dreiningsvinkel under én omdreining av propelleren, mens kurven på fig. 4 viser summen av effektbehovene for omstillingen av samtlige propellerblads stigningsvinkel som funksjon av propellerens dreiningsvinkel under én omdreining. Som det sees, har kurven på fig. 4 en positiv verdi under hele omdreiningen, noe som innebærer at propellerbladene totalt sett alltid avgir en viss effekt til organene for variasjon av propellerbladenes stigningsvinkler. Denne effekt tas via propellerbladene fra fartøyets fart og vil ved en anordning i henhold til oppfinnelsen i det minste delvis bli forbrukt som friksjonstap i anordningen, mens eventuelt resterende effekt vil bli tilført propellerakselen. In the diagram in fig. 3, the individual power requirements for all the propeller's five blades are plotted as a function of the propeller's angle of rotation during one revolution of the propeller, while the curve in fig. 4 shows the sum of the power requirements for the conversion of all propeller blade pitch angles as a function of the propeller's angle of rotation during one revolution. As can be seen, the curve in fig. 4 a positive value during the entire revolution, which means that the propeller blades overall always emit a certain effect to the means for varying the pitch angles of the propeller blades. This effect is taken via the propeller blades from the vessel's speed and, with a device according to the invention, will at least partially be consumed as friction loss in the device, while any remaining effect will be supplied to the propeller shaft.

Fig. 5 viser en utførelsesform av en Fig. 5 shows an embodiment of a

anordning ifølge oppfinnelsen for periodisk variasjon av omstillbare propellerblads stigningsvinkel efter en sinusformet funksjon i avhengighet av bladenes vinkelstilling om propellerens rotasjonsakse med en periode svarende til én omdreining av propelleren, hvor såvel amplitude som middelverdi av variasjonen er innstillbar. Figuren viser en propelleraksel på hvis ytre ende der er festet et prollernav 2. Rundt propellernavet 2 er der montert propellerblad 3 som er lagret i navet for å kunne dreies om sin lengdeakse og derved bringes til å innta forskjellige stigningsvinkler. Hvert propellerblad 3 er lagret i propellernavet 2 med en dreie-eller bladtapD 4, som ved hjelp av forskjellige kjente ikke viste anordninger er koblet til en stempelstang 26d som inngår i en styreinnretning for variasjon av stigningsvinkelen av propellerbladene 3.1 utførelsen på fig. 5—8 omfatter denne styreinnretning bl. a. en sirkelformet ring 11 som er anbragt rundt propellerakselen 1 i et plan loddrett på denne og er innstillbar til vilkårlig eks-centritet i forhold til propellerakselen 1. Denne innstilling av ekscentristiteten skjer ved hjelp av to par hydrauliske stempelmotorer 12, resp. 13, som er anbragt vinkelrett mot hverandre mellom ringen 11 og to om propellerakselen 1 dreibart lagrede ringer 14. Ringen 11 holdes i innstillet ekscentrisk stilling i forhold til propellerakselen 1 av device according to the invention for periodic variation of adjustable propeller blade pitch angle according to a sinusoidal function depending on the angular position of the blades about the propeller's axis of rotation with a period corresponding to one revolution of the propeller, where both the amplitude and mean value of the variation are adjustable. The figure shows a propeller shaft on the outer end of which a propeller hub 2 is attached. Around the propeller hub 2, a propeller blade 3 is mounted, which is stored in the hub so that it can be rotated about its longitudinal axis and thereby brought to assume different pitch angles. Each propeller blade 3 is stored in the propeller hub 2 with a turning or blade tapD 4, which is connected by means of various known devices not shown to a piston rod 26d which is part of a control device for varying the pitch angle of the propeller blades 3.1 the embodiment in fig. 5-8, this control device includes, among other things, a. a circular ring 11 which is placed around the propeller shaft 1 in a plane perpendicular to it and can be adjusted to any eccentricity in relation to the propeller shaft 1. This setting of the eccentricity is done with the help of two pairs of hydraulic piston motors 12, resp. 13, which are placed perpendicular to each other between the ring 11 and two rings 14 rotatably mounted on the propeller shaft 1. The ring 11 is held in a set eccentric position in relation to the propeller shaft 1 by

disse stempelmotorer og hindres i å rotere av en tapp 15, som er montert i en fast hol-der 16 ved et sfærisk lager 17. Rotasjon av ringene 14 hindres ved hjelp av to armer 18 som er festet til og rager radialt ut fra dem, og hvis ytre ender rager inn i sfæriske lagre 19 i konsoller 20 på ringen 11. Ringen 11 these piston engines and are prevented from rotating by a pin 15, which is mounted in a fixed holder 16 by a spherical bearing 17. Rotation of the rings 14 is prevented by means of two arms 18 which are attached to and project radially from them, and whose outer ends project into spherical bearings 19 in brackets 20 on the ring 11. The ring 11

tjener som radiallager med innstillbar eks-centrisitet og er forsynt med et omløpende spor 21, hvori der kan løpe et antall terninger 22 svarende til antallet av propellerblad 3. Hver terning er koblet til stempelet 24c serves as a radial bearing with adjustable eccentricity and is provided with a circumferential groove 21, in which a number of cubes 22 corresponding to the number of propeller blades 3 can run. Each cube is connected to the piston 24c

hos en hydraulisk motor 24 som er fast anordnet i propellerakselen 1 og har to sylin-derkamre 24a og 24b. Det ene sylinderkammer 24a er via en ledning 25 i propellerakselen 1 forbundet med det ene sylinderkammer 26a i en hydraulisk stempelmotor 26 i propellernavet 2. På tilsvarende måte er det annet sylinderkammer 24 b i den hydrauliske motor 24 via en ledning 27 i propellerakselen 1 forbundet med det annet sylinderkammer 26b i den hydrauliske motor 26 i propellernavet 2. Propellernavet 2 inne-holder således et til antallet av propellerblad 3 svarende antall av hydrauliske motorer 26, hvorav dog bare én er vist på fig. with a hydraulic motor 24 which is fixedly arranged in the propeller shaft 1 and has two cylinder chambers 24a and 24b. The one cylinder chamber 24a is connected via a line 25 in the propeller shaft 1 to the one cylinder chamber 26a in a hydraulic piston motor 26 in the propeller hub 2. In a similar way, the other cylinder chamber 24b in the hydraulic motor 24 is connected via a line 27 in the propeller shaft 1 to the another cylinder chamber 26b in the hydraulic motor 26 in the propeller hub 2. The propeller hub 2 thus contains a number of hydraulic motors 26 corresponding to the number of propeller blades 3, of which only one is shown in fig.

5, og som via separate rørledninger 25 og 27 er tilsluttet hver sin hydrauliske motor 24 5, and which are connected via separate pipelines 25 and 27 to each hydraulic motor 24

i manøvreringsinnretningen. Stempelet 26c i hver av de i propellernavet 2 anordnede motorer 26 er ved hjelp av sin stempelstang 26d på ikke nærmere vist måte tilsluttet en veivtanp på dreietappen for det tilhørende propellerblad 3, slik at propellerbladets stigningsvinkel vil tilsvares av stillingen av stempelet 26c i motoren 26 og således kan varieres ved forskyvning av dette stempel. Hvert par av hydrauliske motorer 24 og 26 danner således et med trykkmiddel helt fylt, lukket hydraulisk transmisjonssystem, hvor stempelet 26c i motoren 26 i propellernavet 2 tvunget forskyves i overensstemmelse med bevegelsen av stempelet 24c hos den hydrauliske motor 24 i styremekanismen. in the maneuvering device. The piston 26c in each of the engines 26 arranged in the propeller hub 2 is, by means of its piston rod 26d, in a manner not shown, connected to a crank pin on the pivot pin for the associated propeller blade 3, so that the angle of pitch of the propeller blade will correspond to the position of the piston 26c in the engine 26 and thus can be varied by shifting this piston. Each pair of hydraulic motors 24 and 26 thus forms a closed hydraulic transmission system completely filled with pressure medium, where the piston 26c of the motor 26 in the propeller hub 2 is forced to move in accordance with the movement of the piston 24c of the hydraulic motor 24 in the steering mechanism.

Når propelleren roterer, vil terningene 22 løpe rundt den ekscentrisk anbrakte ring As the propeller rotates, the dice 22 will run around the eccentrically placed ring

11 i sporet 21, og hver ternings radiale av-stand fra propellerens rotasjonsakse vil variere efter en sinusfunksjon med en periode 11 in the slot 21, and the radial distance of each cube from the axis of rotation of the propeller will vary according to a sine function with a period

svarende til én omdreining av propelleren. corresponding to one revolution of the propeller.

Stemplene 24c hos de i styreinnretningen anordnede hydrauliske motorer 24 vil således oscillere og ved hjelp av trykkmediet via ledningene 25 og 27 meddele de tilhør-ende stempler 26c hos de hydrauliske motorer 26 i propellernavet 2 en tilsvarende oscillerende bevegelse, slik at stigningsvink-lene for propellerbladene 3 vil variere periodisk om en midlere stilling i overensstemmelse med den radiale bevegelse av terningene 22 på en slik måte at alle propellerblad 3 vil innta samme stigningsvinkel i samme vinkelstilling om propellerens rotasjonsakse. Størrelsen av den periodiske variasjon av propellerbladenes stigningsvinkel bestemmes av størrelsen av ekscen-trisiteten av ringen 11 med hensyn på propellerakselen, mens fasestillingen av den periodiske stigningsvinkelvariasjon er bestemt av i hvilken retning centrum av ringen 11 er forskjøvet i forhold til propellerens rotasjonsakse. De propellerblad som på et bestemt tidspunkt selv søker å dreie seg i samme retning som styreinnretningen bestemmer, vil via de tilhørende hydrauliske motorer 26 og 25 påvirke ringen 11 med krefter som søker å forskyve de tilhørende terninger 22 i rotasjonsretningen for propellerakselen 1, og dermed tilføre propellerakselen 1 en tilsvarende effekt, mens de propellerblad 3 som søker å dreie seg i motsatt retning av hva som bestemmes av ma-nøvreringsinnretningen, samtidig vil påvirke ringen 11 med krefter som søker å forskyve de tilhørende terninger 22 motsatt rotas jonsretningen for propellerakselen 1, og dermed oppta en motsvarende effekt fra propellerakselen 1. Der foregår således sta-dig utveksling av effekt mellom propellerbladene 3, så det i gunstigste tilfelle ikke behøves å tilføre noen eller bare behøves å tilføre en ubetydelig ytre effekt for den periodiske variasjon av stigningsvinkelen av propellerbladene 3. Den effekt som det eventuelt er nødvendig å tilføre, vil bli tatt direkte fra propellerakselen 1. The pistons 24c of the hydraulic motors 24 arranged in the control device will thus oscillate and, with the help of the pressure medium via the lines 25 and 27, communicate to the associated pistons 26c of the hydraulic motors 26 in the propeller hub 2 a corresponding oscillating movement, so that the pitch angles of the propeller blades 3 will vary periodically about a mean position in accordance with the radial movement of the dice 22 in such a way that all propeller blades 3 will assume the same pitch angle in the same angular position about the propeller's axis of rotation. The size of the periodic variation of the pitch angle of the propeller blades is determined by the size of the eccentricity of the ring 11 with respect to the propeller shaft, while the phase position of the periodic pitch angle variation is determined by the direction in which the center of the ring 11 is shifted in relation to the axis of rotation of the propeller. The propeller blades which at a certain point in time seek to rotate in the same direction as determined by the control device will, via the associated hydraulic motors 26 and 25, influence the ring 11 with forces which seek to displace the associated cubes 22 in the direction of rotation of the propeller shaft 1, thus adding the propeller shaft 1 a corresponding effect, while the propeller blades 3 which seek to turn in the opposite direction to what is determined by the maneuvering device, will at the same time affect the ring 11 with forces which seek to displace the associated cubes 22 opposite to the direction of rotation of the propeller shaft 1, and thus absorbing a corresponding effect from the propeller shaft 1. There is thus a constant exchange of effect between the propeller blades 3, so that in the best case there is no need to add any or only an insignificant external effect needs to be added for the periodic variation of the angle of pitch of the propeller blades 3 The effect that it is necessary to add will be taken di straight from the propeller shaft 1.

En forutsetning for at stempelet 26c hos en av de i propellernavet 2 beliggende hydrauliske motorer 26 nøye skal kopiere bevegelsen av stempelet 24c hos den tilsvarende hydrauliske motor 24 i styreinnretningen, er at trykkmiddelvolumene i motorene 24, 26 på begge sider av stemplene 24c, 26c og i de ledninger 25, 27 som forbin-der motorene, er konstante, altså at der ik-ke forekommer lekkasje. Da dette i praksis er vanskelig å realisere, er der behov for en eller annen form for tilbakeføring som sta-dig kontrollerer at stempelet 26c hos en motor 26 i propellernavet 2 inntar den stilling og dermed bibringer de tilhørende propellerblad 3 den stigningsvinkel som bestemmes av stillingen av stempelet 24c hos den tilhørende motor 24 i styreinnretningen. Denne tilbakeføring er i den viste ut-førelsesform av oppfinnelsen tilveiebragt med en i styreinnretningen anordnet reguleringsventil 29 for hvert propellerblad og dermed for hvert par av hydrauliske motorer 24 og 26. Denne reguleringsventil består av et ventilhus 30 og en deri radialt forskyvbar ventilsleide 31, slik utformet at der når ventilsleiden 31 forskyves i den ene retning i forhold til ventilhuset 30 fra en nullstilling, innføres trykkmiddel i kamrene 24a og 26a i de to motorer 24, 26 mens en tilsvarende mengde trykkmiddel slippes ut fra motorenes andre kamre 24b og 26b, hvorunder stempelet 26c i motoren 26 således forskyves i den ene retning og dermed endrer det tilhørende propellerblads stigningsvinkel i den ene retning ved uforandret stilling av stempelet 24c i den tilhør-ende motor 24 i styreinnretningen. Blir ventilsleiden derimot forskjøvet i den annen retning i forhold til ventilhuset 30 fra nullstilling, slipper reguleringsventilen 29 trykkmiddel inn i de to kamre 24b og 26b i motorene 24 og 26 og slipper en tilsvarende mengde trykkmiddel ut fra kamrene 24a og 26a, så stempelet 26c i motoren 26 blir for-skjøvet i motsatt retning og forandrer stigningsvinkelen av det tilhørende propellerblad 3 i den annen retning ved uforandret stilling av stempelet 24c hos motoren 24 i styreinnretningen. A prerequisite for the piston 26c of one of the hydraulic motors 26 located in the propeller hub 2 to carefully copy the movement of the piston 24c of the corresponding hydraulic motor 24 in the control device is that the pressure medium volumes in the motors 24, 26 on both sides of the pistons 24c, 26c and in the lines 25, 27 which connect the motors are constant, meaning that no leakage occurs. As this is difficult to realize in practice, there is a need for some form of feedback which constantly checks that the piston 26c of a motor 26 in the propeller hub 2 occupies that position and thus contributes to the associated propeller blades 3 the pitch angle determined by the position of the piston 24c of the associated motor 24 in the control device. In the shown embodiment of the invention, this return is provided with a control valve 29 arranged in the control device for each propeller blade and thus for each pair of hydraulic motors 24 and 26. This control valve consists of a valve housing 30 and a radially displaceable valve slide 31 therein, as designed so that when the valve slide 31 is displaced in one direction relative to the valve housing 30 from a zero position, pressure medium is introduced into the chambers 24a and 26a in the two engines 24, 26 while a corresponding amount of pressure medium is released from the motors' other chambers 24b and 26b, during which the piston 26c in the engine 26 is thus displaced in one direction and thus changes the pitch angle of the associated propeller blade in one direction with unchanged position of the piston 24c in the associated engine 24 in the control device. If, on the other hand, the valve slide is displaced in the other direction relative to the valve housing 30 from the zero position, the control valve 29 releases pressure medium into the two chambers 24b and 26b in the engines 24 and 26 and releases a corresponding amount of pressure medium out of the chambers 24a and 26a, so the piston 26c in the motor 26 is shifted in the opposite direction and changes the angle of pitch of the associated propeller blade 3 in the other direction with unchanged position of the piston 24c of the motor 24 in the control device.

Ventilsleiden 31 er ved sin ytre ende leddet til en toarmet vektstang 32, som ved sin ene ende 33 er koblet til stempelstangen 24 d hos den tilhørende motor 24 i styreinnretningen. Den annen ende 34 av vektstangen 32 er koblet til en stang 35 som kan forskyves radialt i propellerakselen 1 og står under virkningen av fjærer 36 som søker å føre stangen 35 radialt utover fra propellerakselen 1. Den indre ende av stangen 35 er tilsluttet en wire 37 eller lignende, som over propellerakselen 1 og via nødvendige om-styringstrinser eller lignende er slik tilsluttet dreietappen 4 hos det tilhørende propellerblad 3 at propellerbladets dreiebevegelse om sin lengdeakse blir omdannet til en tilsvarende radial forskyvning av stangen 35. Vektstangen 32 er slik koblet til stangen 35 og til stempelet 24c hos motoren 24 i styreinnretningen at stempelet 24c og stangen 35, når stempelet 24c forskyves i den ene retning og derunder medfører en tilsvarende endring av dreievinkelen av det tilhør-ende propellerblad 3, vil søke å dreie de to ender av vektstangen 32 like store vinkler i samme retning, hvorved dreiepunktet for vektstangen 32 vil bli stående stille, så ventilsleiden 31 ikke forskyves og reguleringsventilen 29 forblir upåvirket. Skulle imidlertid den ved forskyvningen av stempelet 24c i motoren 24 bevirke endring av stigningsvinkelen av det tilhørende propellerblad 3 på grunn av ytre forstyrrelser eller lekkasje i det hydrauliske system ikke bli den riktige, vil de to ender 33 og 34 av vektstangen 32 ikke bli forskjøvet like meget, så vektstangens dreiepunkt må forskyves, hvorved ventilsleiden blir forskjøvet fra sin nuilstiliing i forhold til ventilhuset 30 og reguleringsventilen 29 automatisk slipper så store mengder trykkmiddel inn i resp. uc av de to hydrauliSKe motorer 24 og 26 at ventilsleiden 31 Dlir ført tiioake til sin nuilstiliing, noe som skjer først når stigningsvinkelen for det tilhørende propellerblad 3 har antatt den riktige verdi overensstem-mende med den foreliggende stilling av stempelet 24c i den tiinørende motor 24 i styreinnretningen. The valve slide 31 is connected at its outer end to a two-armed weight rod 32, which is connected at one end 33 to the piston rod 24 d of the associated motor 24 in the control device. The other end 34 of the weight rod 32 is connected to a rod 35 which can be displaced radially in the propeller shaft 1 and is under the action of springs 36 which seek to guide the rod 35 radially outwards from the propeller shaft 1. The inner end of the rod 35 is connected to a wire 37 or the like, which is connected above the propeller shaft 1 and via necessary diverting pulleys or the like to the pivot pin 4 of the associated propeller blade 3 so that the propeller blade's rotational movement about its longitudinal axis is converted into a corresponding radial displacement of the rod 35. The weight rod 32 is thus connected to the rod 35 and to the piston 24c of the motor 24 in the control device that the piston 24c and the rod 35, when the piston 24c is displaced in one direction and thereby causes a corresponding change in the angle of rotation of the associated propeller blade 3, will seek to rotate the two ends of the weight rod 32 equally large angles in the same direction, whereby the pivot point for the barbell 32 will remain stationary, so the valve slide 31 does not is displaced and the control valve 29 remains unaffected. Should, however, the displacement of the piston 24c in the engine 24 cause a change in the pitch angle of the associated propeller blade 3 due to external disturbances or leakage in the hydraulic system not to be the correct one, the two ends 33 and 34 of the barbell 32 will not be displaced equally very much, so the lever's pivot point must be shifted, whereby the valve slide is shifted from its zero position in relation to the valve housing 30 and the control valve 29 automatically releases such large amounts of pressure medium into the resp. uc of the two hydraulic motors 24 and 26 that the valve slide 31 is brought to its zero position, which only happens when the pitch angle of the associated propeller blade 3 has assumed the correct value corresponding to the current position of the piston 24c in the connecting motor 24 in the control device.

Det vil innses at den middelverdi som propellerbladenes stigningsvinkler periodisk varierer om ved styreinnretningen ifølge oppfinnelsen, vil være bestemt av nullstii-lmgen av ventilsleidene 31 i regulerings-vennene 29. I henhold til oppfinnelsen er derfor reguleringsventilene 29 for samtlige propellerolad utformet slik at deres nøy-tralstilling kan varieres, så det blir mulig å stille inn den ønskede midlere stigningsvinkel for propellerbladene. Nullstillingen av reguleringsventilene 29 kan varieres ved forskyvning av ventilhusene 30 i radial retning. Forskyvningen og innstillingen av samtlige reguleringsventilers ventilhus 30 bevirkes ved at hvert ventilhus 30 ved sin indre ende er koblet til den ene arm av en vinkelvektstang 38 hvis annen arm opptas i et spor 39 på en manøvreringsstang 40. Ved forskyvning av manøvreringsstangen 49 kan ventilhusene 30 i samtlige reguler - ingsventiler 29 for samtlige propellerblad 3 således forskyves i radial retning, så reguleringsventilene 29 får en ny nuilstiliing og propellerbladene derved får en ny midlere stigningsvinkel, om hvilken hvert propellerblads stigningsvinkel varieres periodisk med en amplitude bestemt ved ekscentrisi-teten av ringen 11. Fig. 7 viser i detalj et snitt gjennom organene for tilbakeføringen av dreievinkelen for propellerbladene 3 til reguleringsventilen 29, mens fig. 8 i detalj viser snitt gjennom reguleringsventilen 29 og organene til omstilling av dennes nuilstiliing. It will be realized that the mean value by which the pitch angles of the propeller blades periodically vary with the control device according to the invention will be determined by the zero position of the valve slides 31 in the control vanes 29. According to the invention, therefore, the control valves 29 for all propeller blades are designed so that their exact tral position can be varied, so it becomes possible to set the desired average pitch angle for the propeller blades. The zero position of the control valves 29 can be varied by displacing the valve housings 30 in the radial direction. The displacement and setting of all control valves' valve housings 30 is effected by the fact that each valve housing 30 is connected at its inner end to one arm of an angle weight rod 38, the other arm of which is taken up in a slot 39 on a maneuvering rod 40. By displacing the maneuvering rod 49, the valve housings 30 can all control valves 29 for all propeller blades 3 are thus displaced in the radial direction, so the control valves 29 get a new zero position and the propeller blades thereby get a new mean pitch angle, about which the pitch angle of each propeller blade is varied periodically with an amplitude determined by the eccentricity of the ring 11. Fig. 7 shows in detail a section through the means for returning the angle of rotation of the propeller blades 3 to the control valve 29, while Fig. 8 in detail shows a section through the control valve 29 and the means for adjusting its initial position.

Den ovenfor beskrevne anordning til periodisk variasjon av stigningsvinkelen for propellerbladene i en stillbar propeller i avhengighet av propellerbladenes vinkelstilling om propellerens rotasjonsakse er bare å betrakte som et eksempel på anordninger i henhold til oppfinnelsen til gjen-nomførelse av manøvreringsmåten ifølge oppfinnelsen, og også andre anordninger og modifikasjoner av de ovenfor beskrevne anordninger er mulige innenfor rammen av oppfinnelsen. Således vil det innses at man ved en styreinnretning av den type som er oeskrevet og er vist på fig. 5—8, kan ha propeller oiadene 3 tilsnittet de langs styrekur-ven 11 løpende terninger 22 via mekaniske leadmeKanismer istedenfor hydrauliske for-omaelser. Også lkke-smusformeae variasjoner av propeiierDiadenes stigningsvinkel i avnengighec av bladenes vinkelstilling om propeiierens rotasjonsakse Kan selvfølgelig uevirkes med manøvreringsmåten ifølge uppimneisen ved at den runat propeiier-dKseien l anordnede faste styrekurve 11 ut-lormes i overensscemmeise mea aen ønske-ae lunksjon ior variasjonen av propeiler-oiaaenes scigningsvinkel. The above-described device for periodically varying the pitch angle of the propeller blades in an adjustable propeller depending on the angular position of the propeller blades about the propeller's axis of rotation is only to be considered as an example of devices according to the invention for carrying out the maneuvering method according to the invention, and also other devices and modifications of the devices described above are possible within the scope of the invention. Thus, it will be realized that with a control device of the type that is not described and is shown in fig. 5-8, the propellers 3 can have the cubes 22 running along the control curve 11 via mechanical lead mechanisms instead of hydraulic means. Also non-dirty variations of the propeller The angle of pitch of the propellers depending on the angular position of the blades about the propeller's axis of rotation Can of course be avoided with the maneuvering method according to the above by the runat propeller dKsei l arranged fixed control curve 11 is arranged in accordance with a desired ae lunction ior the variation of propellers -the angle of inclination of the oiaae.

Claims (17)

1. Fremgangsmåte til endring av stig-ningen på bladene på en propeller med inn-oQiiuare propellerolad, hvor hvert blads sDignmgsvinKei under hver omdreining av propeneren varieres periodisk efter et bestemt program i avhengighet av bladets nnkeisuumg om propellerens rotasjonsakse og dets aroeidsiorhold i denne vinkelstilling, karakterisert ved at den kraft som av et propelierolad under en del av propeiierens omdreining utøves på manøv-renngsorganer for den periodiske endring av bladenes stigningsvinkel, tilføres tilsvarende manøvreringsorganer for de propelierolad som på samme tidspunkt krever tilfør-sel av forstillingskraft for endring av sin stigningsvinkel.1. Procedure for changing the pitch of the blades of a propeller with internal propeller blades, where the angle of rotation of each blade during each revolution of the propeller is varied periodically according to a specific program depending on the angle of the blade about the axis of rotation of the propeller and its position in this angular position, characterized in that the force exerted by a propeller load during part of the propeller's rotation on maneuvering means for the periodic change of the pitch angle of the blades is supplied to corresponding maneuvering means for the propeller loads which at the same time require the supply of adjusting force to change their pitch angle. 2. Fremgangsmåte som angitt i påstand 1, karakterisert ved at bladenes stigning varieres efter en sinusfunksjon.2. Method as stated in claim 1, characterized in that the pitch of the blades is varied according to a sine function. 3. Anordning til utførelse av en fremgangsmåte som angitt i påstand 1 eller 2, karakterisert ved at den omfatter en i seg selv sluttet føringsbane som opptar oåde trykk- og strekk-krefter, og som er anordnet rundt propellerens rotasjonsakse og ikke roterer med propellerakselen, og hvori der løper et til bladenes (3) antall svarende antall glideelementer (22) som er anordnet rundt propellerens rotasjonsakse og roterer sammen med propelleren, og som ved hjelp av kraftoverførende forbindelser er forbundet med lagertappen (4) for hvert sitt tilhørende blad (3) på en slik måte at hvert blad (3) blir dreiet om sin lengdeakse i overensstemmelse med det tilhørende glideelements bevegelse i føringsbanen med hensyn på propellerens rotasjonsakse.3. Device for carrying out a method as stated in claim 1 or 2, characterized in that it comprises a self-contained guideway which absorbs excessive compressive and tensile forces, and which is arranged around the propeller's axis of rotation and does not rotate with the propeller shaft, and in which a number of sliding elements (22) corresponding to the number of blades (3) which are arranged around the axis of rotation of the propeller and rotate together with the propeller, and which are connected by means of power-transmitting connections to the bearing pin (4) for each associated blade (3) ) in such a way that each blade (3) is rotated about its longitudinal axis in accordance with the associated sliding element's movement in the guide path with respect to the propeller's axis of rotation. 4. Anordning som angitt i påstand 3, karakterisert ved at føringsbanen (21) ligger i et plan loddrett på propellerens rotasjonsakse.4. Device as stated in claim 3, characterized in that the guide path (21) lies in a plane perpendicular to the axis of rotation of the propeller. 5. Anordning som angitt i påstand 4, karakterisert ved at føringsbanen (21) er sirkelformet og er anordnet ekscentrisk til propellerens rotasjonsakse.5. Device as stated in claim 4, characterized in that the guide path (21) is circular and is arranged eccentrically to the axis of rotation of the propeller. 6. Anordning som angitt i påstand 4 og 5, karakterisert ved at føringsba-nen (21) er forskyvbar i sitt plan ved hjelp av sin bæredel (11).6. Device as stated in claims 4 and 5, characterized in that the guide path (21) is displaceable in its plane by means of its support part (11). 7. Anordning som angitt i en av påstan-dene 4—6, karakterisert ved at fø-ringsbanen (21) er anordnet dreibart i sitt plan ved hjelp av sin bæredel (11).7. Device as stated in one of claims 4-6, characterized in that the guide track (21) is arranged to be rotatable in its plane by means of its support part (11). 8. Anordning som angitt i en av påstan-dene 4—7, karakterisert ved at fø-ringsbanen er anbragt i en ring (11) som på sin indre omkrets har et spor med T-for-met tverrsnitt som føringsbane (21) for gli-deelementene (22).8. Device as stated in one of claims 4-7, characterized in that the guide path is arranged in a ring (11) which on its inner circumference has a groove with a T-shaped cross-section as a guide path (21) for the sliding elements (22). 9. Anordning som angitt i en av på-standene 4—8, karakterisert ved at føringsbanens (21) bæredel (11) holdes innstillbart i stilling ved hjelp av minst to hydrauliske motorer (12,13) som er innbyr-des vinkelforskjøvet om propellerens rotasjonsakse.9. Device as stated in one of the claims 4-8, characterized in that the carrier part (11) of the guideway (21) is held adjustably in position by means of at least two hydraulic motors (12,13) which are mutually angularly offset about the propeller's axis of rotation. 10. Anordning som angitt i påstand 3, karakterisert ved at den sluttede føringsbane er anordnet i et plan som skrå-ner i forhold til propellerens rotasjonsakse og ikke roterer med propellerakselen, og at de i føringsbanen kretsende glideelementer som er forbundet med lagertappene (4) for de stillbare blad (3), er anordnet og utformet for kraftoverføring i rotasjonsaksens retning.10. Device as stated in claim 3, characterized in that the closed guide path is arranged in a plane which is inclined in relation to the propeller's axis of rotation and does not rotate with the propeller shaft, and that the sliding elements circulating in the guide path which are connected to the bearing pins (4) for the adjustable blade (3), is arranged and designed for power transmission in the direction of the axis of rotation. 11. Anordning som angitt i påstand 10, karakterisert ved at heldningen av føringsbanens bæredel i forhold til propellerens rotasjonsakse er variabel med hensyn til både størrelse og retning.11. Device as stated in claim 10, characterized in that the inclination of the guideway's support part in relation to the propeller's axis of rotation is variable with regard to both size and direction. 12. Anordning som angitt i påstand 10 og 11, karakterisert ved at førings-banens bæredel tillike er stillbar i aksial retning.12. Device as stated in claim 10 and 11, characterized in that the support part of the guide track is also adjustable in axial direction. 13. Anordning som angitt i påstand 8— 12, karakterisert ved at førings-banens bæredel holdes i stilling av minst tre aksialtvirkende hydrauliske motorer.13. Device as stated in claim 8-12, characterized in that the support part of the guideway is held in position by at least three axially acting hydraulic motors. 14. Anordning som angitt i en av på-standene 3—13, karakterisert ved at de i føringsbanen kretsende glideelementer står i kraftoverførende forbindelse med de tilhørende blads lagertapper (4) over mekaniske mellomledd.14. Device as stated in one of claims 3-13, characterized in that the sliding elements circulating in the guideway are in a power-transmitting connection with the associated blade bearing pins (4) via mechanical intermediate links. 15. Anordning som angitt i en av på-standene 3—14, karakterisert ved at hvert av de i føringsbanen (21) kretsende elementer (22) er forbundet med et stempel (primærstempelet 24c) i en dobbeltvirkende første hydraulisk sylinder (primærsylinderen 24) som har et kammer (24a resp. 24b) på hver side av stempelet (24c), og som er forbundet med hvert sitt tilsvarende kammer (26a, resp. 26b) i en annen dobbeltvirkende hydraulisk sylinder (sekundærsylinder 26) hvis stempel (se-kundærstempel 26c) er sammenkoblet med det tilhørende blads (3) lagertapp (4) på en slik måte at bladets stigningsvinkel varieres svarende til dette stempels (26c) bevegelse.15. Device as stated in one of claims 3-14, characterized in that each of the elements (22) circulating in the guide path (21) is connected to a piston (the primary piston 24c) in a double-acting first hydraulic cylinder (the primary cylinder 24) which has a chamber (24a or 24b) on each side of the piston (24c), and which is connected to each corresponding chamber (26a, or 26b) in another double-acting hydraulic cylinder (secondary cylinder 26) whose piston (see customer piston 26c) is connected to the corresponding blade (3)'s bearing pin (4) in such a way that the pitch angle of the blade is varied corresponding to the movement of this piston (26c). 16. Anordning som angitt i påstand 15, karakterisert ved at den for hvert stillbart blad (3) har en styreventil (29) som er anordnet slik at den, når dens ventilsleide (31) på grunn av manglende overensstemmelse mellom virkelig og foreskre-ven stilling av de to stempler (24c, 26c) som følge av indre lekasje beveges i én retning fra sperrestillingen, hvor ventilsleiden sten-ger inngangs- og utgangs-åpningen for trykkvæske til de hydrauliske sylindre (24, 26), slipper trykkvæske inn i de til bladet (3) hørende hydrauliske sylindre (24, 26) på den ene side av stempelet (24c, 26c) og slipper trykkvæske ut på den annen side av det samme stempel (24c, 26c), og omvendt.16. Device as stated in claim 15, characterized in that for each adjustable blade (3) it has a control valve (29) which is arranged so that it reaches its valve slide (31) due to a lack of conformity between actual and prescribed position of the two pistons (24c, 26c) as a result of internal leakage moves in one direction from the blocking position, where the valve slide closes the inlet and outlet opening for pressure fluid to the hydraulic cylinders (24, 26), lets pressure fluid into the hydraulic cylinders (24, 26) belonging to the blade (3) on one side of the piston (24c, 26c) and release pressure fluid on the other side of the same piston (24c, 26c), and vice versa. 17. Anordning som angitt i påstand 16, karakterisert ved at stengestillin-gen av alle styreventilene (29) kan endres samtidig for innstilling av en annen grunn-stigning av bladene.17. Device as stated in claim 16, characterized in that the stem position of all the control valves (29) can be changed simultaneously to set a different pitch of the blades.
NO85854001A 1979-11-26 1985-10-09 1-pyridinyl-2 (dialkylamino) -ETENYLALKYLKETONER. NO156127C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9750479A 1979-11-26 1979-11-26
US06/135,100 US4297360A (en) 1980-03-28 1980-03-28 5-(Pyridinyl)pyridine-2,3-diamines, preparation thereof and their cardiotonic use
US06/198,461 US4313951A (en) 1979-11-26 1980-10-20 3-Substituted-6-(lower-alkyl)-5-(pyridinyl)-2(1H)-pyridinones, their cardiotonic use and intermediates therefor
US06/204,726 US4312875A (en) 1980-03-28 1980-11-06 5-(Pyridinyl)-6-(lower-alkyl)-2(1H)-pyridinones, 1,2-dihydro-2-oxo-5-(pyridinyl)-6-(lower-alkyl)nicotinic acids and lower-alkyl esters thereof, and cardiotonic use thereof

Publications (3)

Publication Number Publication Date
NO854001L NO854001L (en) 1981-05-27
NO156127B true NO156127B (en) 1987-04-21
NO156127C NO156127C (en) 1987-07-29

Family

ID=27492921

Family Applications (2)

Application Number Title Priority Date Filing Date
NO803550A NO154345C (en) 1979-11-26 1980-11-25 ANALOGY PROCEDURE FOR PREPARING CARDIOTONIC ACTIVITY 5- (PYRIDINYL) -2 (1H) -PYRIDINONES.
NO85854001A NO156127C (en) 1979-11-26 1985-10-09 1-pyridinyl-2 (dialkylamino) -ETENYLALKYLKETONER.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO803550A NO154345C (en) 1979-11-26 1980-11-25 ANALOGY PROCEDURE FOR PREPARING CARDIOTONIC ACTIVITY 5- (PYRIDINYL) -2 (1H) -PYRIDINONES.

Country Status (20)

Country Link
AT (1) AT379387B (en)
CH (1) CH649535A5 (en)
DE (1) DE3044568A1 (en)
DK (1) DK151799C (en)
ES (1) ES507620A0 (en)
FI (1) FI76564C (en)
FR (2) FR2470124B1 (en)
GB (2) GB2065642B (en)
GR (1) GR71608B (en)
HK (2) HK31189A (en)
IE (1) IE50632B1 (en)
IL (2) IL61501A (en)
IT (1) IT1148740B (en)
LU (1) LU82957A1 (en)
MX (1) MX155904A (en)
NL (2) NL192202C (en)
NO (2) NO154345C (en)
NZ (1) NZ195564A (en)
PT (1) PT72106B (en)
SE (1) SE442398B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305948A (en) * 1980-12-22 1981-12-15 Sterling Drug Inc. N-Hydroxy-1,2-dihydro-2-oxo-5-(pyridinyl)-nicotinimidamide and their cardiotonic use
US4465686A (en) * 1981-09-08 1984-08-14 Sterling Drug Inc. 5-(Hydroxy- and/or amino-phenyl)-6-(lower-alkyl)-2-(1H)-pyridinones, their cardiotonic use and preparation
FR2529891A1 (en) * 1982-07-12 1984-01-13 Nativelle Sa Ets PYRIDYL-3 ALCOXY-5 PYRAZOLE DERIVATIVES, PREPARATION METHOD AND THERAPEUTIC APPLICATION
IL69407A (en) * 1982-08-23 1987-10-20 Warner Lambert Co 2(1h)-pyridinones,their preparation and pharmaceutical compositions containing them
IL70169A0 (en) * 1982-11-18 1984-02-29 Sterling Drug Inc 2(1h)-pyridinones,their preparation and pharmaceutical compositions containing them
GB8414220D0 (en) * 1984-06-04 1984-07-11 Sterwin Ag Medicaments in unit dose form
EP0544812B1 (en) * 1990-08-21 1995-04-05 The Upjohn Company Bisphosphonic acid derivatives as anti-arthritic agents
CZ403592A3 (en) * 1992-02-20 1993-12-15 Hoechst Ag Arylcarbonylaminoalkyldihydrooxopyridines, process of their preparation and their use
US7772188B2 (en) 2003-01-28 2010-08-10 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
EP1831168B1 (en) * 2004-12-16 2014-07-02 Vertex Pharmaceuticals Inc. Pyrid-2-ones useful as inhibitors of tec family protein kinases for the treatment of inflammatory, proliferative and immunologically-mediated diseases.
ZA200804550B (en) 2005-11-09 2009-08-26 Combinatorx Inc Methods, compositions, and kits for the treatment of medical conditions
EA020466B1 (en) 2007-06-04 2014-11-28 Синерджи Фармасьютикалз Инк. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
EP2810951B1 (en) 2008-06-04 2017-03-15 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
ES2624828T3 (en) 2008-07-16 2017-07-17 Synergy Pharmaceuticals Inc. Guanylate cyclase agonists useful for the treatment of gastrointestinal disorders, inflammation, cancer and others
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
EA201391254A1 (en) 2011-03-01 2014-02-28 Синерджи Фармасьютикалз Инк. METHOD FOR OBTAINING GUANYLATZCLAZE AGONISTS C
EP3718546A1 (en) 2011-08-16 2020-10-07 Cardiora Pty Ltd Controlled-release formulation
EP2804603A1 (en) 2012-01-10 2014-11-26 President and Fellows of Harvard College Beta-cell replication promoting compounds and methods of their use
EP2958577A2 (en) 2013-02-25 2015-12-30 Synergy Pharmaceuticals Inc. Guanylate cyclase receptor agonists for use in colonic cleansing
CA2905438A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
CA2905435A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Compositions useful for the treatment of gastrointestinal disorders
PT3004138T (en) 2013-06-05 2024-06-18 Bausch Health Ireland Ltd Ultra-pure agonists of guanylate cyclase c, method of making and using same
AU2014305843B2 (en) 2013-08-09 2019-08-29 Ardelyx, Inc. Compounds and methods for inhibiting phosphate transport
WO2016101024A1 (en) 2014-12-22 2016-06-30 Baker Idi Heart & Diabetes Institute Holdings Limited Method of treatment
WO2020237096A1 (en) 2019-05-21 2020-11-26 Ardelyx, Inc. Combination for lowering serum phosphate in a patient

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072746A (en) * 1975-10-14 1978-02-07 Sterling Drug Inc. 3-Amino-5-(pyridinyl)-2(1H)-pyridinones
US4004012A (en) * 1975-10-14 1977-01-18 Sterling Drug Inc. 3-Cyano-5-(pyridinyl)-2(1H)-pyridinones

Also Published As

Publication number Publication date
DE3044568A1 (en) 1981-08-27
NO156127C (en) 1987-07-29
NL8006399A (en) 1981-06-16
NO154345B (en) 1986-05-26
HK31189A (en) 1989-04-21
IE50632B1 (en) 1986-05-28
IL61501A (en) 1984-06-29
ES8301920A1 (en) 1982-11-16
DK151799B (en) 1988-01-04
PT72106A (en) 1980-12-01
PT72106B (en) 1981-09-29
NZ195564A (en) 1983-09-30
FI76564B (en) 1988-07-29
DK151799C (en) 1988-06-20
GB8315983D0 (en) 1983-07-13
FI76564C (en) 1988-11-10
GB2131421B (en) 1985-06-26
NL192202B (en) 1996-11-01
GB2065642B (en) 1984-04-04
NL192202C (en) 1997-03-04
DK501180A (en) 1981-05-27
FR2470124A1 (en) 1981-05-29
IL61501A0 (en) 1981-05-20
NO803550L (en) 1981-05-27
SE442398B (en) 1985-12-23
NO854001L (en) 1981-05-27
CH649535A5 (en) 1985-05-31
DE3044568C2 (en) 1990-11-29
NL970028I2 (en) 1998-03-02
FR2553767B1 (en) 1987-01-16
AT379387B (en) 1985-12-27
GR71608B (en) 1983-06-17
FR2553767A1 (en) 1985-04-26
FI803652L (en) 1981-05-27
ATA578080A (en) 1985-05-15
GB2065642A (en) 1981-07-01
MX155904A (en) 1988-05-23
IE802430L (en) 1981-05-26
NO154345C (en) 1986-09-03
GB2131421A (en) 1984-06-20
HK83090A (en) 1990-10-19
FR2470124B1 (en) 1986-12-19
IT1148740B (en) 1986-12-03
IL69847A0 (en) 1983-12-30
LU82957A1 (en) 1981-06-04
SE8008252L (en) 1981-05-27
NL970028I1 (en) 1997-10-01
ES507620A0 (en) 1982-11-16
IT8026218A0 (en) 1980-11-25

Similar Documents

Publication Publication Date Title
NO156127B (en) 1-pyridinyl-2 (dialkylamino) -ETENYLALKYLKETONER.
USRE31917E (en) Valve timing mechanisms
CN103921927A (en) Crank and slider hydraulic transmission type cycloidal propeller mechanism
NO148302B (en) CONTROL UNIT FOR CONTROL OF A PRESSURE FLUID SUPPLY TO A HYDRAULIC ENGINE THROUGH A DIRECTIONAL VALVE
US2157692A (en) Power transmission
US3958496A (en) Control device for hydraulic machines
US2237018A (en) Power transmission
US2714858A (en) Rotary compressors or pumps, in combination with hydraulic controls, and mechanical controls in co-ordination therewith
NO313747B1 (en) Sykloidpropell
NO141926B (en) APPARATUS FOR APPLYING AT LEAST A CONTINUOUS WIRE ON A PRIOR Cylindrical Bearing Surface
US3323598A (en) Marine propeller with periodically adjustable blades
NO121168B (en)
SE451990B (en) ADJUSTABLE PROPELLES FOR SHIP OPERATION
US1590977A (en) Preventing the angular motion of bodies
US4011722A (en) Variable displacement hydraulic pump apparatus
US3709001A (en) Hydraulic-type fuel-injection automatic timer
US1528836A (en) Single-acting reversible steam engine
US1462778A (en) Dynamometer
US85655A (en) Improved apparatus for feeding steam-generators
JPS60224979A (en) Variable capacity radial piston motor controller
NO133358B (en)
US801097A (en) Variable-speed gear.
GB559361A (en) Improved pitch control mechanism for variable pitch propellers
US3089548A (en) Control device for variable pitch propellers
US87419A (en) Engines