NO152676B - PROCEDURES FOR CURRENCING WITH REGULATED STRENGTH OF BLUE STEEL GLOVES IN CLOSED ROOM (CASH GLASS) - Google Patents

PROCEDURES FOR CURRENCING WITH REGULATED STRENGTH OF BLUE STEEL GLOVES IN CLOSED ROOM (CASH GLASS) Download PDF

Info

Publication number
NO152676B
NO152676B NO812771A NO812771A NO152676B NO 152676 B NO152676 B NO 152676B NO 812771 A NO812771 A NO 812771A NO 812771 A NO812771 A NO 812771A NO 152676 B NO152676 B NO 152676B
Authority
NO
Norway
Prior art keywords
chamber
melting
metal
pump
stand
Prior art date
Application number
NO812771A
Other languages
Norwegian (no)
Other versions
NO812771L (en
NO152676C (en
Inventor
Pierre Gombaud
Original Assignee
Forges Basse Indre Soc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9245236&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO152676(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forges Basse Indre Soc filed Critical Forges Basse Indre Soc
Publication of NO812771L publication Critical patent/NO812771L/en
Publication of NO152676B publication Critical patent/NO152676B/en
Publication of NO152676C publication Critical patent/NO152676C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/56Elongation control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • B21B45/0275Cleaning devices
    • B21B45/0278Cleaning devices removing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

En fremgangsmåte til forarbeidelse av bånd av svartblikk eller hvitblikk bestemt særlig for fremstilling av emballasje omfatter etter en kaldvalsing som bringer det hovedsakelig til riktig tykkelse, en gldning og en annen kaldvalsing, utført vanligvis i tørr tilstand med en forlengelse på hyst omkring 2%. Med nyansene av det kontinuerlig støpte stål, anordnet for en kontinuerlig gldning, fører glødning under klokke med klassisk kaldvalsing til utilstrekkelige hardheter. Ifølge det nye ved fremgangsmåten foretas kaldvalsingen med en valgt forlengelse på mellom 4 og 20 % ved frembringelse av dennskede hard-. het i to valsestativer (11, 12), idet forlengelsen oppnås hovedsakelig i stativet (11). Ved inngangen til dette sta-. tiv smøres båndet med en emulsjon av olje i vann, man vas-. ker med vann på bortimot 50°C ved utgangen fra stativet (11). og man blåser bort det overskytende vann ved utgangen fra stativet (12). Valsene i stativet (12) er fint rettet inn mens de i stativet (11) er rettet inn med en ujevnhet som er desto større jo mindre den valgte forlengelse er.A process for processing strips of black tin or white tin determined especially for the manufacture of packaging comprises, after a cold rolling which brings it mainly to the correct thickness, an annealing and another cold rolling, usually carried out in the dry state with an elongation of about 2%. With the shades of the continuously cast steel, arranged for a continuous annealing, annealing under the bell with classic cold rolling leads to insufficient hardness. According to the novelty of the process, the cold rolling is carried out with a selected elongation of between 4 and 20% by producing the desired hard. in two roller stands (11, 12), the elongation being achieved mainly in the stand (11). At the entrance to this sta-. lubricate the tape with an emulsion of oil in water, one wash-. with water at almost 50 ° C at the exit of the stand (11). and blowing away the excess water at the exit of the rack (12). The rollers in the stand (12) are nicely aligned while those in the stand (11) are aligned with an unevenness that is greater the smaller the selected elongation.

Description

Smelteovnanlegg. Smelting furnace plant.

Foreliggende oppfinnelse angår ovnan-legg .forsynt med en elektromagnetisk pumpe, og mer spesielt smelteovnanlegg forsynt med en spiral-rotor-elektromagnetisk pumpe av den art som er beskrevet i U.S. pa-tentskrift nr. 2 940 393. The present invention relates to furnace installations provided with an electromagnetic pump, and more particularly to melting furnace installations equipped with a spiral-rotor electromagnetic pump of the type described in U.S. Patent No. 2 940 393.

Konvensjonelle brenselfyrte og induk-sjons-ovner brukes i moderne støpeteknikk for å smelte fast metall, deriblant blokker, tungt skrap og lett skrap, såsom dreiespon, borspon og liknende fra maskinbearbeidel-sesprosesser. Skrapmetallet utgjør ofte mer enn 50 prosent av det faste metall som brukes for støpning. Conventional fuel-fired and induction furnaces are used in modern casting technology to melt solid metal, including ingots, heavy scrap and light scrap, such as turning chips, drill chips and the like from machining processes. The scrap metal often makes up more than 50 percent of the solid metal used for casting.

Fint skrapmetall har et høyt forhold mellom overflaten og vekten, og dette kan resultere i et økt metalltap ved oksydasjon under smeltingen, hvis man tillater at skrapmetallet flyter på smelteoverflaten. Hvis man derfor vil unngå en hurtig oksydasjon, må skrapmetallet hurtig neddyppes i det smeltede metallbad. Fine scrap metal has a high surface-to-weight ratio, and this can result in increased metal loss by oxidation during melting, if the scrap metal is allowed to float on the melt surface. If you therefore want to avoid rapid oxidation, the scrap metal must be quickly immersed in the molten metal bath.

En hurtig neddypping i smeltet metallbad er således nødvendig for en passende forvarming av fast metall, særlig av skrapmetall. Utilstrekkelig forvarming øker muligheten for uønsket drossdannelse i smeiten, og for en ufullstendig fjernelse av eventuelle overflatehinner fra det faste metall. Den hurtige neddypping som er ønsket for å minske metalltapet fra oksydasj onen, drossdannelsen og liknende, må være ut-ført uten noen nevneverdig øking av smeltens turbulens. En hvirveldannelse i smeiten bevirker en økning av drossdannelsen og av gassabsorpsjonen i smeiten. Dross og innesluttet gass resulterer i dannelsen av støpninger med lav kvalitet. A rapid immersion in a molten metal bath is thus necessary for a suitable preheating of solid metal, especially of scrap metal. Insufficient preheating increases the possibility of unwanted dross formation in the forge, and of an incomplete removal of any surface films from the solid metal. The rapid immersion which is desired in order to reduce metal loss from oxidation, dross formation and the like, must be carried out without any significant increase in the turbulence of the melt. A vortex formation in the melt causes an increase in dross formation and gas absorption in the melt. Dross and trapped gas result in the formation of low quality castings.

I støperismelteteknikken brukes nå se-parate smelteovner for behandling av fint skrapmetall, for å minske muligheten av økt drossdannelse og gassabsorpsjon i den endelige smelte. Det fine skrapmetall ana-lyseres som en separat smelte, sammenset-ningen innstilles, metallet støpes til en me-tallplate, og overflaten avslagges før det' smeltede metall størkner. Den støpte me-tallplate kan så sammen med blokkene og grovt metallskrap føres tilbake til hoved-smelteovneni. Denne tillegsovn for smelting av skrapmetall er riktignok fordelaktig for å minske metalltapet og øke kvaliteten av støpninger, men den forårsaker bruk av mer tid og mer penger. In the foundry melting technique, separate melting furnaces are now used for processing fine scrap metal, to reduce the possibility of increased dross formation and gas absorption in the final melt. The fine scrap metal is analyzed as a separate melt, the composition is adjusted, the metal is cast into a metal plate, and the surface is slag-off before the molten metal solidifies. The cast sheet metal can then, together with the blocks and coarse metal scrap, be fed back to the main melting furnace. Although this additional furnace for melting scrap metal is advantageous in reducing metal loss and increasing the quality of castings, it causes the use of more time and more money.

Metalltap forekommer også i kjent stø-peteknikk for fremstilling av metall-lege-ringer. Da legeringsbestanddeler har for-skjellig spesifikk vekt, danner det seg en uhomogen smelte, dersom smeiten ikke rø-res om tilstrekkelig. Uhomogenitet av lege-ringssmelten kan forårsake et betydelig metalltap. I et støperi ble det funnet metalltap på 1 000 000 kg hver måned på grunn av dårlig legerings-sammensetning, i ho-vedsaken på grunn av en utilstrekkelig om-røring. Metal loss also occurs in known casting techniques for the production of metal alloy rings. As alloy constituents have different specific weights, an inhomogeneous melt forms if the melt is not sufficiently stirred. Inhomogeneity of the alloy melt can cause a significant metal loss. In one foundry, metal loss of 1,000,000 kg per month was found due to poor alloy composition, mainly due to insufficient stirring.

I støperiteknikken trenges derfor en hovedovn for å smelte fast metall, innbefat-tende blokker, grovt skrap og fint skrap, ved å neddyppe hurtig skrapmetallet i smeiten med en minimal hvirveldannelse. Det trenges også et pålitelig ovnsanlegg som kan opprettholde en homogen legerings-smelte med en minimal mengde av i ovnen dannede forurensninger og uten en nevneverdig øking av smeltens turbulens. Det kjennes intet ovnsanlegg i støperismelte-teknikken som er i stand til å oppfylle disse krav. In foundry technology, a main furnace is therefore needed to melt solid metal, including ingots, coarse scrap and fine scrap, by rapidly immersing the scrap metal in the melt with minimal swirling. A reliable furnace system is also needed which can maintain a homogeneous alloy melt with a minimal amount of impurities formed in the furnace and without a significant increase in the turbulence of the melt. There is no known furnace system in the foundry melting technique that is capable of meeting these requirements.

Oppfinnelsen har således som oppgave å skaffe et nytt og forbedret smelteovnanlegg. The invention thus has the task of providing a new and improved melting furnace system.

Smelteovnanlegget ifølge oppfinnelsen er således av den art, som har et charge-ringskammer, som ex i flytende forbindelse med væskeformet metall i et smeltekammer, og som omfatter en pumpeariordning som minst omfatter et pumpeinnløp fra smeltekammeret til pumpeanordningen, og i det minste én utløpsledning fra pumpeanordningen, og smelteovnanlegget ifølge oppfinnelsen karakteriseres ved en annen ledning mellom utløpsledningen og chargeringskammeret for å dirigere væskeformet metall fra smeltekammeret til chargeringskammeret som følge av det trykk som er ut-øvet av pumpen. The melting furnace system according to the invention is thus of the kind which has a charging chamber, such as in liquid connection with liquid metal in a melting chamber, and which comprises a pumping arrangement which at least comprises a pump inlet from the melting chamber to the pumping device, and at least one outlet line from the pumping device, and the melting furnace plant according to the invention is characterized by another line between the discharge line and the charging chamber to direct liquid metal from the melting chamber to the charging chamber as a result of the pressure exerted by the pump.

En utførelsesform for et smelteovnanlegg ifølge oppfinnelsen skal beskrives under henvisning til vedlagte tegninger, hvor: Fig. 1 er et perspektivriss, delvis av-brutt, av det nye og forbedrede smelteovnanlegg ifølge oppfinnelsen, og An embodiment of a melting furnace system according to the invention shall be described with reference to the attached drawings, where: Fig. 1 is a perspective view, partially interrupted, of the new and improved melting furnace system according to the invention, and

fig. 2 er et snitt av smelteovnanlegget vist på fig. 1. fig. 2 is a section of the melting furnace system shown in fig. 1.

I henhold til oppfinnelsen er det til-veiebragt et smelteovnanlegg forsynt med en spiralrotor-elektromagnetisk pumpe for å pumpe rent smeltet metall i en i det vesentlige hvirvelfri strøm, fra varmholdkammeret i ovnen selektivt til chargeringskammeret eller andre steder hvor det smeltede metall skal brukes. According to the invention, a melting furnace system is provided with a spiral rotor electromagnetic pump to pump pure molten metal in an essentially vortex-free flow, from the heating chamber in the furnace selectively to the charging chamber or other places where the molten metal is to be used.

På fig. 1 og 2 er smelteovnsanlegget 10 ifølge oppfinnelsen vist i en særlig ut-førelsesform. Smelteovnen 12 av anlegget er fortrinnsvis laget på velkjent måte av et hensiktsmessig ildfast materiale f. eks. av ildfaste stein 14. Den ildfaste steinkon-struksjon 14 kan være omsluttet av me-tallplater 16. Et chargeringskammeret 18 av ovnen 12 er atskilt fra et ildfast basseng eller smeltekammer 20 ved hjelp av en vegg 22 i smelteovnen. En eller flere kanaler såsom den med streker på fig. 2 viste kanal 24, skaffer en væskeforbindelse mellom chargeringskammeret 18 og smeltekammeret 20. In fig. 1 and 2, the melting furnace system 10 according to the invention is shown in a particular embodiment. The melting furnace 12 of the plant is preferably made in a well-known manner from a suitable refractory material, e.g. of refractory stone 14. The refractory stone construction 14 can be enclosed by metal plates 16. A charging chamber 18 of the furnace 12 is separated from a refractory pool or melting chamber 20 by means of a wall 22 in the melting furnace. One or more channels such as the dashed one in fig. 2 shown channel 24, provides a liquid connection between the charging chamber 18 and the melting chamber 20.

En brenselfyrt brenner 26, vist på fig. 2, er anordnet i smeltekammeret 20 for å ret-te forbrenningsproduktene ovenfor og i det vesentlige parallelt med overflaten av det smeltede metallbad (ikke vist) som befin-ner seg i smeltekammeret. Forbrennings-gassene føres fortrinnsvis bort fra smeltekammeret 20 gjennom et hensiktsmessig avtrekk 28. Selv om det er vist en brenselfyrt brenner, kan også andre varmekilder brukes. En separat chargeringsdør 30 kan være anordnet i smeltekammeret 20, men dette er ikke nødvendig for driften av det viste smelteovnsanlegg 10. A fuel-fired burner 26, shown in fig. 2, is arranged in the melting chamber 20 to direct the combustion products above and substantially parallel to the surface of the molten metal bath (not shown) which is in the melting chamber. The combustion gases are preferably led away from the melting chamber 20 through a suitable exhaust 28. Although a fuel-fired burner is shown, other heat sources can also be used. A separate charging door 30 can be arranged in the melting chamber 20, but this is not necessary for the operation of the shown melting furnace system 10.

En spiralrotor-elektromagnetisk pumpe 40, som likner den beskrevet i U.S. patent-skrift nr. 2 940 393 er anordnet i et varm-hold-kammer 42 av smelteovnen 12. Pumpen 40 kan være avtagbart anordnet i kammeret, eller innebygget i kammeret 42 som vist. Når pumpen 40 er innebygget i kammeret 42, kan kammeret være så konstruert at det finnes passasjer for pumpestrømmen når dette ønskes. F. eks. kan kammerveg-gen danne den ytre vegg av pumpeområdet eller ringen, og den kan huse pumpefelt-strukturen. Både kammeret 42 og et ikke vist innløp av spiralrotorpumpen 40 befin-ner seg i væskeforbindelse med smeltekammeret 20 gjennom en eller flere passende kanaler, såsom kanalen 44 vist med streker på fig. 2. Kanalen 44 er anordnet under det normale driftsnivå av det smeltede bad i kammeret 20. A helical rotor electromagnetic pump 40, similar to that described in U.S. Pat. patent document no. 2 940 393 is arranged in a hot-holding chamber 42 of the melting furnace 12. The pump 40 can be removable arranged in the chamber, or built into the chamber 42 as shown. When the pump 40 is built into the chamber 42, the chamber can be so constructed that there are passages for the pump flow when this is desired. For example the chamber wall may form the outer wall of the pump area or ring, and it may house the pump field structure. Both the chamber 42 and an inlet, not shown, of the spiral rotor pump 40 are in liquid connection with the melting chamber 20 through one or more suitable channels, such as the channel 44 shown in dashed lines in fig. 2. The channel 44 is arranged below the normal operating level of the molten bath in the chamber 20.

Rotorakselen 46 av spiralrotorpumpen 40 drives av en motor, f. eks. av den elektriske motor 48, over en passende kraft-overføring, ikke vist, innenfor et kammer 50. En bjelkekonstruksjon 52 bærer den elektriske motor 48 og kammeret 50, når pumpen som vist er innebygget i kammeret 42. Et luftinnløp 54 er forbundet med kammeret 50, og kjøleledninger 56 og 58 fører kjøleluft fra kammeret til spiralrotorpumpen 40, på ønsket måte. The rotor shaft 46 of the helical rotor pump 40 is driven by a motor, e.g. of the electric motor 48, via a suitable power transmission, not shown, within a chamber 50. A beam structure 52 supports the electric motor 48 and the chamber 50, when the pump as shown is built into the chamber 42. An air inlet 54 is connected to the chamber 50, and cooling lines 56 and 58 carry cooling air from the chamber to the spiral rotor pump 40, in the desired manner.

Bortføringsutløpet 60 av spiralrotorpumpen 40 er ved forbindelsespunktet 62 forbundet med en utløpsledning 64. En passende ventil 66 er anordnet mellom utløps-ledningen 64 og en eller flere grenledninger, f. eks. ledninger 70 og 72. Grenledningen 70 skaffer f. eks. en lukket strømningspassa-sje for å transportere rent smeltet metall til et annet sted hvor det smeltede metall skal behandles. Ventilen 66 behøver ikke å brukes ved visse anvendelser av smelteovnanlegget ifølge oppfinnelsen. Også grenledninger til andre steder, f. eks. ledningen 70 kan sløyfes når en pumping i lukket krets gjennom ledningen 72 er ønsket i smelteovnanlegget. Ledningsgrenen 72 går fortrinnsvis gjennom en vegg i chargeringskammeret 18 og fullfører den lukkede strømningspassasje av smeltet metall fra varmholdkammeret 42 til chargeringskammeret 18 i smelteovnen 12. The removal outlet 60 of the spiral rotor pump 40 is connected at the connection point 62 to an outlet line 64. A suitable valve 66 is arranged between the outlet line 64 and one or more branch lines, e.g. lines 70 and 72. Branch line 70 provides e.g. a closed flow passage to transport pure molten metal to another location where the molten metal is to be processed. The valve 66 does not need to be used in certain applications of the melting furnace system according to the invention. Also branch lines to other places, e.g. the line 70 can be looped when pumping in a closed circuit through the line 72 is desired in the melting furnace plant. The conduit branch 72 preferably passes through a wall in the charging chamber 18 and completes the closed flow passage of molten metal from the heating chamber 42 to the charging chamber 18 in the melting furnace 12.

Når den spiralrotor-elektromagnetiske pumpe 40 settes i gang under driften, passerer rent smeltet metall fra smeltekammeret 20 gjennom kanalen 44 til pumpen som er anbragt i varmholdkammeret 42. Det rene smeltede metall strømmer ut fra utløpet 60 til bortføringsledningen 64 i en hvirvelfri strømning. Den av spiralrotorpumpen 40 bevirkede utstrømning av smeltet metall er tilstrekkelig stor for at smeltet metall transporteres ved en i det vesentlige konstant temperatur. F. eks. har en spiralrotorpumpe som likner pumpen 40 en normal strømningshastighet. på 12 100 liter pr. min. ved et utviklet trykk på 2,21 kg/cm.2. When the spiral rotor electromagnetic pump 40 is started during operation, pure molten metal passes from the melting chamber 20 through the channel 44 to the pump located in the heating chamber 42. The pure molten metal flows out from the outlet 60 to the removal line 64 in a swirl-free flow. The outflow of molten metal caused by the spiral rotor pump 40 is sufficiently large for molten metal to be transported at an essentially constant temperature. For example has a spiral rotor pump similar to the pump 40 a normal flow rate. of 12,100 liters per my. at a developed pressure of 2.21 kg/cm.2.

Det utstrømmende metall passerer fra utstrømningsledningen 64 selektivt til en' eller flere av grenledninger, f. eks. ledninger 70 og 72. Lukkede grenledninger 70 og 72 tillater en regulert overføring av rent smeltet metall fra smelteovnen, uten at metallet er utsatt for den omgivende at-mosfære, og minsker derved drossdannelsen og gassabsorpsj onen i det smeltede metall. På grunn av den høye strømningshastighet som skyldes spiralrotorpumpen og de lukkede grenledninger, kan det smeltede metall transporteres ved en nesten konstant temperatur med et minimum av i anlegget dannede forurensninger. Dette er særlig ønsket når det gjelder ved høye tempera-turer smeltende metaller, f. eks. aluminium, nikkel, sink, messing og liknende. The flowing metal passes from the outflow line 64 selectively to one or more branch lines, e.g. lines 70 and 72. Closed branch lines 70 and 72 allow a regulated transfer of pure molten metal from the melting furnace, without the metal being exposed to the surrounding atmosphere, thereby reducing dross formation and gas absorption in the molten metal. Due to the high flow rate due to the helical rotor pump and the closed branch lines, the molten metal can be transported at an almost constant temperature with a minimum of impurities formed in the plant. This is particularly desired when it comes to metals that melt at high temperatures, e.g. aluminium, nickel, zinc, brass and the like.

Strømmen av rent smeltet metall som strømmer fra ledningen 72 med en høy strømningshastighet til chargeringskammeret 18 dypper hurtig ned det faste metall, særlig fint skrapmetall som innføres i smeiten. Den høye strømningshastighet av smeltet metall som kommer ut fra ledningen 72 dypper ned det faste metall og forvarmer hurtig metallet ved ledning og konveksjon. Den hurtig neddypping og forvarming reduserer tilbøyeligheten av opp-brenning eller oksydasjon under smeltingen og muliggjør tilfredstillende nedsmel-ting av fast metall, deriblant fint skrapmetall i en hovedsmelteovn. Dessuten, selv om strømningen fra ledningen 72 har en høy hastighet er strømningen i det vesentlige rolig og hvirvelfri, hvilket ytterligere minsker drossdannelsen og gassabsorpsj o-nen i smeiten. Da spiralrotorpumpen 40 ikke har bevegelige deler i det forholdsvis frie pumpeområdet, er borttæringen av strømningspassasjer minimal og "anlegget kan drives med en minimal mengde av i anlegget dannede forurensninger. The stream of pure molten metal flowing from the conduit 72 at a high flow rate into the charging chamber 18 rapidly dips the solid metal, particularly fine scrap metal, which is introduced into the smelter. The high flow rate of molten metal emerging from conduit 72 dips the solid metal and rapidly preheats the metal by conduction and convection. The rapid immersion and preheating reduces the tendency of burn-up or oxidation during melting and enables satisfactory melting of solid metal, including fine scrap metal in a main melting furnace. Moreover, although the flow from the line 72 has a high velocity, the flow is essentially calm and free of eddies, which further reduces dross formation and gas absorption in the melt. Since the spiral rotor pump 40 has no moving parts in the relatively free pump area, the erosion of flow passages is minimal and the plant can be operated with a minimal amount of pollutants formed in the plant.

Når det ønskes en pumping i lukket krets, øker den rolige strøm av rent metall fra varmholdkammeret 42 til chargeringskammeret 18 ved en i det vesentlig konstant temperatur homogeniteten av det smeltede metall i smelteovnanlegget uten en vesentlig øking av drossoppsamlingen og gassabsorpsj onen. Hvis det ønskes et full-stendig lukket smelteovnanlegg, kan chargeringskammeret 18 og vedkommende deler av anlegget tett lukkes, og en regulert at-mosfære kan innføres over smelteoverflaten. When closed-circuit pumping is desired, the quiet flow of pure metal from the warming chamber 42 to the charging chamber 18 at a substantially constant temperature increases the homogeneity of the molten metal in the furnace plant without a significant increase in dross collection and gas absorption. If a completely closed melting furnace system is desired, the charging chamber 18 and the relevant parts of the system can be tightly closed, and a regulated atmosphere can be introduced over the melting surface.

Det vil forståes av ovenstående beskri-velse at oppfinnelsen ikke er begrenset til de særlige beskrevne konstruksjonsdetaljer. Smelteovnanlegget ifølge oppfinnelsen kan brukes for andre kjente typer av smelteovner som har smelte- eller varmholdkam-mere fra hvilket smeltet metall kan pum-pes. Eventuelle modifikasjoner kan lett ut-føres av fagfolk, og de faller derfor innenfor rammen for oppfinnelsen. It will be understood from the above description that the invention is not limited to the specific construction details described. The melting furnace system according to the invention can be used for other known types of melting furnaces which have melting or heat holding chambers from which molten metal can be pumped. Any modifications can easily be carried out by professionals, and they therefore fall within the scope of the invention.

Claims (3)

1. Smelteovnanlegg med et charge-ringskammer som er i flytende forbindelse med væskeformet metall i et smeltekammer og som omfatter en pumpeanordning som minst omfatter et pumpeinnløp fra smeltekammeret til pumpeanordningen, og i det minste en utløpsledning (64) fra pumpeanordningen (40), karakterisert v e d en annen ledning (72) mellom utløps-ledningen (64) og chargeringskammeret (18) for å dirigere væskeformet metall fra smeltekammeret (20) til chargeringskammeret som følge av det trykk som er utøvet av pumpen.1. Melting furnace system with a charging chamber which is in liquid connection with liquid metal in a melting chamber and which comprises a pumping device which at least comprises a pump inlet from the melting chamber to the pumping device, and at least one outlet line (64) from the pumping device (40), characterized with another line (72) between the discharge line (64) and the charging chamber (18) to direct liquid metal from the melting chamber (20) to the charging chamber as a result of the pressure exerted by the pump. 2. Smelteovnanlegg som angitt i på-stand 1, karakterisert ved at pumpeanordningen omfatter en i og for seg kjent elektro-magnetisk pumpe av spiral-rotortypen. 2. Smelting furnace plant as specified in claim 1, characterized in that the pump device comprises a per se known electromagnetic pump of the spiral rotor type. 3. Smelteovnanlegg som angitt i på-stand 1 eller 2, karakterisert ved at den andre utløpsledningen (72) utgjøres av et antall grenledninger (70, 72) som er forbundet med utløpsledningen (64), og at en fordelingsventil (66) er anordnet mellom nevnte antall av grenledninger og ut-løpsledningen.3. Melting furnace plant as specified in claim 1 or 2, characterized in that the second outlet line (72) consists of a number of branch lines (70, 72) which are connected to the outlet line (64), and that a distribution valve (66) is arranged between the mentioned number of branch lines and the outlet line.
NO812771A 1980-08-18 1981-08-17 PROCEDURES FOR CURRENCING WITH REGULATED STRENGTH OF BLUE STEEL GLOVES IN CLOSED ROOM (CASH GLASS) NO152676C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8018054A FR2488532A1 (en) 1980-08-18 1980-08-18 METHOD OF RULE-NARROW NUTS ROLLING FOR SOFT STEEL REINFORCED SOFT BANDS

Publications (3)

Publication Number Publication Date
NO812771L NO812771L (en) 1982-02-19
NO152676B true NO152676B (en) 1985-07-29
NO152676C NO152676C (en) 1985-11-06

Family

ID=9245236

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812771A NO152676C (en) 1980-08-18 1981-08-17 PROCEDURES FOR CURRENCING WITH REGULATED STRENGTH OF BLUE STEEL GLOVES IN CLOSED ROOM (CASH GLASS)

Country Status (7)

Country Link
EP (1) EP0046423B2 (en)
DE (2) DE3166614D1 (en)
ES (1) ES8205589A1 (en)
FR (1) FR2488532A1 (en)
GR (1) GR75311B (en)
NO (1) NO152676C (en)
PT (1) PT73532B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054302A (en) * 1989-04-07 1991-10-08 Kawasaki Steel Corporation Hardness compensated thickness control method for wet skin-pass rolled sheet
EP0436762A1 (en) * 1990-01-12 1991-07-17 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Method and apparatus for achieving a predetermined yield point and surface roughness during cold-laminating of metallic pre-treated strips
ES2043530B1 (en) * 1992-01-30 1994-06-16 Kramer Antonio Henriqu MANUFACTURING PROCEDURE FOR METAL CONTAINERS.
NL9400674A (en) * 1994-04-27 1995-12-01 Hoogovens Groep Bv Device and method for manufacturing DKG strip steel.
US5555756A (en) * 1995-01-24 1996-09-17 Inland Steel Company Method of lubricating steel strip for cold rolling, particularly temper rolling
JP3783439B2 (en) * 1998-12-25 2006-06-07 Jfeスチール株式会社 Method for temper rolling of steel sheet
CN112969540B (en) 2018-11-23 2023-11-03 考克利尔维修工程有限责任公司 Flexible cold rolling mill and conversion method thereof
CN117753782B (en) * 2024-02-21 2024-05-03 山西广华源药用包装有限公司 Calendaring molding machine for aluminum foil processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR629623A (en) * 1926-11-05 1927-11-14 Kalker Maschinenfabrik Ag Cold rolling process of iron, steel and other metals
US1860613A (en) * 1929-08-22 1932-05-31 Republic Steel Corp Method of rolling metal sheets
DE1546173A1 (en) * 1965-03-19 1969-04-17 C Otto & Company Gmbh Dr Process for the aftertreatment of pickled strand material, preferably wide band
SE338221B (en) * 1970-04-15 1971-08-30 Nyby Bruk Ab
US3820365A (en) * 1973-03-23 1974-06-28 Westinghouse Electric Corp Automatic extension control
DE2362051A1 (en) * 1973-12-13 1975-06-19 Hufnagl Walter Mfg concrete reinforcing rods - stock material sprayed with oil emulsion before drawing

Also Published As

Publication number Publication date
EP0046423B1 (en) 1984-10-10
EP0046423A1 (en) 1982-02-24
FR2488532A1 (en) 1982-02-19
NO812771L (en) 1982-02-19
PT73532A (en) 1981-09-01
NO152676C (en) 1985-11-06
DE3166614D1 (en) 1984-11-15
PT73532B (en) 1983-08-24
GR75311B (en) 1984-07-13
DE46423T1 (en) 1983-03-17
FR2488532B1 (en) 1982-11-05
ES504786A0 (en) 1982-06-16
EP0046423B2 (en) 1990-12-19
ES8205589A1 (en) 1982-06-16

Similar Documents

Publication Publication Date Title
US3935003A (en) Process for melting metal
US20200360989A1 (en) Molten metal controlled flow launder
US9643247B2 (en) Molten metal transfer and degassing system
US20140265068A1 (en) System and method for component maintenance
JP2000130948A (en) Molten holding furnace for aluminum ingot, or the like
NO152676B (en) PROCEDURES FOR CURRENCING WITH REGULATED STRENGTH OF BLUE STEEL GLOVES IN CLOSED ROOM (CASH GLASS)
NO852912L (en) CONTINUOUS PROCEDURE FOR THE MANUFACTURE OF ALUMINUM-LITHIUM ALLOYS.
US3276758A (en) Metal melting furnace system
CN101423900B (en) Magnesium alloy large-sized continual smelting system
JPH01132724A (en) Apparatus for melting chip of non-ferrous metal
US2648715A (en) Furnace for molten metal
EP3173384B1 (en) Glass melt production device and glass melt production method
US9803922B2 (en) System and method for melting light gauge scrap
CN213687932U (en) Take safety device's refining furnace
CN209443074U (en) A kind of aluminium alloy smelting system
CN113245530A (en) Vacuum continuous smelting casting method for copper alloy
CN106352707A (en) Oil-water cooling spraying gun system and cooling method of top-blowing type melting pool smelting furnace
CN208688248U (en) A kind of energy-efficient molten aluminum circulation double chamber furance
CN110484792A (en) A kind of production technology for casting improving aluminum profile compression strength
Gallo et al. Forced Circulation and Molten Transfer for Aluminum Melting Furnaces-The 357 Concept
US20090277226A1 (en) Modular melter
JPS589944A (en) Molten metal refining apparatus
US3971549A (en) Process and apparatus for treating and transferring metal in the liquid state
KR20040002520A (en) Heat-treating furnace
RU2061941C1 (en) Furnace for melting non-ferrous metals and alloys