JPS5824712A - Method of blow-in combustion of pulverized coal - Google Patents

Method of blow-in combustion of pulverized coal

Info

Publication number
JPS5824712A
JPS5824712A JP56123641A JP12364181A JPS5824712A JP S5824712 A JPS5824712 A JP S5824712A JP 56123641 A JP56123641 A JP 56123641A JP 12364181 A JP12364181 A JP 12364181A JP S5824712 A JPS5824712 A JP S5824712A
Authority
JP
Japan
Prior art keywords
pulverized coal
flow
burner
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56123641A
Other languages
Japanese (ja)
Other versions
JPH0152643B2 (en
Inventor
Tomio Suzuki
富雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56123641A priority Critical patent/JPS5824712A/en
Publication of JPS5824712A publication Critical patent/JPS5824712A/en
Publication of JPH0152643B2 publication Critical patent/JPH0152643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus

Abstract

PURPOSE:To increase combustion efficiency for pulverized coal, by providing a compressed air feed pipe to a burner, and by sucking oxygen-containing gas into the center part of a suction flow of pulverized coal through the pipe. CONSTITUTION:A compressed air feed pipe 14 is provided to a burner 7, which is composed in the manner that the air is divided into two air flows D1 and D2 by a bulkhead 22, the air flow D1 becomes a straight-going flow to the center line B-B of a burner, while the air flow D2 goes through a control pipe 19, passing through a bypass slit 17, to become a swirling flow to the center line B-B of a burner. The divided ratio of the air flow D1 (straight-going flow) to the air flow D2 (swirling flow) is made adjustable by dampers 15 and 16. With such an arrangement, pulverized coal, whose combustibility is low, can rapidly and completely be burnt. A large amount of pulverized coal can be fed into the burner 7, so that fitness of pulverized coal as a fuel for a blast-furnace and the like can be enhanced.

Description

【発明の詳細な説明】 本発明は微粉炭燃料の吹き込み燃焼力mK関し。[Detailed description of the invention] The present invention relates to the blowing combustion power mK of pulverized coal fuel.

詳細には微粉炭を効率良く燃焼畜せることのできる微粉
炭吹き込み燃焼方法に関するものである。
Specifically, the present invention relates to a pulverized coal injection combustion method that can efficiently burn pulverized coal.

各[I溶解炉、精錬炉、・焼成炉、ボイラー郷に用いる
燃料としてはと九重で重油が主流を占めていたが、最近
のエネルギー事情を反映して石炭の使用が検討され、そ
の使用量も漸増の傾向にああ。
In Tokokonoe, heavy oil was the mainstream fuel used for each melting furnace, smelting furnace, firing furnace, and boiler, but reflecting the recent energy situation, the use of coal was being considered, and the amount of fuel used There is also a trend of gradual increase.

しかしながら重油が液体燃料であるのに対して、石炭は
固体燃料であるから微粉炭にして燃焼室へ吹込むにして
も液体燃料の吹き込みと同じに、考えることはできず色
々な間騙点が指摘されている。
However, while heavy oil is a liquid fuel, coal is a solid fuel, so even if it is pulverized and injected into the combustion chamber, it is the same as injecting liquid fuel, and there are various disadvantages. It has been pointed out.

本発明者はそのme問題点の1つとして石炭殊に微粉炭
のaS性を改良する方法について研究を進めてきた。以
下間騙点を明らかにするため、高炉羽口において用いら
れる微粉炭バーナを例に取シあげて説明する。
The present inventor has been conducting research on a method for improving the aS properties of coal, especially pulverized coal, as one of the me problems. In order to clarify the point of failure, a pulverized coal burner used in a blast furnace tuyere will be taken as an example and explained below.

第1図は燃焼賽験装置を示すフロー図であ夛。Figure 1 is a flow diagram showing the combustion testing device.

WIk粉*#i1次傘ツバ1よシスフリユコンベア2に
よって2次ホッパ8へ搬送される。2次ホッパ1の下部
には微粉脚切p出し装着4があり、所定量の微粉炭な切
〕出してロータリーパルプ5へ落下させる。ここでロー
タリーパルプ5はV−Vの役割を果たしてお夛、ロータ
リーパルプ5を通過した微粉炭はエジェクター6へ落下
し、矢印Aから圧送される輸送用空気と共にバーナ7へ
供給される。一方燃焼用空貿(2次空気)は熱風炉8に
て予熱された後、エアレジスター9を通してバーナ先端
をとシかこむ様に供給され、前記微粉炭気流のまわりか
ら燃焼装置内へ吹込まれる。伺バーナ部へは着火用又は
補助燃焼用として燃料ガスG又は重油りの供給ライン1
0又は11を組み込むことがある。
WIk powder*#i is transported from the primary cap 1 to the secondary hopper 8 by the system conveyor 2. At the bottom of the secondary hopper 1, there is a pulverized powder leg cutter attachment 4, which takes out a predetermined amount of pulverized coal and drops it onto a rotary pulp 5. Here, the rotary pulp 5 plays the role of V-V, and the pulverized coal that has passed through the rotary pulp 5 falls into the ejector 6 and is supplied to the burner 7 together with the transportation air pumped from the arrow A. On the other hand, combustion air (secondary air) is preheated in a hot stove 8, then supplied through an air register 9 to surround the burner tip, and blown into the combustion device from around the pulverized coal airflow. . A fuel gas G or heavy oil supply line 1 is connected to the burner section for ignition or auxiliary combustion.
May incorporate 0 or 11.

上記の様な微粉炭バーナを用いて高温を得る為には多量
の燃料を短時間で効率良く燃焼させる必要があるが、微
粉炭は重油に比べて燃焼性が悪いから通常の手段では重
油と同程度の燃焼効率を得ることが困難である。
In order to obtain high temperatures using a pulverized coal burner like the one mentioned above, it is necessary to burn a large amount of fuel efficiently in a short period of time, but pulverized coal has poor combustibility compared to heavy oil, so it cannot be used with heavy oil by normal means. It is difficult to obtain the same level of combustion efficiency.

殊に高Fi羽口に設けるバーナにお−て祉短い火炎を形
成して効率良く燃焼することが要求されるが、前述の如
く燃焼性の悪−微粉炭では、火炎が長(延びた軟跡とな
シ高炉羽ロ用としての適性に著しく大行ることとなる。
In particular, burners installed in high-Fi tuyeres are required to form short flames for efficient combustion, but as mentioned above, pulverized coal has poor combustibility, and the flames are long (elongated and soft). This marked a significant change in its suitability for use in blast furnace feathers.

又一般のバーナとして使用する場合#Cおいて炎を短(
抑える為に燃料吹き込み量を減少させる必要が生じ所定
の熱量を確保できなくなったシ、或%Aは燃焼システム
を大型化する必要があった。
Also, when using it as a general burner, set the flame to #C and shorten the flame (
In order to suppress this, it was necessary to reduce the amount of fuel injected, making it impossible to secure a predetermined amount of heat, and in some cases, it was necessary to increase the size of the combustion system.

このような問題点を解決する目的で微粉炭の効率的な燃
焼方法が種々研究されており2例えば第2図に示す様に
微粉炭吹き込みロアaの先端に微粉脚流攪乱用旋回羽根
12を取〕付け、*粉炭Pと2欠字気Sとの混合を十分
に行なわせて*粉炭O燃焼を促進させたシ、或いは補助
燃料の使用量を増加させ、補助燃料の燃焼熱で微粉炭を
燃焼させたプしていた。しかじなガら前者では・旋回羽
根が高温且つ高速の火炎雰囲気中に曝されるので損耗が
激しく長時間の使用に耐えとことができなかった。又後
者の方法では微粉炭を十分に且つ一気に燃焼させる為に
は多量の補助燃料を必要とし。
In order to solve these problems, various efficient combustion methods for pulverized coal have been studied.2 For example, as shown in FIG. ]Installation, *Pulverized coal P and 2 missing characters S are thoroughly mixed together *Pulverized coal O combustion is promoted, or the amount of auxiliary fuel used is increased, and the combustion heat of auxiliary fuel is used to burn pulverized coal. It was burning. However, in the former case, the swirling blades were exposed to a high-temperature and high-speed flame atmosphere, so they suffered severe wear and tear and could not withstand long-term use. Furthermore, the latter method requires a large amount of auxiliary fuel to burn the pulverized coal sufficiently and all at once.

重油から微粉炭へ切シ替えた経済的効果が減殺される。The economic effects of switching from heavy oil to pulverized coal will be diminished.

その他、改善方法として、予熱2次空電の一層の高温化
、燃焼用空気(2大空i)送給速度の高速化部1m前0
7F法が提案されているが%満足し得るものではない。
Other improvement methods include further increasing the temperature of the preheating secondary static electricity, and increasing the combustion air (2 air I) feeding speed at 1 m before the section 0.
Although the 7F method has been proposed, it is not completely satisfactory.

オーF414はかかる事情に着目してなされたものであ
〕、燃焼室において微粉炭を効率良(燃焼せしめ得るよ
うな微粉炭吹き込み方法を提供することを目的とするも
のである。しかして本発明の微粉炭吹き込み方法とは微
粉炭を気流輸送空電と共忙吹き込む微粉炭吹き込み燃焼
方法であって、微粉炭吹き込み流の中心に含酸素電体を
吹き込む点に要曾があ〕、これによ〕、燃焼炉内へ吹き
込まれた微粉炭を急速且つ十分に燃焼させゐことがで暑
る様になった。
The OF414 was developed in view of this situation, and its purpose is to provide a pulverized coal injection method that can efficiently (combust) pulverized coal in a combustion chamber.Thus, the present invention The pulverized coal injection method is a pulverized coal injection combustion method in which pulverized coal is injected together with pneumatic transport and static electricity. The pulverized coal that was blown into the combustion furnace was combusted quickly and sufficiently, which made it hot.

以下本発明を図面に基づいて説明するが、本発明は後述
の図例に限定されるものではなく、前・後記の趣旨に沿
ってバーナの形状を変更しin或いは一部の設計を変更
することも可能であり、また高炉用微粉炭バーナ以外の
各種バーナに適用することができる。
The present invention will be described below based on the drawings, but the present invention is not limited to the illustrated examples described below, and the shape of the burner may be changed to change the in or part of the design in accordance with the spirit described above and below. It is also possible to apply the present invention to various burners other than pulverized coal burners for blast furnaces.

第8図及び第4図(第8図における■−■線断面矢視図
)は本発明方法が適用される微粉炭ノ(−ナを例示する
説明図であ一す、Il粉炭は気流輸送管1jlKよって
供給され矢印Cの如くバーナ7から噴射される。一方圧
縮空究は供給管14により)(−ナ7へ供給されるが、
該気体は供給管14内の仕切シ22によって気流D1と
気流り把に分流される。aち気流D1はバーナ中心軸B
−BK対して平行な流れ(直進流)となシ1gc流D2
は旋回スリット17を通して制御管19に導入されるの
でバーナ中心軸B−Bを中心とした旋回流となる。
Fig. 8 and Fig. 4 (cross-sectional view taken along the line ■-■ in Fig. 8) are explanatory diagrams illustrating pulverized coal (-na) to which the method of the present invention is applied. It is supplied through the pipe 1jlK and injected from the burner 7 as shown by the arrow C. On the other hand, compressed air is supplied to the burner 7 through the supply pipe 14.
The gas is divided into an airflow D1 and an airflow stream by a partition 22 in the supply pipe 14. The airflow D1 is the burner center axis B.
- Flow parallel to BK (straight flow) 1gc flow D2
is introduced into the control pipe 19 through the swirling slit 17, resulting in a swirling flow centered on the burner central axis B--B.

直進流と旋回流の分配比はダンパ15,16で調節され
、夫々の分配比に応じた混合流が形成される。そして混
合流の内容に応じて吹き込み制御管19の先端部20か
ら放出される気流のフロー/(ターン、流速分布、広が
υ角度は異なったものとなる。同旋回流の発生装置は、
第8図のV−マ線新面矢視図(第5図)に示す如く接線
方向の空気孔を設けた筒体に限られず旋回羽根や旋回ス
リット等の一般に公知の種々の手段を適用したものが利
用される。又21は冷却用気流通路であシ矢印E1に添
って冷却用気体を送りバーナ7の過熱を抑制すす、歯口
では冷却用通路をφ内に開放した例を示したが、ジャケ
ットタイプの間接冷却方式を採用することもできる。こ
こで冷却用剣体としては空気が一般的であるが、蒸気、
水等であってもよい。
The distribution ratio between the straight flow and the swirling flow is adjusted by dampers 15 and 16, and a mixed flow is formed according to the respective distribution ratios. Depending on the content of the mixed flow, the flow/(turn, flow velocity distribution, and spread υ angle of the airflow discharged from the tip 20 of the blow control pipe 19 will be different.
As shown in the V-line new plane arrow view in Figure 8 (Figure 5), various commonly known means such as swirl vanes and swirl slits are applied, as well as a cylinder with tangential air holes. things are used. In addition, 21 is a cooling air flow passage that sends cooling gas along the arrow E1 to suppress overheating of the burner 7. An example is shown in which the cooling passage is opened inside φ at the tooth opening, but a jacket type indirect A cooling method can also be adopted. Air is generally used as the cooling sword here, but steam,
It may also be water or the like.

上記バーナによってバーナ先端から噴射される微粉炭炎
の状頗は第6図に示される。圧縮空気の気流りは前述の
如く旋回力が付与されているので。
The shape of the pulverized coal flame injected from the tip of the burner by the burner is shown in FIG. As mentioned above, the compressed air flow is given a swirling force.

吹き込み制御管19の先端部20より噴出すると遠心力
のために矢印Rのtto<らせんを描きな−dEら広が
る。一方電流輸送された微粉炭Cはバーナ中心軸ト4と
平行に噴出す為が、前記らせん流によって燃焼空気流E
の方向へ押し流される。その結果、燃焼用2次空気と微
粉炭の接触が可に的速やかに且つ完全にf?なわれ、微
粉炭は短時間内に効率良く燃焼する。ちなみに気流りの
噴出が行なわれない従来タイプのバーナでは、微粉炭は
1[進法的に形成され、義究流の外面側から少しずつ燃
焼空電流E中へ拡散しながら慾煉するから、該電流の大
部分が溶焼用空気と擬する壕でに相当の時間を要し、該
拡散の遅れに伴なって燃焼速度が遅延し火炎は長くなる
。両路2図に示すダンパ16を全閉として、ダンパ15
を全開とした場合には気流りは中心軸B−BK平行に噴
出するので微粉炭の広が〕角度は小さく1にるが、圧縮
気体の膨張力および運動量による巻き込み現象によって
微粉炭の燃焼空電E方向への拡散が促進され、燃焼速度
は加速される。尚拡散用の気体(’IEfItD)の種
類は特#c@定され′&いが、燃焼効率を阻害しない気
体を用−るべきことは轟然であシ、特に空電や酸素を使
用すれば燃焼効率はW!に同上するので好tしい。
When it is ejected from the tip 20 of the blow control tube 19, it spreads out from the direction of the arrow R in a spiral direction due to centrifugal force. On the other hand, the pulverized coal C transported by current is ejected parallel to the burner center axis 4, so that the combustion air flow E is caused by the spiral flow.
being swept away in the direction of As a result, the contact between the secondary air for combustion and the pulverized coal can be made very quickly and completely. As a result, pulverized coal burns efficiently within a short period of time. By the way, in conventional type burners that do not emit air current, pulverized coal is formed in the 1 [adcisemental manner, and diffuses little by little into the combustion air current E from the outer surface of the air flow. It takes a considerable amount of time for most of the current to flow through the trench, which simulates the combustion air, and as the diffusion is delayed, the combustion speed is delayed and the flame lengthens. With the damper 16 shown in Figure 2 for both paths fully closed, the damper 15
When fully opened, the airflow is ejected parallel to the central axis B-BK, so the spread of the pulverized coal is small and the angle is 1, but due to the entrainment phenomenon caused by the expansion force and momentum of the compressed gas, the combustion air of the pulverized coal is Diffusion in the E direction is promoted and the combustion rate is accelerated. Although the type of gas for diffusion ('IEfItD) is specified, it is absolutely necessary to use a gas that does not inhibit combustion efficiency, especially if static electricity or oxygen is used. Combustion efficiency is W! This is preferable because it is the same as above.

第7図は吹き込み制御管19から噴出される拡散用気流
の旋回度(旋回気流量/全気流量)と火炎長さの関係を
示すグラフである。火炎長さは吹き込み制御管を設けな
かった場合を1004とし。
FIG. 7 is a graph showing the relationship between the degree of swirl (swirling air flow rate/total air flow rate) of the diffusion air flow ejected from the blow control pipe 19 and the flame length. The flame length is 1004 when no blow control pipe is provided.

拡散用気流として圧縮学究又は圧縮酸素を用いた場合に
おける夫々の火炎長さ比率を示した。拡散用気流りの全
量はいずれも1 fS Nm”/Hrとしダンパ15,
1gにて旋回空電量の配分を調整した。
The flame length ratios are shown when compressed air or compressed oxygen is used as the diffusion air flow. The total amount of the diffusion airflow is 1 fS Nm”/Hr, and the damper 15,
The distribution of turning static electricity was adjusted at 1g.

f#I燃焼条件は、微粉炭供給量: Is 5 h/H
r a電流輸送空完量: 15 Nm”/Hr*炉温:
18QO℃。
f#I combustion condition is pulverized coal supply amount: Is 5 h/H
ra Current transport capacity: 15 Nm”/Hr*Furnace temperature:
18QO℃.

燃焼空電予熱温度:450℃、燃焼排ガス残留酸雪濃度
:6.4チである。グラフから明らかな様に本発明によ
る火炎長さは従来方法における火炎長さよシも短かくな
り、特に旋回気流比率を増すに従って火炎長さは短かぐ
なる。又気体を酸素和した場合t/Cは、その効果#−
ij!!に顕著であシ、従来法における火炎長さの40
111で短かくできる。
Combustion static preheating temperature: 450°C, combustion exhaust gas residual acid snow concentration: 6.4°C. As is clear from the graph, the flame length according to the present invention is shorter than that according to the conventional method, and in particular, as the swirling airflow ratio increases, the flame length becomes shorter. Also, when gas is oxygenated, t/C is the effect #-
ij! ! It is noticeable that the flame length in the conventional method is 40
You can shorten it with 111.

更に1g粉脚噴出速度又は燃焼用空電流速に対する拡散
用電体噴出速度の相対比を太き(とれば。
Furthermore, increase the relative ratio of the dispersion electric body ejection speed to the 1g powder leg ejection speed or the combustion air current speed (if taken).

これらの拡散混合が早くなって燃焼速度は更に高ま夛火
炎は短かぐなる。
The diffusion mixing becomes faster, the combustion rate increases further, and the flame becomes shorter.

第8図、第9図は本発明方法が適用される他のバーナを
示す要部鋳明図であり、圧縮気体供給管に旋回流発生部
を設けない代シに制御管内に旋回羽根(第8図)又は旋
回スリット(第9図)を設けたものである。しかしこれ
らの例では火炎長さは輸送気体りの流速(及び流量)に
支配されるので拡散程度の関節範囲は前述例のものよ〕
やや狭いが同等の効果を得ることができる。父上記方法
に加えて着火用又は補助燃料用としてガス又は重油を併
用することも本発明に含まれる。
FIGS. 8 and 9 are schematic diagrams showing the main parts of another burner to which the method of the present invention is applied. (Fig. 8) or a turning slit (Fig. 9). However, in these examples, the flame length is controlled by the flow velocity (and flow rate) of the transport gas, so the joint range of the degree of diffusion is the same as in the previous example.]
It's a little narrower, but you can get the same effect. In addition to the above method, the present invention also includes the use of gas or heavy oil for ignition or auxiliary fuel.

本発明は以上の様に構成されていることから。This is because the present invention is configured as described above.

溶焼性の悪い微粉炭を速やかに且つ十分に燃焼させるこ
とができ、従来方法に比べ微粉炭の多量吹き込みが可能
となp、*粉度の高炉用燃料等としての適性を飛躍的に
高め得ることになった。又吹き込み制御管の旋回流の調
整によシ最適な熱負荷分布に#A整することが可能にな
った。
Pulverized coal, which has poor combustibility, can be combusted quickly and sufficiently, making it possible to inject a large amount of pulverized coal compared to conventional methods, dramatically increasing the suitability of pulverized coal as fuel for blast furnaces, etc. I ended up getting it. Also, by adjusting the swirling flow in the blow control pipe, it became possible to adjust #A to the optimum heat load distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃焼実験装置フロー図、第2図は先端部に旋回
羽根を般けた従来例微粉炭パー、すの要部断面図、第8
図は本発明方法が適用される微粉炭バーナの正面図、第
4図は同側面図、第5図Fi第8図におけるA−A線断
面図、第6図は本発明方法による微粉炭拡散伏即説明図
、第7図は吹き込み電流の旋回度と火炎長さ比率の関係
を示すグラフ、第8図、第9図は本発明方法を適用した
微粉炭バーナの旋回機構部説明図である。 7・・・バーナ     14−・供給管17・・・ラ
センスリット 19−・吹き吹み制御管C・・・微粉炭
     D・・・吹き込み気流E・・・2次空気 第は図 ♂1 旋回気流量/全気流量 (哄) 第8図 第9図
Figure 1 is a flow diagram of the combustion experiment equipment, Figure 2 is a sectional view of the main part of a conventional pulverized coal parser with a swirl vane at the tip, and Figure 8
The figure is a front view of a pulverized coal burner to which the method of the present invention is applied, FIG. 4 is a side view of the same, FIG. 5 is a sectional view taken along line A-A in FIG. 7 is a graph showing the relationship between the degree of rotation of the injection current and the flame length ratio, and FIGS. 8 and 9 are explanatory diagrams of the rotation mechanism of a pulverized coal burner to which the method of the present invention is applied. . 7... Burner 14-- Supply pipe 17... Laser slit 19-- Blowing control tube C... Pulverized coal D... Blow air flow E... Secondary air is Figure ♂1 Swirling air Flow rate/Total air flow rate (哄) Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] fll鑞粉脚を燃焼用空電と共に吹き込む微粉炭吹き込
み燃焼方法であって、徽粉廣吹き込み流の中心に含酸素
気体を吹き込むことを特徴とする微粉炭吹き込み燃焼方
法。
This is a pulverized coal blowing combustion method in which a pulverized coal powder leg is blown in together with a combustion static electricity, and the pulverized coal blowing combustion method is characterized in that an oxygen-containing gas is blown into the center of the pulverized powder blowing flow.
JP56123641A 1981-08-06 1981-08-06 Method of blow-in combustion of pulverized coal Granted JPS5824712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123641A JPS5824712A (en) 1981-08-06 1981-08-06 Method of blow-in combustion of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123641A JPS5824712A (en) 1981-08-06 1981-08-06 Method of blow-in combustion of pulverized coal

Publications (2)

Publication Number Publication Date
JPS5824712A true JPS5824712A (en) 1983-02-14
JPH0152643B2 JPH0152643B2 (en) 1989-11-09

Family

ID=14865613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123641A Granted JPS5824712A (en) 1981-08-06 1981-08-06 Method of blow-in combustion of pulverized coal

Country Status (1)

Country Link
JP (1) JPS5824712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116812A (en) * 1985-11-15 1987-05-28 Nippon Sanso Kk Fine powder coal combustion method
JPS62116813A (en) * 1985-11-15 1987-05-28 Nippon Sanso Kk Fine powder coal combustion method
JPS63311007A (en) * 1987-05-12 1988-12-19 コントロール・システムズ・カンパニー Burner assembly for furnace for coal fuel
DE102004059679B4 (en) * 2003-12-16 2005-12-22 Alstom Power Boiler Gmbh Round burner for combustion of dusty fuel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340045U (en) * 1989-08-31 1991-04-17
JP5678606B2 (en) * 2010-11-25 2015-03-04 株式会社Ihi Boiler equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121308A (en) * 1979-03-05 1980-09-18 Steinmueller Gmbh L & C Burner
JPS5627806A (en) * 1979-08-16 1981-03-18 Steinmueller Gmbh L & C Equipment for burning pulverized fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121308A (en) * 1979-03-05 1980-09-18 Steinmueller Gmbh L & C Burner
JPS5627806A (en) * 1979-08-16 1981-03-18 Steinmueller Gmbh L & C Equipment for burning pulverized fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116812A (en) * 1985-11-15 1987-05-28 Nippon Sanso Kk Fine powder coal combustion method
JPS62116813A (en) * 1985-11-15 1987-05-28 Nippon Sanso Kk Fine powder coal combustion method
JPS63311007A (en) * 1987-05-12 1988-12-19 コントロール・システムズ・カンパニー Burner assembly for furnace for coal fuel
DE102004059679B4 (en) * 2003-12-16 2005-12-22 Alstom Power Boiler Gmbh Round burner for combustion of dusty fuel

Also Published As

Publication number Publication date
JPH0152643B2 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
US4150631A (en) Coal fired furance
RU2153129C2 (en) Burner and internal combustion device with burner
US5944507A (en) Oxy/oil swirl burner
US3244220A (en) Furnace for low and high heat value fuels
US4634054A (en) Split nozzle tip for pulverized coal burner
US4412810A (en) Pulverized coal burner
FI85910B (en) FOERFARANDE OCH ANORDNING FOER ATT STARTA PANNAN I ETT KRAFTVERK SOM UTNYTTJAR FAST BRAENSLE SAMT FOER ATT SAEKERSTAELLA FOERBRAENNINGEN AV BRAENSLET.
PL179672B1 (en) Coal dust fired boiler
PL206626B1 (en) Solid fuel burner and combustion method using solid fuel burner
KR20000023593A (en) Pulverized solid fuel nozzle tip
US2046767A (en) Combustion apparatus
KR19990068227A (en) Pulverized coal combustion burner and combustion method thereby
JPS5912209A (en) Combustion apparatus and method for coal burning furnace
US4408548A (en) Pulverized coal combustion method and apparatus
KR20110053310A (en) Low nox burner
GB2070761A (en) Pulverized coal burner
JPH0438963B2 (en)
JPH032780B2 (en)
US4732093A (en) Annular nozzle burner and method of operation
US3199476A (en) Apparatus and method for compound cyclone combustion of coal and other fuels
JPS5824712A (en) Method of blow-in combustion of pulverized coal
US6199494B1 (en) Method of improving the performance of a cyclone furnace for difficult to burn materials, and improved cyclone furnace thereof
US5765488A (en) Cyclone furnace combustion system and method utilizing a coal burner
US4768948A (en) Annular nozzle burner and method of operation
JP6517039B2 (en) Combustion burner, boiler, and method of burning fuel gas