NO145358B - PASSIVE OPTICAL DISTANCE SIMULATOR. - Google Patents

PASSIVE OPTICAL DISTANCE SIMULATOR. Download PDF

Info

Publication number
NO145358B
NO145358B NO780765A NO780765A NO145358B NO 145358 B NO145358 B NO 145358B NO 780765 A NO780765 A NO 780765A NO 780765 A NO780765 A NO 780765A NO 145358 B NO145358 B NO 145358B
Authority
NO
Norway
Prior art keywords
hydrogen peroxide
solution
oxidation
acid
extraction
Prior art date
Application number
NO780765A
Other languages
Norwegian (no)
Other versions
NO145358C (en
NO780765L (en
Inventor
Fred Shelton Hurt
Michael Archer Cross
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/775,061 external-priority patent/US4189233A/en
Priority claimed from US05/837,067 external-priority patent/US4167328A/en
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of NO780765L publication Critical patent/NO780765L/en
Publication of NO145358B publication Critical patent/NO145358B/en
Publication of NO145358C publication Critical patent/NO145358C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Holo Graphy (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Glass Compositions (AREA)

Description

Fremgangsmåte ved fremstilling av hydrogenperoksyd. Procedure for the production of hydrogen peroxide.

I patent 100 443 er der beskrevet en In patent 100 443 there is described a

forbedring - av fremgangsmåten ved fremstilling av hydrogenperoksyd ved avvekslende reduksjon og oksydasjon av et alkylantrakinon og ekstraksjon av det dannede hydrogenperoksyd fra kretsløpsoppløsnin-gen med avmineralisert vann. I henhold til patentet blir det til ekstraksjon av hydrogenperoksydet anvendte, avmineraliserte vann innstilt på en pH-verdi under 6, fortrinnsvis 2—4, ved tilsestning av en syre. improvement - of the method for the production of hydrogen peroxide by alternating reduction and oxidation of an alkyl anthraquinone and extraction of the formed hydrogen peroxide from the circuit solution with demineralized water. According to the patent, the demineralised water used for the extraction of the hydrogen peroxide is adjusted to a pH value below 6, preferably 2-4, by adding an acid.

Ved denne forholdsregel oppnås at den tendens som kretsløpsoppløsningen har til emulsj onsdannelse når den er anvendt i lengre tid, nedsettes i sterk grad, således at tapene av kretsløpsoppløsningen og der-med også forurensning av det oppnådde, vandige peroksyd nedsettes til et minimum. En yttrligere fordel ved denne fremgangsmåte består i at man samtidig får fjernet metallsporer fra oppløsningen. With this precaution, it is achieved that the tendency of the circuit solution to form emulsions when it has been used for a long time is greatly reduced, so that the losses of the circuit solution and thereby also contamination of the obtained aqueous peroxide are reduced to a minimum. A further advantage of this method is that metal traces are removed from the solution at the same time.

Det har nu vist seg at der kan oppnås It has now been shown that this can be achieved

en ytterligere vesentlig fordel hvis syren tilsettes den organiske kretsløpsoppløsning allerede før oksydasjonen av hydrokinon-forbindelsen. På den måte er det mulig nesten fullstendig å unngå utbyttetap under oksydasjonen. a further significant advantage if the acid is added to the organic circuit solution already before the oxidation of the hydroquinone compound. In this way, it is possible to almost completely avoid loss of yield during the oxidation.

I det nevnte patent er det også angitt In the aforementioned patent it is also stated

at oppløseligheten av den syre som anvendes til surgj øring, for oppnåelse av en optimal virkning, skal være lavest mulig i den organiske fase, men størst mulig i den vandige fase. Det er derfor å vente at den syre som tilsettes før oksydasjonen, eks- that the solubility of the acid used for acidification, to achieve an optimal effect, should be the lowest possible in the organic phase, but the highest possible in the aqueous phase. It is therefore to be expected that the acid that is added before the oxidation, ex-

traheres ut av den organiske fase samtidig med hydrogenperoksydet. Syren tilsettes derfor hensiktsmessig i en sådan mengde at pH-verdien av det ekstraherte, vandige hydrogenperoksyd er optimal under ekstraksjonen både av hensyn til hydrogenperoksyd-oppløsningens stabilitet og av hensyn til emulsj onstendensen mellom den organiske og den vandige fase. I henhold til hovedpatentet tilsettes derfor så meget syre at den vandige hydrogenperoksyd-oppløsnings pH-verdi ligger under 6, fortrinnsvis mellom 2 og 4. Man kan imidlertid også arbeide på den måte at man før oksydasjonen bare tilsetter en del av den syre som er nødvendig for innstilling av den vandige hydrogenperoksyd-oppløs-nings pH-verdi og så tilsetter resten til det avmineraliserte vann som anvendes til ekstraksjon av hydrogenperoksyd fra den organiske fase. is extracted from the organic phase at the same time as the hydrogen peroxide. The acid is therefore suitably added in such an amount that the pH value of the extracted, aqueous hydrogen peroxide is optimal during the extraction both for reasons of the stability of the hydrogen peroxide solution and for reasons of emulsion tendency between the organic and the aqueous phase. According to the main patent, so much acid is therefore added that the pH value of the aqueous hydrogen peroxide solution is below 6, preferably between 2 and 4. However, one can also work in such a way that, before the oxidation, only a part of the acid that is necessary is added for setting the pH value of the aqueous hydrogen peroxide solution and then adds the remainder to the demineralized water used for the extraction of hydrogen peroxide from the organic phase.

Ved utførelsen av oppfinnelsen kan man, som allerede angitt i patent 100 443, anvende praktisk talt hvilken som helst syre; egnet er. foruten fosforsyre, f. eks. salpetersyre, svovelsyre og saltsyre. Hvis der ønskes en stabilisering av det vandige hydrogenperoksyd med fosforsyre, tilsettes fosforsyre til kretsløpsoppløsningen. When carrying out the invention, practically any acid can be used, as already stated in patent 100 443; is suitable. besides phosphoric acid, e.g. nitric acid, sulfuric acid and hydrochloric acid. If stabilization of the aqueous hydrogen peroxide with phosphoric acid is desired, phosphoric acid is added to the circuit solution.

Eksempel 1. Example 1.

I en vanlig kretsløpsapparatur ble 10 liter av en oppløsning av 120 g 2-ethylantrakinon i 380 g octylalkohol og 500 g ben-zol pr. time hydrert, oksydert, ekstrahert med vann og i tilslutning dertil igjen til-ført hydreringen. Por hydreringen ble der anvendt Raney-nikkel som katalysator i en mengde på ca. 1—2 vektpst. beregnet på kretsløpsoppløsningen. In a conventional circuit apparatus, 10 liters of a solution of 120 g of 2-ethylanthraquinone in 380 g of octyl alcohol and 500 g of benzene per hour hydrated, oxidized, extracted with water and, in connection therewith, again added to the hydration. For the hydrogenation, Raney nickel was used as catalyst in an amount of approx. 1-2 wt. calculated for the circuit resolution.

Hydreringen ble gjennomført ved en temperatur på 25° C så lenge inntil 4 volumdeler H2 pr volumdel kretsløpsoppløs-ning var absorbert. Deretter var 37,4 g pr kg ethylantrakinon omdannet til hy dro-kinonform. I tilslutning dertil ble kataly-satoren igj en fj ernet kvantitativt før krets-løpsoppløsningen, som da inneholdt 2-ethylantrakinon, tildels i hydrokinonform, igjen ble oksydert ved gjennomledning av luft ved en temperatur på 30° C. Luften ble ledet gjennom i overskudd så lenge inntil 4 volumdeler O2 pr volumdel kretsløpsopp-løsning var opptatt. Kretsløpsoppløsning-ens oppholdstid i oksydasjonsfasen var 30 min. The hydrogenation was carried out at a temperature of 25° C until 4 parts by volume of H2 per part by volume of circuit solution had been absorbed. Subsequently, 37.4 g per kg of ethylanthraquinone was converted into hydroquinone form. In addition, the catalyst was again removed quantitatively before the circuit solution, which then contained 2-ethylanthraquinone, partly in hydroquinone form, was again oxidized by passing air at a temperature of 30° C. The air was passed through in excess so long until 4 parts by volume of O2 per part by volume of circuit solution was occupied. The circuit solution's residence time in the oxidation phase was 30 min.

Etter oksydasjonen utgjorde hydrogen-peroksydmengden i kretsløpsoppløsningen 4,83 g/kg, hvilket tilsvarer et utbytte på 90,4 pst. av den teoretiske mengde beregnet på grunnlag av innholdet av 2-ethylantra-hydrogen tilstede etter hydreringen. Derpå ble kretsløpsoppløsningen som inneholdt hydrogenperoksyd, ekstrahert med avmineralisert vann. After the oxidation, the amount of hydrogen peroxide in the circuit solution was 4.83 g/kg, which corresponds to a yield of 90.4 percent of the theoretical amount calculated on the basis of the content of 2-ethylanthra-hydrogen present after the hydrogenation. Then the circuit solution containing hydrogen peroxide was extracted with demineralized water.

Alt etter forholdet mellom den organiske fase og ekstraksjonsvannet får man mer eller mindre vandige hydrogenperok-sydoppløsninger, idet utbyttet etter ekstraksjonen avhenger av de kjente faktorer, som fordelingslikevekten av hydrogenperoksydet mellom de to faser, temperaturen, ekstraksjonsanleggets trinn osv. Depending on the ratio between the organic phase and the extraction water, more or less aqueous hydrogen peroxide solutions are obtained, as the yield after the extraction depends on the known factors, such as the distribution equilibrium of the hydrogen peroxide between the two phases, the temperature, the steps of the extraction plant, etc.

I foreliggende tilfelle var forholdet mellom den organiske og den vandige fase 2 : 1 vektdeler. In the present case, the ratio between the organic and the aqueous phase was 2:1 parts by weight.

Da det vandige hydrogenperoksyd hadde en pH-verdi på 6,6, hadde det et melk-aktig utseende. Den vandige oppløsning inneholdt ennu ca 100 mg organisk oppløs-ning pr kg. Konsentrasjonen av hydrogen-1 peroksyd var 8,94 g/kg, hvilket tilsvarer et utbytte i ekstraksjonen på 92,5 pst. When the aqueous hydrogen peroxide had a pH value of 6.6, it had a milky appearance. The aqueous solution still contained about 100 mg of organic solution per kg. The concentration of hydrogen peroxide was 8.94 g/kg, which corresponds to a yield in the extraction of 92.5 per cent.

I et annet tilfelle ble der i den samme opløsningsmiddelblanding oppløst 120 g 2-tert-butylantrakinon. Prosessen ble gjen-nomført på lignende måte, men til hydrer-ing av én volumdel kretsløpsoppløsning trengtes bare 3,5 volumdeler H2, idet temperaturen under hydreringen ble holdt på ca 40° C. I overensstemmelse med dette trengtes der av i overskudd tilført luft for hydreringen bare 3,5 volumdeler O2 pr volumdel kretsoppløsning. Forskjellen mellom hydrokinoninnholdet før og etter oksydasjonen utgjorde 41,5 g/kg kretsløpsoppløs-ning. Etter oksydasjonen var oppløsningens hydrogenperoksyd-innhold 4,56 g/kg krets-løpsoppløsning. Dette tilsvarer et utbytte på 86 pst. av det teoretiske under oksydasjonen. Også i dette tilfelle var vektforhol-det mellom den organiske og den vandige fase 2 : 1. Ved en pH-verdi på 6,7 av den vandige fase hadde denne et svakt melk-gult utseende. Den vandige oppløsning inneholdt ennu ca 120 mg/kg kretsløpsopp-løsning, konsentrasjonen var 8,4 g/kg, hvilket tilsvarer et utbytte på 92 pst. i ekstraksjonen. In another case, 120 g of 2-tert-butylanthraquinone were dissolved in the same solvent mixture. The process was carried out in a similar way, but only 3.5 parts by volume of H2 were needed for the hydration of one part by volume of circuit solution, as the temperature during the hydration was kept at about 40° C. In accordance with this, an excess of added air was needed for the hydration only 3.5 parts by volume of O2 per part by volume circuit solution. The difference between the hydroquinone content before and after the oxidation amounted to 41.5 g/kg circuit solution. After the oxidation, the hydrogen peroxide content of the solution was 4.56 g/kg circuit solution. This corresponds to a yield of 86 per cent of the theoretical during the oxidation. In this case too, the weight ratio between the organic and the aqueous phase was 2:1. At a pH value of 6.7, the aqueous phase had a slightly milky yellow appearance. The aqueous solution still contained about 120 mg/kg circuit solution, the concentration was 8.4 g/kg, which corresponds to a yield of 92 percent in the extraction.

Eksempel 2. Example 2.

10 liter av en oppløsning som beskrevet i eksempel 1 under dannelse av ethylantrakinon, ble avvekslende hydrert og oksydert. Forsøksbetingelsene var de samme som angitt i eksempel 1, men i foreliggende tilfelle ble kretsløpsoppløsningen før oksydasjonen tilsatt en 0,1 pst.'s fosforsyre i en mengde på 15 ml/kg. Etter oksydasjonen ble hydrogenperoksydet ekstrahert fra den organiske oppløsning ved hjelp av avmineralisert vann i forholdet 2 vektdeler organisk oppløsning til 1 vektdel vann. Etter ekstraksjonen hadde den vandige oppløs-ning en pH-verdi på ca. 3. I dette tilfelle ble der under hydreringen dannet 38,2 g hydrokinon pr kg kretsløpsoppløsning. Denne mengde hydrokinon ble igjen oksydert med luft under de i eksempel 1 angitte betingelser, hvorved der samtidig oppstod 5,4 g hydrogenperoksyd pr kg organisk ar-beidsoppløsning. Dette tilsvarer et utbytte av hydrogenperoksyd under oksydasjonen på 98,2 pst. av det teoretiske. 10 liters of a solution as described in example 1, forming ethylanthraquinone, was alternately hydrated and oxidized. The test conditions were the same as stated in example 1, but in the present case a 0.1% phosphoric acid was added to the circuit solution before the oxidation in an amount of 15 ml/kg. After the oxidation, the hydrogen peroxide was extracted from the organic solution using demineralized water in a ratio of 2 parts by weight of organic solution to 1 part by weight of water. After the extraction, the aqueous solution had a pH value of approx. 3. In this case, 38.2 g of hydroquinone per kg of circuit solution was formed during the hydration. This amount of hydroquinone was again oxidized with air under the conditions stated in Example 1, whereby 5.4 g of hydrogen peroxide per kg of organic working solution was produced at the same time. This corresponds to a yield of hydrogen peroxide during the oxidation of 98.2 per cent of the theoretical.

Også i dette tilfelle ble den organiske fase ekstrahert med avmineralisert vann i vektf or holdet 2:1. Det vandige hydrogen-peroksyds pH-verdi lå imidlertid i dette tilfelle på ca. 3. Den vandige oppløsning var bare svakt blakket og inneholdt bare ca 40 mg organisk oppløsning pr. kg. Konsentrasjonen av hydrogenperoksyd var 10,36 g/kg, hvilkst tilsvarer et utbytte i ekstra-sjonen på 96 pst. In this case too, the organic phase was extracted with demineralized water in a weight ratio of 2:1. In this case, however, the aqueous hydrogen peroxide's pH value was approx. 3. The aqueous solution was only weakly diluted and contained only approx. 40 mg of organic solution per kg. The concentration of hydrogen peroxide was 10.36 g/kg, which corresponds to a yield in the extraction of 96 per cent.

Eksempel 3. Example 3.

Ved videre forsøk som ble gjennom-ført på lignende måte som i henhold til eksempel 1, ble der i stedet for fosforsyre tilsatt en vandig salpetersyre i en konsen-trasjon på 0,25 pst. Resultatene fremgår av In further experiments which were carried out in a similar way to example 1, instead of phosphoric acid, an aqueous nitric acid was added in a concentration of 0.25 percent. The results can be seen from

følgende tabell, hvor kolonne 1 angir for-søkets nummer, kolonne 2 arten av den the following table, where column 1 indicates the request's number, column 2 its nature

anvendte antrakinon-forbindelse, kolonne used anthraquinone compound, column

3 den oksyderte mengde hydrokinon i g/kg, kolonne 4 mengden av hydroperoksyd i g/kg av den organiske oppløsning og kolonne 5 utbyttet i prosent under oksydasjonen: 3 the oxidized amount of hydroquinone in g/kg, column 4 the amount of hydroperoxide in g/kg of the organic solution and column 5 the yield in percent during the oxidation:

Claims (1)

Fremgangsmåte ved fremstilling avProcedure in the manufacture of hydrogenperoxyd ved avvekslende reduksjon og oksydasjon av et alkylantrakinon og ekstraksjon av det dannede hydrogenperoxyd fra kretsløpsoppløsningen med avmineralisert vann, ved hvilken fremgangsmåte det til ekstraksjon av hydrogen- peroxydet anvendte avmineraliserte vann ved tilsetning av en syre innstilles på en pH-verdi under 6, fortrinnsvis 2—4, karakterisert ved at den syre som tje-ner til surgj øring av det avmineraliserte vann tilsettes kretsløpsoppløsningen før oksydasjonen.hydrogen peroxide by alternating reduction and oxidation of an alkyl anthraquinone and extraction of the formed hydrogen peroxide from the circuit solution with demineralized water, in which method demineralized water was used for the extraction of the hydrogen peroxide by adding an acid, a pH value below 6, preferably 2-4, is set, characterized in that the acid which serves to acidify the demineralized water is added to the circuit solution before the oxidation.
NO780765A 1977-03-07 1978-03-06 PASSIVE OPTICAL DISTANCE SIMULATOR. NO145358C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/775,061 US4189233A (en) 1977-03-07 1977-03-07 Passive optical range simulator device
US05/837,067 US4167328A (en) 1977-09-28 1977-09-28 Passive optical range simulator device

Publications (3)

Publication Number Publication Date
NO780765L NO780765L (en) 1978-09-08
NO145358B true NO145358B (en) 1981-11-23
NO145358C NO145358C (en) 1982-03-03

Family

ID=27118987

Family Applications (1)

Application Number Title Priority Date Filing Date
NO780765A NO145358C (en) 1977-03-07 1978-03-06 PASSIVE OPTICAL DISTANCE SIMULATOR.

Country Status (9)

Country Link
JP (1) JPS5941545B2 (en)
DE (1) DE2809812A1 (en)
DK (1) DK99178A (en)
ES (1) ES467514A1 (en)
GB (1) GB1572148A (en)
GR (1) GR64458B (en)
IL (1) IL54201A (en)
NL (1) NL7802432A (en)
NO (1) NO145358C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121890A (en) * 1977-08-17 1978-10-24 Hughes Aircraft Company Laser rangefinder tester
JPS54111858A (en) * 1978-02-21 1979-09-01 Minolta Camera Co Ltd Distance detector
DE3034942C2 (en) * 1980-09-16 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Measuring device for determining the extinction value of laser range finders
DE3325380A1 (en) * 1983-07-14 1985-01-24 Krauss-Maffei AG, 8000 München Device for checking a laser range finder
JPS6241067A (en) * 1985-08-20 1987-02-23 Sanyo Electric Co Ltd Thermal transfer recorder
DE3609834A1 (en) * 1986-03-22 1987-09-24 Krauss Maffei Ag Method and device for interfering with electromagnetic radiation
JP2548980Y2 (en) * 1992-03-31 1997-09-24 京セラ株式会社 Solar heat collector
GB2318011A (en) * 1996-10-07 1998-04-08 Secr Defence Simulator for radar returns
ES2818922T3 (en) * 2014-03-12 2021-04-14 Chugoku Electric Power Distance measurement method

Also Published As

Publication number Publication date
GB1572148A (en) 1980-07-23
JPS53110865A (en) 1978-09-27
JPS5941545B2 (en) 1984-10-08
ES467514A1 (en) 1979-09-01
NL7802432A (en) 1978-09-11
GR64458B (en) 1980-03-24
DK99178A (en) 1978-09-08
IL54201A (en) 1980-11-30
DE2809812A1 (en) 1978-09-14
NO145358C (en) 1982-03-03
NO780765L (en) 1978-09-08

Similar Documents

Publication Publication Date Title
DE60102165T2 (en) INTEGRATED METHOD FOR PRODUCING AN EPOXY
NO145358B (en) PASSIVE OPTICAL DISTANCE SIMULATOR.
US20120027667A1 (en) Method for the production of hydrogen peroxide
NO146709B (en) PROCEDURE FOR MANUFACTURING PROPYLENOXYD
JPH0511041B2 (en)
US3996295A (en) Preparation of dimethylsulfoxide by liquid phase reaction of dimethysulfide and hydrogen peroxide
US3043666A (en) Purification of hydrogen peroxide
CA1080465A (en) Process for the preparation of percarboxylic acid solutions
US2491065A (en) Process for producing ascorbic acid from 2-keto-levo-gulonic acid or its derivatives
NO141094B (en) USE OF BLOCK COPIES FOR IMPROVING THE ADHESIVENESS OF ADHESIVES
NO116368B (en)
DE3014129A1 (en) METHOD FOR PRODUCING 1-AMINOPROPANDIOL-2,3 (III)
EP0828725B1 (en) Process for the recovery of ascorbic acid
US2609400A (en) Modified weak-acid isopropanol process
EP0878470A1 (en) Process for the preparation of epoxides from olefins
SU676158A3 (en) Method of obtaining hydrogen peroxide
US3126257A (en) Process for preparing hydrogen
CH363649A (en) Process for the production of carboxylic acids
CS241076B2 (en) Method of 0-benzoylbenzoic acid's,hydrogen fluoride's and boron trifluoride's complex decomposition
CA1145356A (en) Process for the preparation of percarboxylic acid solutions
US1627325A (en) Process of making a stable hydrogen peroxide
US3694154A (en) Production of hydrogen peroxide from aqueous acidic solution obtained by hydrolysis
US4028420A (en) Process for the preparation of hex-2-enal
US3592776A (en) Production of hydrogen peroxide
US6037480A (en) Process and compositions for the recovery of ascorbic acid