NO149710B - BURNER. - Google Patents

BURNER. Download PDF

Info

Publication number
NO149710B
NO149710B NO800297A NO800297A NO149710B NO 149710 B NO149710 B NO 149710B NO 800297 A NO800297 A NO 800297A NO 800297 A NO800297 A NO 800297A NO 149710 B NO149710 B NO 149710B
Authority
NO
Norway
Prior art keywords
air
burner
nozzles
air tube
tube
Prior art date
Application number
NO800297A
Other languages
Norwegian (no)
Other versions
NO149710C (en
NO800297L (en
Inventor
Klaus Leikert
Gerhard Buettner
Sigfrid Michelfelder
Original Assignee
Steinmueller Gmbh L & C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steinmueller Gmbh L & C filed Critical Steinmueller Gmbh L & C
Publication of NO800297L publication Critical patent/NO800297L/en
Publication of NO149710B publication Critical patent/NO149710B/en
Publication of NO149710C publication Critical patent/NO149710C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • F23C7/006Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/007Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel liquid or pulverulent fuel

Description

Oppfinnelsen vedrører en brenner for forbrenning av nitrogenholdige brennstoffer, i samsvar med innledningen til patentkrav 1. The invention relates to a burner for burning nitrogen-containing fuels, in accordance with the introduction to patent claim 1.

En slik brenner er kjent, f.eks. fra VGB-Kraft-werkstechnik 57, hefte 10, oktober 1977, fig. 5, side 672. Such a burner is known, e.g. from VGB-Kraft-werkstechnik 57, booklet 10, October 1977, fig. 5, page 672.

De røykgassene som dannes der har en betydelig konsentrasjon av N0x. The flue gases that are formed there have a significant concentration of N0x.

Den reaksjonsmekanisme som ligger til grunn for dannelse av nitrogenoksyder i tekniske brennstoffer, The reaction mechanism underlying the formation of nitrogen oxides in technical fuels,

er velkjent. Man skiller idag stort sett mellom to ulike reaksjoner. - den termiske NOx~dannelse som skyldes oksydasjon av mole-kylært nitrogen. Denne forekommer f.eks. i stor utstrek-ning i forbrenningsluften. Da oksydasjonen av molekylart nitrogen krever atomært oksygen eller aggressive radikal-er (f.eks. OH, 0, o.s.v.)» er den i særlig høy grad avhengig av temperaturen; derav termisk N0x> - dannelsen av brennstoff NO^., hvilken skjer via oksydasjon av nitrogenforbindelsene som er bundet i brennstoffet. Under pyrolysen vil det på basis av disse nitrogenforbind-elser danne seg nitrogen-karbon- og nitrogen-hydrogen-radikaler (CH, HCN, CH o.s.v.), som på grunn av sin reak-sjonsevne med molekylart oksygen oksyderes allerede ved relativt lave temperaturer til NOx i nærvær av oksygen. is well known. Today, a distinction is generally made between two different reactions. - the thermal NOx~formation due to oxidation of molecular nitrogen. This occurs e.g. to a large extent in the combustion air. As the oxidation of molecular nitrogen requires atomic oxygen or aggressive radicals (e.g. OH, 0, etc.), it is particularly dependent on the temperature; hence thermal N0x> - the formation of fuel NO^., which occurs via oxidation of the nitrogen compounds bound in the fuel. During the pyrolysis, on the basis of these nitrogen compounds, nitrogen-carbon and nitrogen-hydrogen radicals (CH, HCN, CH etc.) will form, which, due to their reactivity with molecular oxygen, are already oxidized at relatively low temperatures to NOx in the presence of oxygen.

En minsking av den termiske NO -dannelse blir derfor i første rekke oppnådd ved å redusere forbren-ningstemperaturen og oppholdstidene ved høye temperaturer. Da imidlertid en stor del av den totale NOx-dannelse ved forbrenning av brennstoffer med bundet hydrogen finner sted via brennstoff-NO^-reaksjonen, er de forannevnte til-tak utilstrekkelige i forbindelse med denne slags brennstoffer for å oppnå de strålingsretningsverdier som gjeld-er for enkelte land. For å oppnå dette er det derimot nød-vendig å redusere nitrogenforbindelsene allerede under pyrolysen i fravær av oksygen til molekylart nitrogen (^3 • Undersøkelsen har vist at denne reduksjonsreaksjon til molekylart nitrogen eksempelvis finner sted når brennstof-fene forbrennes under understøkiometriske forhold, d.v.s. med mindre oksygen-, henholdsvis lufttilførsel enn fullstendig forbrenning krever. For å oppnå optimale resultat-er bør det for den primære forbrenningssone, avhengig av randbetingelsene (f.eks. brennrommets temperatur), velges et luftforhold på mellom 0,9 og 0,5. Riktignok må de reak-sjonsprodukter som dannes i det understøkiometriske primær-området, etterforbrennes for å oppnå en fullstendig avbrenning av hydrokarbonforbindelsene. A reduction in thermal NO formation is therefore primarily achieved by reducing the combustion temperature and residence times at high temperatures. However, since a large part of the total NOx formation during the combustion of fuels with bound hydrogen takes place via the fuel-NO^ reaction, the aforementioned measures are insufficient in connection with this type of fuel to achieve the applicable radiation direction values for certain countries. In order to achieve this, however, it is necessary to reduce the nitrogen compounds already during the pyrolysis in the absence of oxygen to molecular nitrogen (^3 • The investigation has shown that this reduction reaction to molecular nitrogen, for example, takes place when the fuels are burned under sub-stoichiometric conditions, i.e. with less oxygen or air supply than complete combustion requires. To achieve optimal results, an air ratio of between 0.9 and 0.5 should be chosen for the primary combustion zone, depending on the boundary conditions (e.g. the temperature of the combustion chamber). Admittedly, the reaction products which are formed in the sub-stoichiometric primary range must be post-combusted in order to achieve complete combustion of the hydrocarbon compounds.

Undersøkelser har vist at det med en slik totrinns forbrenning kan oppnås en anselig reduksjon av såvel brennstoff-NO^-dannelsen, ved samtidig uttrekk av var-me fra det understøkiometriske området, som den termiske NO -dannelsen. Ved forsøkene ble det ved å benytte totrinns forbrenning oppnådd å senke NO^-strålingsverdien omtrent til 701 i forhold til ikke-trinnvis forbrenning. Investigations have shown that with such a two-stage combustion, a considerable reduction of both the fuel-NO^ formation, by simultaneous extraction of heat from the sub-stoichiometric range, and the thermal NO formation can be achieved. In the experiments, by using two-stage combustion, it was achieved to lower the NO^ radiation value to approximately 701 in relation to non-stage combustion.

Forsøkene viste at dannelsen av brennstoff-NO^ kunne senkes merkbart ved drift av brenneren i nær-eller understøkiometrisk område. For å unngå tap ved ufull-stendig forbrenning og utstråling av andre skadelige stof-fer (CO, hydrokarboner og partikler), må det, når brenneren benyttes i understøkiometrisk drift, blåses tilleggs-luft inn i fyrrommet, ovenfor brenneren. Ulempen ved denne driftsmåte består i at det i den understøkiometriske drevne, nedre del av fyrrommet kan oppstå slaggdannelse og korrosjon på rørveggene. Derved utsettes anleggets drifts-sikkerhet for fare. The experiments showed that the formation of fuel NO^ could be noticeably reduced by operating the burner in the near- or sub-stoichiometric range. To avoid losses due to incomplete combustion and emission of other harmful substances (CO, hydrocarbons and particles), when the burner is used in sub-stoichiometric operation, additional air must be blown into the boiler room, above the burner. The disadvantage of this mode of operation is that in the sub-stoichiometric driven, lower part of the boiler room, slag formation and corrosion can occur on the tube walls. This puts the facility's operational safety at risk.

Det er dessuten konstatert at det likeledes kan oppnås en betydelig reduksjon av NO -strålingen ved å gjøre blandingen mellom luft- og brennstoffstrømmen lang- It has also been established that a significant reduction of NO radiation can also be achieved by lengthening the mixture between the air and fuel flow.

sommere. summer.

For dette formål egner seg f.eks. strålebren-nere hvor såvel luft- som brennstoffstrålen blåses paral-lelt inn i fyrrommet. For å oppnå en upåklagelig tenning, må brennerstrålene imidlertid understøtte hverandre gjen-sidig f.eks. i en hjørnefyring. For this purpose, e.g. jet burners where both the air and fuel jets are blown parallel into the boiler room. To achieve an impeccable ignition, however, the burner jets must mutually support each other, e.g. in a corner firing.

Når brenneren blir anbrakt i en mot- eller frontfyring, kan sammenblandingen av luft og brennstoff gjøres langsommere, f.eks. ved at støvstrålen som omgir sekundærluften, blåses inn med tilnærmet samme hastighet. When the burner is placed in a counter or front firing, the mixing of air and fuel can be slowed down, e.g. in that the dust jet that surrounds the secondary air is blown in at approximately the same speed.

Ved en kjent brenner blir sekundærluftstrøm-men tilført atskilt i to innbyrdes ringformet anbrakte rør, for at f.eks. den indre sekundærluftstrøm, som befinner seg i umiddelbar nærhet av støvstrålen, skal kunne komme ut med lavere og den ytre sekundærluftstrøm med høyere hastighet. En ulempe ved denne anordning er at det inntrer en forlengelse av flammen, hvilket resulterer i større fyr-rom, og at sekundærlufthastigheten ved den belastningsbe-tingete senkning av sekundærluften senkes under støvluft-hastigheten, hvorved flammens form og karakter forandrer seg. Under visse forhold kan dette påvirke tenningen på en uheldig måte. In the case of a known burner, the secondary air flow is supplied separately in two inter-ringed pipes, so that e.g. the inner secondary air flow, which is in the immediate vicinity of the dust jet, must be able to exit at a lower speed and the outer secondary air flow at a higher speed. A disadvantage of this device is that there is an extension of the flame, which results in a larger boiler space, and that the secondary air speed due to the load-dependent lowering of the secondary air is lowered below the dust air speed, whereby the shape and character of the flame changes. Under certain conditions, this can adversely affect the ignition.

Det er dessuten kjent å gjennomføre en pri-mærforbrenning under understøkiometriske forhold i et forkammer, til fyrrommet, og å tilblande den luft, som er nød-vendig for fullstendig avbrenning, i de fyringsgasser som forlater forkammeret. Ulempen med denne anordning består i faren for rørveggkorrosjon i det understøkiometrisk drevne forkammer. It is also known to carry out a primary combustion under sub-stoichiometric conditions in a pre-chamber, to the boiler room, and to mix the air, which is necessary for complete combustion, into the combustion gases leaving the pre-chamber. The disadvantage of this device is the risk of tube wall corrosion in the sub-stoichiometrically operated pre-chamber.

Oppfinnelsen har derfor satt seg som mål å skape en brenner, hvor forbrenningen ved en påvirkning av sekundærluftstrømmen og en innføring av samme på forskjel-lige steder av fyrrommet, og tilordnet brenneren, påvirkes på en slik måte at det i en umiddelbart ved brennerut-løpet tilsluttet delforbrenningssone (primær-sone) oppnås en stabil tenning over hele belastningsområdet ved under-støkiometriske forhold, og at det i en etterforbrennings-sone (sekundærsone), som slutter seg til primærsonen, The invention has therefore set itself the goal of creating a burner, where the combustion is affected by an influence of the secondary air flow and an introduction of the same in different places of the boiler room, and assigned to the burner, in such a way that in an immediate at the burner outlet connected partial combustion zone (primary zone), a stable ignition is achieved over the entire load range at sub-stoichiometric conditions, and that in an afterburning zone (secondary zone), which joins the primary zone,

skjer en restutbrenning ved overstøkiometriske forhold. a residual burnout occurs at overstoichiometric conditions.

I samsvar med oppfinnelsen kan dette oppnås ved å utforme brenneren i samsvar med den karakteriserende del av patentkrav 1. In accordance with the invention, this can be achieved by designing the burner in accordance with the characterizing part of patent claim 1.

Ved en videreutvikling av oppfinnelsen kan luft-dysene være utformet som perforerte dyser eller som opp-splittede dyser. De f.eks. slissformete åpninger kan være framstilt ved å fjerne sidestabilisatorene mellom rørene. In a further development of the invention, the air nozzles can be designed as perforated nozzles or as split nozzles. They e.g. slot-shaped openings can be produced by removing the side stabilizers between the tubes.

De fordeler som blir oppnådd med oppfinnelsen består hovedsaklig i at forbrenningsforløpet for det nitrogenholdige brennstoff, på grunn av tilførselen av en del av sekundærluften over luftdyser, som befinner seg utenfor brennerens kappeluftrør i fyrrommet,foregår på en slik måte at NO^-verdiene reduseres til et minimum, uten at tenningen av brenneren utsettes for risiko over det totale belastningsområdet, og uten at det oppstår slaggdannelse og korrosjon på fyrromrørene, samt uten at utbrenningen påvirkes ugunstig. The advantages achieved with the invention mainly consist in the fact that the combustion process for the nitrogen-containing fuel, due to the supply of part of the secondary air via air nozzles, which are located outside the burner's jacket air pipe in the boiler room, takes place in such a way that the NO^ values are reduced to a minimum, without the ignition of the burner being exposed to risk over the total load area, and without slag formation and corrosion occurring on the boiler tubes, as well as without the burnout being adversely affected.

Oppfinnelsen beskrives nærmere i det følgende under henvisning til tegningen som viser et utførelses-eksempel. The invention is described in more detail below with reference to the drawing which shows an exemplary embodiment.

Fig. 1 viser en prinsippskisse for brenneren Fig. 1 shows a schematic diagram of the burner

ifølge oppfinnelsen, sett i lengdesnitt. according to the invention, seen in longitudinal section.

Fig. 2 viser brenneren i oppriss, sett i pilens Fig. 2 shows the burner in elevation, seen in the direction of the arrow

F retning. F direction.

Den viste brenneren består av et sentralt kjerne-luftrør 1, som er innrettet til å oppta en oljeforstøverlanse for tennfyring eller alternativ effektfyring for olje. Kjerneluftrøret er forbundet med en kanal 2, og via et spjeld 3 står det i forbindelse med hovedluftkanalen 4. Et støvluftrør 6 er anbrakt koaksialt med kjerneluft-røret og er med støvfordelerkammeret 7 sluttet til en støv-ledning 8. Denne mates fra et karbonstøvrør med den støv-luftblanding som skal forbrennes. Et kappeluftrør 9 er anbrakt koaksialt omkring støvluftrøret og står i forbindelse med hovedluftkanalen 4 via spjeld 13. En skovhjulkrans 10, som gjennomstrømmes aksialt av kappeluften, kan for-skyves aksialt ved hjelp av flere spindler 11 og et ratt 12. Kappeluftkanalen er forbundet med fyrrommet via brennerbegeret 14 som vider seg konisk ut. Fra hovedluftkanalen 14 tilføres luft via flere kanaler 15 til trinnluft-dysen 16, som er jevnt fordelt over en tenkt delsirkel av brenneromkretsen. Brennerbegeret 14 er f.eks. framstilt av keramisk masse. Det blir innbygget i en rørkorg 18, som er dannet av fyrrommets veggrør. The burner shown consists of a central core air pipe 1, which is arranged to receive an oil atomizer lance for ignition or alternative effect firing for oil. The core air pipe is connected to a channel 2, and via a damper 3 it is connected to the main air channel 4. A dust air pipe 6 is placed coaxially with the core air pipe and is connected with the dust distribution chamber 7 to a dust line 8. This is fed from a carbon dust pipe with the dust-air mixture to be burned. A casing air pipe 9 is arranged coaxially around the dust air pipe and is connected to the main air duct 4 via damper 13. An impeller ring 10, which is axially flowed through by the casing air, can be shifted axially with the help of several spindles 11 and a steering wheel 12. The casing air duct is connected to the boiler room via the burner cup 14 which expands conically. From the main air duct 14, air is supplied via several ducts 15 to the stepped air nozzle 16, which is evenly distributed over an imaginary partial circle of the burner circumference. The burner cup 14 is e.g. produced from ceramic mass. It is built into a pipe basket 18, which is formed from the boiler room's wall pipes.

Trinnluftdysene 16 kan være utformet enten som perforerte dyser 16 eller som oppsplittete dyser. Sist-nevnte kan dannes ved å fjerne de sidestabilisatorer som er dannet av stegene ved fyrromveggen. The stepped air nozzles 16 can be designed either as perforated nozzles 16 or as split nozzles. The latter can be formed by removing the side stabilizers formed by the steps at the boiler room wall.

Den trinnluftstrøm som over kanalen 15 med dysene 16 kommer inn i fyrrommet, er regulerbar over et spjeld 17. The stepped airflow that enters the boiler room via the channel 15 with the nozzles 16 can be regulated via a damper 17.

Claims (2)

1. Brenner for forbrenning av nitrogenholdige brennstoffer, hvilken består av et kjerneluftrør (1) med en sentralt anordnet oljeforstøvingslanse (5), et støvluftrør (6), som omgir kjerneluftrøret, et kappeluftrør (9), som omgir støvluftrøret med en riflet og aksialt forskyvbar skovle-krans (10) anordnet ved luft innløpet, samt med et brennerbeger (14) som utvider seg fra kappeluftrøret i retning ut mot ild-stedet, idet kjerneluftrøret og kappeluftrøret mates fra en hovedluftkanal (4), karakterisert ved at det rundt brennerbegeret (14) finnes et konsentrisk arrangement av minst to, maksimalt seks luftmunnstykker (16), som over kanaler (15) er forbundet med hovedluftkanalen (4), og hvis totale luftstrøm kan reguleres med et spjeld (17), samt at luftmunnstykkene (16) er anordnet på en delesirkel, hvis diameter utgjør minst 1,5 ganger og maksimalt tre ganger kappeluftrørets (9) diameter.1. Burner for the combustion of nitrogen-containing fuels, which consists of a core air tube (1) with a centrally arranged oil atomization lance (5), a dust air tube (6), which surrounds the core air tube, a jacket air tube (9), which surrounds the dust air tube with a fluted and axial displaceable vane ring (10) arranged at the air inlet, as well as with a burner cup (14) which expands from the jacket air tube in the direction towards the fire place, the core air tube and the jacket air tube being fed from a main air duct (4), characterized in that the around the burner cup (14) there is a concentric arrangement of at least two, at most six air nozzles (16), which are connected via channels (15) to the main air duct (4), and whose total air flow can be regulated with a damper (17), and that the air nozzles (16 ) is arranged on a dividing circle, the diameter of which is at least 1.5 times and a maximum of three times the diameter of the casing air pipe (9). 2. Brenner i samsvar med krav 1, karakterisert ved at luftmunnstykkene (16) er utformet som perforerte dyser eller som oppsplittete dyser.2. Burner in accordance with claim 1, characterized in that the air nozzles (16) are designed as perforated nozzles or as split nozzles.
NO800297A 1979-03-05 1980-02-05 BRENNER NO149710C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2908448A DE2908448C2 (en) 1979-03-05 1979-03-05 Burners for burning nitrogenous fuels

Publications (3)

Publication Number Publication Date
NO800297L NO800297L (en) 1980-09-08
NO149710B true NO149710B (en) 1984-02-27
NO149710C NO149710C (en) 1984-06-06

Family

ID=6064465

Family Applications (1)

Application Number Title Priority Date Filing Date
NO800297A NO149710C (en) 1979-03-05 1980-02-05 BRENNER

Country Status (13)

Country Link
JP (1) JPS55121308A (en)
AU (1) AU536420B2 (en)
BE (1) BE882038A (en)
DE (1) DE2908448C2 (en)
DK (1) DK148928C (en)
FI (1) FI65853C (en)
FR (1) FR2450999B1 (en)
GB (1) GB2043871B (en)
IT (1) IT1135969B (en)
NL (1) NL8000995A (en)
NO (1) NO149710C (en)
SE (1) SE439363B (en)
ZA (1) ZA801258B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745007A (en) * 1980-08-30 1982-03-13 Matsushita Electric Works Ltd Manufacture of artificial decorative veneer
DE3048201A1 (en) * 1980-12-20 1982-07-08 L. & C. Steinmüller GmbH, 5270 Gummersbach Burner for nitrogen-bearing fuels, with coaxial primary air ducts - has furnace gas recirculating ducts to these ducts, pref. entering at restriction
JPS5811308A (en) * 1981-07-14 1983-01-22 Sumitomo Cement Co Ltd Pulverized coal combustion burner
JPS5824712A (en) * 1981-08-06 1983-02-14 Kobe Steel Ltd Method of blow-in combustion of pulverized coal
JPS58132314U (en) * 1982-02-26 1983-09-06 住友金属工業株式会社 pulverized coal burner
US4523530A (en) * 1982-02-26 1985-06-18 Sumitomo Metal Industries, Ltd. Powdery coal burner
US5302115A (en) * 1982-09-15 1994-04-12 Damper Design, Inc. Burner register assembly
US4504216A (en) * 1982-09-15 1985-03-12 Eagleair, Inc. Burner register assembly
DE3331989A1 (en) * 1983-09-05 1985-04-04 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD FOR REDUCING NO (DOWN ARROW) X (DOWN ARROW) EMISSIONS FROM THE COMBUSTION OF NITROGENOUS FUELS
GB8331128D0 (en) * 1983-11-22 1983-12-29 Babcock Prod Eng Axial swirl generators
DE3543917C3 (en) * 1985-12-12 1997-03-13 Steinmueller Gmbh L & C Process for the combustion of ignitable fuel dust via ceiling burners in a combustion chamber and combustion chamber for burning such a fuel dust
US4732093A (en) * 1986-02-11 1988-03-22 J. R. Tucker And Associates Annular nozzle burner and method of operation
US4768948A (en) * 1986-02-11 1988-09-06 J. R. Tucker & Associates Annular nozzle burner and method of operation
DE3825291A1 (en) * 1988-07-26 1990-02-01 Ver Kesselwerke Ag METHOD AND COMBUSTION PLANT FOR COMBUSTION OF FOSSILER FUELS WITH REDUCED EMISSIONS OF NITROGEN
SE464542B (en) * 1989-11-01 1991-05-06 Aga Ab SEAT AND DEVICE FOR COMBUSTION OF SPIRITLY FLUID OR GASFUL FOSSIL BRAZLE
AU5010393A (en) * 1992-08-18 1994-03-15 Damper Design, Inc. Apparatus and method for delivery of particulate fuel and transport air
DE19942767A1 (en) * 1999-09-08 2001-03-15 Bbp Energy Gmbh Steam generator
US7775791B2 (en) * 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL85968C (en) *
CH346313A (en) * 1955-11-05 1960-05-15 Walther & Cie Ag Pulverized coal burners
DE1868003U (en) * 1962-02-10 1963-02-28 Steinmueller Gmbh L & C BURNERS FOR DUST COAL FIRING.
DE1401932A1 (en) * 1962-06-09 1968-10-24 Steinmueller Gmbh L & C Procedure for operating burners for boiler furnaces
FR1347777A (en) * 1962-11-19 1964-01-04 O C C R Organisation Conceptio Plant waste dust burner
US3748080A (en) * 1971-12-27 1973-07-24 Peabody Engineering Corp Combustion control apparatus using a liquid spray
US4004875A (en) * 1975-01-23 1977-01-25 John Zink Company Low nox burner
US4023921A (en) * 1975-11-24 1977-05-17 Electric Power Research Institute Oil burner for NOx emission control
CH622081A5 (en) * 1977-06-17 1981-03-13 Sulzer Ag

Also Published As

Publication number Publication date
DE2908448C2 (en) 1983-04-14
FI65853B (en) 1984-03-30
SE439363B (en) 1985-06-10
FR2450999B1 (en) 1985-11-29
FR2450999A1 (en) 1980-10-03
FI800680A (en) 1980-09-06
DE2908448A1 (en) 1980-09-18
NO149710C (en) 1984-06-06
GB2043871B (en) 1982-12-15
JPS6115962B2 (en) 1986-04-26
AU536420B2 (en) 1984-05-10
DK84180A (en) 1980-09-06
SE8001481L (en) 1980-09-06
JPS55121308A (en) 1980-09-18
GB2043871A (en) 1980-10-08
DK148928C (en) 1986-05-05
BE882038A (en) 1980-07-01
ZA801258B (en) 1981-03-25
IT8004811A0 (en) 1980-02-29
NL8000995A (en) 1980-09-09
IT1135969B (en) 1986-08-27
FI65853C (en) 1984-07-10
NO800297L (en) 1980-09-08
DK148928B (en) 1985-11-18
AU5606380A (en) 1980-09-11

Similar Documents

Publication Publication Date Title
NO149710B (en) BURNER.
EP0657689B1 (en) Staged air, low NOx burner with internal recuperative flue gas recirculation
US4551090A (en) Burner
US5269679A (en) Staged air, recirculating flue gas low NOx burner
US5636977A (en) Burner apparatus for reducing nitrogen oxides
US7430970B2 (en) Burner with center air jet
GB2048456A (en) Reducing NOx emission from burners
US6244200B1 (en) Low NOx pulverized solid fuel combustion process and apparatus
US5209187A (en) Low pollutant - emission, high efficiency cyclonic burner for firetube boilers and heaters
US5573391A (en) Method for reducing nitrogen oxides
WO2012098174A1 (en) Method and burner for burning lean gas in a power plant boiler
EP0525734A2 (en) Cyclonic combustion
US4445843A (en) Low NOx burners
CZ417098A3 (en) Method of controlling operation of core burner for making radially layered flame
CA2036654C (en) Process and apparatus for reducing no_ emissions from combustion devices
EP0913639B1 (en) Apparatus and method for burning combustible gases
US5645412A (en) Burner for low Nox multistage combustion of fuel with preheated combustion air
CN211854042U (en) Waste gas burning device capable of treating flue gas
CA2556822C (en) Burner with center air jet
EP4253838A1 (en) Gas burner with low nox emission
RU2433342C2 (en) BURNER WITH CENTRAL AIR JET AND METHOD TO REDUCE NOx EMISSION OF SPECIFIED BURNER (VERSIONS)
SU1728581A1 (en) Method of burning gaseous fuel
SU703731A1 (en) Vortex burner
CA1145657A (en) Method of reducing no.sub.x-emission
CN111457376A (en) Low-NOx self-preheating high-speed burner and control method thereof