NO143152B - USE OF ALUMINUM OXYDE-CONTAINED ILL-FIXED CONCRETE AS CONTACT MATERIAL WITH MELTED ALUMINUM OR ALLOYS THEREOF - Google Patents

USE OF ALUMINUM OXYDE-CONTAINED ILL-FIXED CONCRETE AS CONTACT MATERIAL WITH MELTED ALUMINUM OR ALLOYS THEREOF Download PDF

Info

Publication number
NO143152B
NO143152B NO761815A NO761815A NO143152B NO 143152 B NO143152 B NO 143152B NO 761815 A NO761815 A NO 761815A NO 761815 A NO761815 A NO 761815A NO 143152 B NO143152 B NO 143152B
Authority
NO
Norway
Prior art keywords
aluminum
fluorine
weight
refractory
alloys
Prior art date
Application number
NO761815A
Other languages
Norwegian (no)
Other versions
NO143152C (en
NO761815L (en
Inventor
Michel Lucien Drouzy
Michel Marie Richard
Francois Paul Huet
Henri Maurice Lacau
Original Assignee
Ucpi Soc P L Utilisation D Cer
Techn Des Ind De La Fonderie C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ucpi Soc P L Utilisation D Cer, Techn Des Ind De La Fonderie C filed Critical Ucpi Soc P L Utilisation D Cer
Publication of NO761815L publication Critical patent/NO761815L/no
Publication of NO143152B publication Critical patent/NO143152B/en
Publication of NO143152C publication Critical patent/NO143152C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Ceramic Products (AREA)

Description

Oppfinnelsen angår anvendelse av ildfast betong for kontakt The invention relates to the use of refractory concrete for contact

med masser av smeltet aluminium og legeringer derav, både som byggemateriale for smelteovner og som hjelpeutstyr for slike ovner, som sokler, tapperenner, omtappingsøser eller støpeøser, with masses of molten aluminum and its alloys, both as construction material for melting furnaces and as auxiliary equipment for such furnaces, such as plinths, troughs, re-bottling ladles or casting ladles,

som ofte befinner seg i kontakt i lang tid med smeltet aluminium. which are often in contact for a long time with molten aluminium.

De ildfaste materialer som er blitt anvendt i metallstøperier, inneholder siliciumdibxyd, som regel i form av forskjellige-silikater. The refractory materials that have been used in metal foundries contain silicon dioxide, usually in the form of various silicates.

Den forholdsvise andel av siliciumdioxyd varierer i avhengighet av materialtypen. Den utgjør ca. 60 vekt% i de produkter som be- The relative proportion of silicon dioxide varies depending on the type of material. It amounts to approx. 60% by weight in the products that be-

tegnes som leiraktige eller som siliciumaluminiumholdige produkter (35% aluminiumoxyd), og 35% i aluminiumholdige produkter (60% are drawn as clay-like or as silicon aluminum-containing products (35% aluminum oxide), and 35% in aluminum-containing products (60%

aluminiumoxyd) på basis av sillimanitt, bauxitt, mullitt eller andre produkter. Aluminiumoxydet som sådant inneholder siliciumdioxyd i en mengde av ca. 1%. Magnesiumproduktene eller krom/magnesiumproduktene inneholder ofte siliciumdioxyd i en mengde av opp til 10%. aluminum oxide) on the basis of sillimanite, bauxite, mullite or other products. The aluminum oxide as such contains silicon dioxide in an amount of approx. 1%. The magnesium products or chromium/magnesium products often contain silicon dioxide in an amount of up to 10%.

Dette siliciumdioxyd er tilbøyelig til å reagere med This silicon dioxide is prone to react with

reduserende metaller, som aluminium, ifølge den nedenstående reaksjonsligning: reducing metals, such as aluminium, according to the reaction equation below:

Denne reaksjon ved reduksjon av siliciumdioxyd eller av silikater med reduserende metall frigjør mye energi. Den kan teoretisk forløpe inntil ett av de to utgangsmaterialer er blitt fullstendig forbrukt. I praksis er omsetningshastigheten tilstrekkelig langsom til at lette reduserende metaller og legeringer derav kan smeltes i ovner bygget av materialer som inneholder siliciumdioxyd. Det påtreffes imidlertid forskjellige fenomener som hurtig uheldig innvirker på brukstiden for ovnene eller det tilknyttede hjelpeutstyr. Det oppstår en langsom impregnering av det ildfaste materiale. Dette overføres til en sort og meget slitesterk masse som utgjøres av agglomerater av korund og aluminium. Denne masse er ledende for varme og elektrisitet, og dette kan ha alvorlige følger for en elektro- This reaction by reduction of silicon dioxide or of silicates with reducing metal releases a lot of energy. It can theoretically continue until one of the two starting materials has been completely consumed. In practice, the turnover rate is sufficiently slow that light reducing metals and their alloys can be melted in furnaces built from materials containing silicon dioxide. However, various phenomena are encountered which quickly adversely affect the service life of the ovens or the associated auxiliary equipment. A slow impregnation of the refractory material occurs. This is transferred to a black and very durable mass which consists of agglomerates of corundum and aluminium. This mass is conductive to heat and electricity, and this can have serious consequences for an electro-

ovn og medføre betydelige energitap. Det dannes svellinger og sprekker spesielt dersom det ildfaste materiale har et lavt innhold av aluminiumoxyd. Partiklene av det ildfaste materiale løsner fra ovnen og gjenfinnes i aluminiumstøpestykkene i form av harde inneslutninger. Oxyder som populært betegnes som "oxydsopper", dannes på ovnsbunnen og spesielt J?å ovnsveggene som oven and cause significant energy losses. Swelling and cracks form especially if the refractory material has a low aluminum oxide content. The particles of the refractory material loosen from the furnace and are found in the aluminum castings in the form of hard inclusions. Oxides, which are popularly referred to as "oxide fungi", form on the bottom of the oven and especially on the oven walls which

kommer i kontakt med badet. Disse oxydsopper øker i størrelse inntil de blokkerer en stor del av ovnen. Oxydsoppene er meget harde og kan i praksis ikke løsnes fra veg^éne. comes into contact with the bathroom. These oxide fungi increase in size until they block a large part of the furnace. The oxide mushrooms are very hard and in practice cannot be detached from the road.

I britisk patentskrift nr. 1135147 og i artikkelen'av In British Patent Document No. 1135147 and in the article'of

Von W. Helling og E. Kistermann med tittelen "Salzimpragnier-verfahren fiir Zustellung von Aluminium-Schmelz - und Warmhalteofen" i tidsskriftet "Aluminium", 33 (1957), hefte 8, s. 514-520, er disse vesentlige vanskeligheter for aluminiumindustrien beskrevet, og det er foreslått å avhjelpe disse vanskeligheter ved å påføre en glasur på ovnens innervegger bestående av en blanding av 80% natriumklorid og 20% kryolitt. Denne blanding har et smeltepunkt på 79 5°C. Da blandingen er sterkt flytbar, vil den lett trenge inn i overflateporene til det ildfaste materiale på basis' av sjamotte. Glasuren har vanligvis en synlig, tykkelse på 1-2. Von W. Helling and E. Kistermann with the title "Salzimpragnier-verfahren fiir Zustellung von Aluminium-Schmelz - und Warmhalteofen" in the journal "Aluminium", 33 (1957), issue 8, pp. 514-520, these are significant difficulties for the aluminum industry described, and it is proposed to remedy these difficulties by applying a glaze to the inner walls of the oven consisting of a mixture of 80% sodium chloride and 20% cryolite. This mixture has a melting point of 795°C. As the mixture is highly flowable, it will easily penetrate the surface pores of the chamotte-based refractory material. The glaze usually has a visible thickness of 1-2.

mm, men den trenger opp til 6 mm inn i det ildfaste materiale. mm, but it penetrates up to 6 mm into the refractory material.

Det høye natriuminnhold i dette glasurflussmiddel og det forholdsvis lave smeltepunkt som derved fås, gjør det lite ildfast og lite motstandsdyktig. Det er ifølge forfatterne nødvendig å gjenta impregneringen fra tid til annen. En teknisk bruks-bosjyre fra la Société Servimétal ancien départment, fonderie soudure Otalu, 87 Rue Pierre Joigneaux, 92 Bois-Colombes, Frankrike med tittelen "Les procédés de glacage des garnissages réfractaires des fours de fusion et de coulée utilisés das les; fonderies d'aluminium" er mer detaljert. Efter at det er blitt fastslått angrep av smeltet aluminium på ovnen, foreslås det i brosjyren to glaseringsmetoder ved anvendelse av en blanding bestående av 80% NaCl og 20% AlF^ . 3NaF. Den dype impregnerings-metode som tilsvarer den som er beskrevet i den ovnnevnte tyske artikkel, vrakes til fordel for en metode som betegnes som "over-flateimpregnering" som er mer fordelaktig spesielt fordi den er enklere, hurtigere, forbruker mindre glasurflussmiddel og krever lavere arbeidstemperaturer. Denne forbedrede metode består i at efter at ovnen er blitt tørket og brent, reguleres overflate-temperaturen for den ildfaste foring til 750-780°C, hvorefter ovnsbunnen bestrøs med 6-10 kg flussmiddel pr. cm 2 ved anvendelse av et sprøyteapparat som drives med trykkluft, aluminumet fylles i ovnen, fortrinnsvis vanlig handelsaluminium, ca. 1 time efter at smeltingen er blitt påbegynt, idet chargen beregnes slik at den ikke skal utgjøre mer enn en tredjepart av ovnens normale kapasitet, 2-3 kg flussmiddel pr. m 2 av ovnsbunnen strøs ut mens chargen er halveis smeltet, et annet flussmiddel strøs ved av-slutningen av smeltingen mens badet har en temperatur på* 730-750°C, på slaggen som derved gjøres tørr og pulverformig og således gjør det lettere å fjerne denne.ved avskumming efter 4-5 minutter avgassingsreaksjon og raffineringsreaksjon som vanlig er, ovnen tømmes fullstendig og ovnsbunnen skrapes om-hyggelig, en ny glasur påføres som beskrevet ovenfor, med unntagelse av at en annen ifylling av metall beregnes slik at den utgjør halvparten av ovnens normale kapasitet, en tredje glasur som beskrevet ovenfor påføres, med unntagelse av visse forandringer av glasurens sammensetning, og glasuren fornyes 5 timer senere. Ovnen er således ferdigstilt en gang for alle, og det påføres The high sodium content in this glaze flux and the relatively low melting point that results from it make it not refractory and not resistant. According to the authors, it is necessary to repeat the impregnation from time to time. A technical application manual from la Société Servimétal ancien départment, fonderie soudure Otalu, 87 Rue Pierre Joigneaux, 92 Bois-Colombes, France entitled "Les procédés de glacage des garnissages réfractaires des fours de fusion et de coulée utilisés das les; fonderies d 'aluminium' is more detailed. After it has been established that molten aluminum has attacked the furnace, two glazing methods are proposed in the brochure using a mixture consisting of 80% NaCl and 20% AlF^ . 3NaF. The deep impregnation method corresponding to the one described in the aforementioned German article is abandoned in favor of a method known as "surface impregnation" which is more advantageous especially because it is simpler, faster, consumes less glaze flux and requires lower working temperatures . This improved method consists in that, after the oven has been dried and fired, the surface temperature of the refractory lining is regulated to 750-780°C, after which the bottom of the oven is sprinkled with 6-10 kg of flux per cm 2 using a sprayer powered by compressed air, the aluminum is filled in the oven, preferably ordinary commercial aluminium, approx. 1 hour after melting has begun, the charge being calculated so that it should not amount to more than a third of the furnace's normal capacity, 2-3 kg of flux per m 2 of the furnace bottom is sprinkled while the charge is half-melted, another flux is sprinkled at the end of melting while the bath has a temperature of* 730-750°C, on the slag which is thereby made dry and powdery and thus makes it easier to remove this.when skimming after 4-5 minutes of degassing reaction and refining reaction as is usual, the kiln is completely emptied and the kiln bottom carefully scraped, a new glaze is applied as described above, with the exception that another filling of metal is calculated so that it makes up half of the kiln's normal capacity, a third glaze as described above is applied, with the exception of certain changes in the composition of the glaze, and the glaze is renewed 5 hours later. The oven is thus completed once and for all, and it is applied

en vedlikeholdsglasur én gang pr. måned. Denne komplekse arbeidsoperasjon og omkostningene ved denne, den manglende be-vegelighet og materialene for disse opprinnelige glasurer som siden gjentas, har hindret den videre utvikling av disse metoder, så meget mer som tilsetningen av et forholdsvis flyktig flussmiddel uten unntak vil forurense det behandlede aluminium; Aluminiumsmelterne fortsetter i virkeligheten å arbeide som tidligere og innkalkulerer i produksjonsomkostningene de nød-vendige investeringer for hyppig utskiftning av ovnene,den hurtige minskning av ovnenes kapasitet, ovnenes manglende be-vegelighet ved rensing efter hver charge og.de omkostninger som. skyldes tap av aluminium, og hele tiden med frykt for at et a maintenance glaze once per month. This complex work operation and the costs of this, the lack of mobility and the materials for these original glazes which have since been repeated, have prevented the further development of these methods, all the more so as the addition of a relatively volatile flux will invariably contaminate the treated aluminium; The aluminum smelters in reality continue to work as before and factor in the production costs the necessary investments for frequent replacement of the furnaces, the rapid reduction of the furnaces' capacity, the lack of movement of the furnaces when cleaning after each charge and the costs which. due to the loss of aluminium, and all the time with the fear that a

"hardt punkt" i det smeltede aluminium vil kunne beskadige et kostbart verkuøy nedenfor ovnen. Disse metoder har ikke ført frem fordi de ikke har kunnet løse det følgende problem. Dersom det foretas en impregnering med et flussmiddel med lavt smeltepunkt, kan impregneringen foretas lettere, men flussmidlet for-damper hurtig. Dersom det foretas en impregnering med et ildfast flussmiddel, er det nødvendig for å gjøre dette flytende og lett påførbart, å oppvarme ovnen til en forhøyet temperatur ved hvilken den ikke vil være motstandsdyktig eller bare dårlig motstandsdyktig og beskadiges. "hard spot" in the molten aluminum could damage an expensive tool island below the furnace. These methods have not been successful because they have not been able to solve the following problem. If an impregnation is carried out with a flux with a low melting point, the impregnation can be carried out more easily, but the flux evaporates quickly. If an impregnation is carried out with a refractory flux, it is necessary to make this liquid and easy to apply, to heat the furnace to an elevated temperature at which it will not be resistant or only poorly resistant and damaged.

I artikkelen med tittelen "Oxydation des alliages fondus, réaction avec les réfractaires" av Michel Drouzy og Michel Richard i tidsskriftet Fonderie 332, mars 1974, s. 121-128, In the article entitled "Oxydation des alliages fondus, réaction avec les réfractaires" by Michel Drouzy and Michel Richard in the journal Fonderie 332, March 1974, pp. 121-128,

er det bemerket at J.W. Fruehling og J.D. Hanawalt har vist at en fluorholdig atmosfære beskytter en ovn av ildfast materiale beregnet for behandling av flytende magnesium (Beskyttende atmosfære for smelting av magnesiumlegeringer, Modern Casting 56, august 1969, s. 159-164), og det er bemerket at denne fluorholdige atmosfære like godt kan anvendes for å beskytte et ildfast materiale mot et aluminiumbad. it is noted that J.W. Fruehling and J.D. Hanawalt has shown that a fluorine-containing atmosphere protects a refractory furnace intended for processing liquid magnesium (Protective Atmosphere for Melting Magnesium Alloys, Modern Casting 56, August 1969, pp. 159-164), and it is noted that this fluorine-containing atmosphere as can well be used to protect a refractory material against an aluminum bath.

Den erholdte beskyttelse er forbigående (høyst noen dager) The protection obtained is temporary (a few days at most)

på grunn av den fluormengde som det ildfaste materiale kan absorbere i sine porer, samtidig som den i ovnen innførte fluorholdige forbindelse forbrukes. For en ovn eller digel som ikke anvendes under en avgrenset atmosfære, vil den permanente for-nyelse av atmosfæren praktisk talt hindre oppnåelsen av en korrekt beskyttelse. Dessuten er avgivelsen av store mengder fluorholdig gass for farlig til at en fluorholdig atmosfære vil kunne vanlig anvendes i støperiene. due to the amount of fluorine that the refractory material can absorb in its pores, at the same time that the fluorine-containing compound introduced into the furnace is consumed. For a furnace or crucible which is not used under a restricted atmosphere, the permanent renewal of the atmosphere will practically prevent the achievement of correct protection. In addition, the release of large quantities of fluorine-containing gas is too dangerous for a fluorine-containing atmosphere to be commonly used in the foundries.

Disse vanskeligheter kan ikke overvinnes ved å innføre fluorholdige forbindelser i den samme masse som det ildfaste materiale da det er kjent at fluorholdige forbindelser er midler som letter smeltingen og som nedsetter ildfastheten til de produkter hvortil de tilsettes. Imidlertid er det allerede blitt forsøkt å tilsette fluorholdige derivater til byggematerialer som ikke er beregnet for kontakt med smeltet aluminium, men dette går ut over ildfastheten i det vesentlige under to typer betingelser som vil bli nærmere omtalt. ' På den ene side er det blitt forsøkt å blande litt fluor i ildfaste materialer som er bundet med et fosfat (se bl-a. artikkelen av Herbert D. Sheets, Jack J. Bulloff og Wiston H . Duckworth ved Batelle Memorial Institute med tittelen "Phosphate bonding of refractory compositions" publisert i Brick & Clay Record,. juli 1958, eller artikkelen i Berichte der Deutschen Keramischen Gesellschaft, bind 37 (1960), hefte 8, s. 362-267, av Von H. Betchel og G. Ploss med tittelen "Uber das Abbinden von Keramischer Rohstoffen mit monoaluminium-phosphat-Losung (Feuerfestbinder 32)". Det forsøkes således å forbedre betongbihdingei ved tilsetning av fluor. Det håpes at dannelsen av fluorfosfater vil være gunstig for oppnåelse av denne virkning. For å motvirke den ugunstige innvirkning på ildfastheten er det blitt anvendt kostbare ildfaste bestanddeler, som aluminiumoxydflak og Zr02 etc. ifølge den første artikkel, These difficulties cannot be overcome by introducing fluorine-containing compounds in the same mass as the refractory material as it is known that fluorine-containing compounds are agents which facilitate melting and which reduce the refractoriness of the products to which they are added. However, attempts have already been made to add fluorine-containing derivatives to building materials which are not intended for contact with molten aluminium, but this affects the refractoriness essentially under two types of conditions which will be discussed in more detail. ' On the one hand, attempts have been made to mix some fluorine into refractories bound with a phosphate (see, inter alia, the article by Herbert D. Sheets, Jack J. Bulloff and Wiston H . Duckworth at the Batelle Memorial Institute entitled "Phosphate bonding of refractory compositions" published in Brick & Clay Record, July 1958, or the article in Berichte der Deutschen Keramischen Gesellschaft, Volume 37 (1960), Issue 8, pp. 362-267, by Von H. Betchel and G. Ploss entitled "Uber das Abbinden von Keramischer Rohstoffen mit monoaluminium-phosphat-Losung (Feuerfestbinder 32)". Thus, an attempt is made to improve concrete adhesion by adding fluorine. It is hoped that the formation of fluorophosphates will be beneficial in achieving this effect. In order to counteract the unfavorable impact on refractoriness, expensive refractory components have been used, such as aluminum oxide flakes and Zr02 etc. according to the first article,

mens det ifølge den annen artikkel advares om at det vanligvis i praksis ikke kan oppnås en høy pyroskopisk motstandsdyktighet dersom tilstedeværelsen av fluor kan tolereres med det formål å danne en glassaktig fase av fluorfosfat, for å påskynde bindingen. Det er på den annen side blitt forsøkt å fremstille glassaktige, sodaholdige produkter, presentert under betegnelsen ildfaste betonger, ifølge boken med tittelen "Hitzebestandiger Beton" av Nekrassow (Bauverlag GMBH Wiesbaden Berlin 1961) j spesielt i det tredje og fjerde kapitel, ved utnyttelse av opp-løselig glass og natriumfluorsilikat. De høye innhold av natrium i disse glass senker deres ildfasthet. En sjamotte med en ildfasthet på opp til 1580°G vil bare kunne motstå 900°C dersom det til denne tilsettes et oppløselig glass og fluorsilikat som er sterkt smeltebefordrende midler. For å oppnå en ildfasthet av 1000°C er det nødvendig å tilsette en kromitt (se tabellen s. 239). while, according to the second article, it is warned that a high pyroscopic resistance cannot usually be achieved in practice if the presence of fluorine can be tolerated for the purpose of forming a glassy phase of fluorophosphate, in order to accelerate the bond. On the other hand, attempts have been made to produce glassy, soda-containing products, presented under the term refractory concretes, according to the book entitled "Hitzebestandiger Beton" by Nekrassow (Bauverlag GMBH Wiesbaden Berlin 1961) j especially in the third and fourth chapters, by utilizing soluble glass and sodium fluorosilicate. The high content of sodium in these glasses lowers their fire resistance. A chamotte with a fire resistance of up to 1580°G will only be able to withstand 900°C if a soluble glass and fluorosilicate are added to it, which are strong melting agents. To achieve a refractoriness of 1000°C, it is necessary to add a chromite (see table p. 239).

I ingen av disse publikasjoner behandles det spesielle tilfelle In none of these publications is the special case treated

med en ovn for smeltet aluminium. with a furnace for molten aluminum.

I US patentskrift nr. 3261699 er beskrevet ildfaste Stener beregnet for aluminiumelektrolyseovner. In US patent no. 3261699, refractory stones intended for aluminum electrolysis furnaces are described.

Den oppfinneriske idé ved dette patentskrift er å lage The inventive idea of this patent document is to make

ovnen av de samme bestanddeler som i elektrolysebadet, nærmere bestemt av kryolitt og A^O^. Ved denne løsning forurenses ikke badet selv om ovnen angripes under elektrolysen. For å unngå the furnace of the same ingredients as in the electrolysis bath, more specifically of cryolite and A^O^. With this solution, the bathroom is not contaminated even if the oven is attacked during the electrolysis. To avoid

denne ulempe er det uttrykkelig angitt i patentskriftets spalte 5, linjene 30-32, at dersom tilsetningsmidler anvendes, bør this disadvantage, it is expressly stated in column 5 of the patent document, lines 30-32, that if additives are used, they should

disse anvendes i forholdsvis små mengder, dvs. mindre enn 1%. Dette er riktig forsåvidt som det i patentskriftet skal anvendes syntetisk aluminiumoxyd, dvs. aluminiumoxyd fremstilt ved Bayer-prosessen, og kryolitten er også syntetisk kryolitt. Det dreier seg således om et meget kostbart produkt som er syntetisk fremstilt. these are used in relatively small amounts, i.e. less than 1%. This is correct provided that in the patent document synthetic aluminum oxide is to be used, i.e. aluminum oxide produced by the Bayer process, and the cryolite is also synthetic cryolite. It is thus a very expensive product that is synthetically produced.

I fransk patentskrift 1545678 er beskrevet en sterkt ildfast, aluminiumoxydholdig sement som inneholder ca. 60% klinker, ca. 40% A1203, ca. 2% AlNa^Fg og 0,18-2,5% natriumcitrat. Kryolitten, AlNa^g, hjelper til med å danne keramisk binding In French patent document 1545678, a highly refractory, aluminum oxide-containing cement is described which contains approx. 60% clinker, approx. 40% A1203, approx. 2% AlNa^Fg and 0.18-2.5% sodium citrate. The cryolite, AlNa^g, helps form ceramic bonding

ved anvendelsen, idet dens "smelte"-virkning befordrer dannelse av flytende faser hvori reaksjoner mellom aggregater og binde-midler finner sted. Sementen er ikke foreslått anvendt for å in use, as its "melting" effect promotes the formation of liquid phases in which reactions between aggregates and binders take place. The cement is not proposed to be used for

hemme virkning av smeltet alumminium. inhibit the action of molten aluminum.

Det har ifølge oppfinnelsen vist seg at det er mulig å anvende et ildfast materiale som er forholdsvis rimelig fordi det er fremstilt av naturlig forekommende materialer, og som er tilstrekkelig motstandsdyktig overfor smeltet aluminium selv om det inneholder siliciumdioxyd i en vesentlig mengde. According to the invention, it has been shown that it is possible to use a refractory material which is relatively inexpensive because it is made from naturally occurring materials, and which is sufficiently resistant to molten aluminum even if it contains silicon dioxide in a significant amount.

Den foreliggende oppfinnelse gjør det mulig å fremstille The present invention makes it possible to produce

en gjenstand, som en ovn eller hjelpeutstyr, som er beregnet for kontakt med smeltet aluminium og som i det vesentlige ikke angripes kjemisk eller fysisk av aluminiumbadet og som er istand til å motstå forhøyede temperaturer og er forholdsvis rimelig fordi den ikke er basert på fremstilling av spesielle ildfaste produkter eller syntetiske ildfaste produkter, som aluminiumoxydflak, ZtO^ eller syntetisk aluminiumoxyd. an object, such as a furnace or auxiliary equipment, which is intended for contact with molten aluminum and which is not substantially attacked chemically or physically by the aluminum bath and which is capable of withstanding elevated temperatures and is relatively inexpensive because it is not based on the manufacture of special refractory products or synthetic refractory products, such as aluminum oxide flakes, ZtO^ or synthetic aluminum oxide.

Oppfinnelsen angår således anvendelse av en ildfast betong med en sammensynkningstemperatur under belastning av over 1000°C og inneholdende 40-60 vekt% aluminium, uttrykt som Al20.j, 4-14 vekt% kalsium, uttrykt som CaO, i form av kalsiumaluminatsement, 20-60 vekt% silicium, uttrykt sm Si02, og 0,1-10 vekt%, fortrinnsvis 0,2-2 vekt%,fluor som utgjør en del av betongens struktur, for å hemme innvirkningen av smeltet aluminium på en betong som er beregnet å komme i kontakt med det smeltede aluminium. The invention thus relates to the use of a refractory concrete with a slump temperature under load of over 1000°C and containing 40-60% by weight aluminum, expressed as Al20.j, 4-14% by weight calcium, expressed as CaO, in the form of calcium aluminate cement, 20 -60% by weight of silicon, expressed as SiO 2 , and 0.1-10% by weight, preferably 0.2-2% by weight, of fluorine which forms part of the concrete's structure, to inhibit the impact of molten aluminum on a concrete intended to come into contact with the molten aluminum.

Den meget lave andel av fluor i massen har vist seg å. The very low proportion of fluorine in the pulp has been shown to.

være tilstrekkelig til å hindre kjemisk eller fysikalsk-kjemisk angrep av aluminium og utilstrekkelig til å nedsette ildfastheten uaksepterbart. Innarbeidelsen av fluoret, selv om det foreligger i små forholdsvise mengder, innvirker radikalt på det smeltede aluminiums fuktnihg av>det ildfaste materiale. Det ildfaste materiale fuktes ikke og angripes ikke lenger av aluminiumet. be sufficient to prevent chemical or physico-chemical attack of aluminum and insufficient to reduce the refractoriness unacceptably. The incorporation of fluorine, even if it is present in relatively small quantities, has a radical effect on the wettability of the molten aluminum and the refractory material. The refractory material does not get wet and is no longer attacked by the aluminium.

Fremstillingen av et materiale med slike egenskaper er overraskende vurdert i sammenheng med det som er angitt i US patentskrift nr. 3261699, ikke bare fordi det i dette uttrykkelig er angitt at det ikke er nødvendig å anvende siliciumdioxyd i vesentlige mengder som alle de andre tilsetningsmidler, men spesielt fordi det ikke kunne forutsees at tilsetningen av siliciumdi-oxydet som er et forholdsvis lett reduserbart materiale, likevel kan tolereres i et materiale for kontakt med smeltet aluminium, når fluor tilsettes til materialet. Tilsetningen av fluor til aluminiumoxydet er i det nevnte US patentskrift i virkeligheten begrunnet ved elektrolyttens sammensetning, men ikke ved behovet for å beskytte resten av materialet som består av aluminiumoxyd fremstilt ved Bayer- prosessen som er et materiale som ikke er reduserbart. Virkningen av og formålet med fluoret er til gjen-gjeld helt forskjellige i materialet ifølge oppfinnelsen. Det hindrer angrep på SiG^ av det smeltede aluminium. The production of a material with such properties is surprisingly considered in connection with what is stated in US patent document no. 3261699, not only because it is expressly stated therein that it is not necessary to use silicon dioxide in significant quantities like all the other additives, but especially because it could not be foreseen that the addition of the silicon dioxide, which is a relatively easily reducible material, can nevertheless be tolerated in a material for contact with molten aluminium, when fluorine is added to the material. In the aforementioned US patent, the addition of fluorine to the aluminum oxide is actually justified by the composition of the electrolyte, but not by the need to protect the rest of the material consisting of aluminum oxide produced by the Bayer process, which is a non-reducible material. The effect and purpose of the fluorine, on the other hand, are completely different in the material according to the invention. It prevents attack on SiG^ by the molten aluminium.

Sammensynkningstemperaturen (Tg j.) under belastning er et kjennetegn for det ildfaste materiales ildfasthet og mekaniske fasthet. Den bestemmes i overensstemmelse med ISO standard R 1893 The shrinkage temperature (Tg j.) under load is a characteristic of the refractory material's refractoriness and mechanical strength. It is determined in accordance with ISO standard R 1893

(F), oktober 1970. Prøven består i det vesentlige i at et sylind-risk prøvestykke med en diameter på 50 mm og med en viss høyde av (F), October 1970. The test essentially consists of a cylindrical test piece with a diameter of 50 mm and a certain height of

det materiale som skal undersøkes, anbringes i en ovn mellom stemplene til en anordning som anvendes og som gjør det mulig mot prøvestykket å påføre en konstant belastning av 2 kg/cm 2, og å registrere temperaturen når prøvestykkets opprinnelige høyde deformeres med 0,5% ved en oppvarmingshastighet i ovnen av 10°C pr. minutt inntil 500°C, fulgt av en oppvarmingshastighet på the material to be examined is placed in an oven between the pistons of a device used which makes it possible to apply a constant load of 2 kg/cm 2 to the test piece, and to record the temperature when the original height of the test piece is deformed by 0.5% at a heating rate in the oven of 10°C per minute up to 500°C, followed by a heating rate of

5°C pr. minutt ved over 500°C. 5°C per minute at over 500°C.

Da det er antydet at fluoret utgjør en del av materialets struktur, vil det forstås at fluoret ikke er tilstede i form av en adsorbert gass i porene til et agglomerat eller i form av et belegg som er påført på overflaten og i agglomeratets porer. Fluoret er tilstede og fordelt i massen i fast form kombinert As it has been suggested that the fluorine forms part of the material's structure, it will be understood that the fluorine is not present in the form of an adsorbed gas in the pores of an agglomerate or in the form of a coating applied to the surface and in the pores of the agglomerate. The fluorine is present and distributed in the mass in solid form combined

med agglomeratet, eller i form av en fast fluorforbindelse som er assosiert med agglomeratet. Som oftest er fordelingen av fluoret i massen jevn. En analyse av fjernede prøvestykker på steder som befinner seg i forskjellig avstand fra den overflate som er beregnet for kontakt med det smeltede aluminium, viser tilstedeværelsen av fluoret. Dette vil praktisk talt bare de-sorberes over arbeidstemperaturene. with the agglomerate, or in the form of a solid fluorine compound associated with the agglomerate. Most often, the distribution of the fluorine in the mass is uniform. An analysis of removed test pieces at locations at different distances from the surface intended for contact with the molten aluminum shows the presence of the fluorine. This will practically only be de-sorbed above the working temperatures.

Foruten at det er overraskende at et slikt materiale til-fredsstiller kravet til ildfasthet og ikke fuktes av smeltet aluminium ved så lave fluorinnhold og ved så høye siliciuminn- Apart from the fact that it is surprising that such a material satisfies the requirement for fire resistance and is not wetted by molten aluminum at such low fluorine contents and at such high silicon contents

hold har fremstillingen bydd på uventede vanskeligheter. Det har i virkeligheten vist seg at fluorforbindelsene og aluminiumoxydet som er kjente som retardatorer for binding av vanlige sementer og betonger, utøver en annen virkning sammen med de ildfaste agglomerater som de er forbundet med, under dannelse av et materiale ifølge oppfinnelsen. Tilstedeværelsen av fluoret foranlediger en falskbinding. Det er derfor nødvendig å anvende spesielle arbeidsmetoder. hold, the production presented unexpected difficulties. It has actually been shown that the fluorine compounds and the aluminum oxide which are known as retarders for the binding of ordinary cements and concretes, exert a different effect together with the refractory agglomerates with which they are associated, forming a material according to the invention. The presence of the fluorine induces a false bond. It is therefore necessary to use special work methods.

Den første av disse er at det er nødvendig å omrøre agglomeratet, f luorforbindelsen, det hydrauliske bindemiddel og vannet i tilstrekkelig tid efter at disse er blitt bragt sammen, for å unngå denne falskbinding. En omrøringstid på ca. 10 minutter er vanligvis tilstrekkelig. Det anbefales også å velge et fluorinnhold for sluttmaterialet som er så lavt som mulig innen det effektive område. Det er likeledes gunstig å tilsette et bindingsretarderende middel. The first of these is that it is necessary to stir the agglomerate, the fluorine compound, the hydraulic binder and the water for a sufficient time after these have been brought together, in order to avoid this false bonding. A stirring time of approx. 10 minutes is usually sufficient. It is also recommended to choose a fluoride content for the final material that is as low as possible within the effective range. It is likewise beneficial to add a bond-retarding agent.

Det første trinn av denne fremstillingsmetode består i å blande et agglomerat og det hydrauliske bindemiddel. The first step of this production method consists in mixing an agglomerate and the hydraulic binder.

Som agglomerat kan de produkter anvendes som har et høyt innhold av aluminiumoxyd, f.eks. et aluminiumoxydinnhold på Products that have a high content of aluminum oxide can be used as agglomerate, e.g. an aluminum oxide content of

over 4 5 vekt% eller endog over 55 vekt%. over 45% by weight or even over 55% by weight.

Det kan således anvendes et agglomerat omfattende cyanitt, silimanitt, bauxitt, diaspor, korund, andalusitt, gibbsitt eller syntetisk mullitt. Det kan også anvendes agglomerater som inneholder spesielle ildfaste produkter, som produkter av magnesiumoxyd, kromitt, krom/magnesiumoxyd, forsteritt, dolomitt, kullholdige produkter på basis av grafitt eller koks, silicium-carbidprodukter, ZrO^-produkter, zirkoniumsilikat eller nitrid-produkter. Det er imidlertid ifølge oppfinnelsen mulig å unn- An agglomerate comprising kyanite, sillimanite, bauxite, diaspore, corundum, andalusite, gibbsite or synthetic mullite can thus be used. Agglomerates containing special refractory products can also be used, such as products of magnesium oxide, chromite, chromium/magnesium oxide, forsterite, dolomite, coal-containing products based on graphite or coke, silicon carbide products, ZrO^ products, zirconium silicate or nitride products. However, according to the invention it is possible to avoid

gå anvendelse av de ovennevnte kostbare produkter under erholdelse av tilfredsstillende resultater ved anvendelse av mer vanlige . agglomerater. use the above-mentioned expensive products while obtaining satisfactory results when using more common ones. agglomerates.

Disse agglomerater er spesielt slike som har et aluminiumoxydinnhold på 35-45 vekt%, ofte betegnet som leiraktige produkter, og slike som inneholder aluminiumoxyd i en mengde av 10-35 vekt%, betegnet som silicium-leiraktige produkter, idet resten, med unntagelse av mindre mengder forurensninger, ut-gjøres av siliciumdioxyd. These agglomerates are particularly those which have an aluminum oxide content of 35-45% by weight, often referred to as clay-like products, and those which contain aluminum oxide in an amount of 10-35% by weight, referred to as silicon-clay-like products, the rest, with the exception of smaller amounts of contaminants are made up of silicon dioxide.

Agglomeratets granulometri er vanlig. Det kan f.eks. The granulometry of the agglomerate is normal. It can e.g.

ha den følgende partikkelstørrelsesfordeling: have the following particle size distribution:

Som bindemiddel anvendes kalsiumaluminatsement. Spesielt kan en smeltet sement som selges under varemerket Lafarge<®>Calcium aluminate cement is used as a binder. In particular, a molten cement sold under the trademark Lafarge<®>

og inneholder 40% aluminiumoxyd, en smeltet sement som selges under handelsbetegnelsen "Secar 162" og inneholder 40% aluminiumoxyd, en smeltet sement som selges under handelsbetegnelsen "Secar 250" og inneholder 70% aluminiumoxyd eller en smeltet sement som selges under handelsbetegnelsen "Supersecar" og inneholder 80% aluminiumoxyd, anvendes. and containing 40% aluminum oxide, a fused cement sold under the trade name "Secar 162" and containing 40% aluminum oxide, a fused cement sold under the trade name "Secar 250" and containing 70% aluminum oxide or a fused cement sold under the trade name "Supersecar" and contains 80% aluminum oxide, is used.

Bindemidlet utgjør vanligvis 10-35 vekt% av agglomeratet. The binder usually makes up 10-35% by weight of the agglomerate.

Agglomeratet og bindemidlet blandes i minst ett minutt, vanligvis i 1-10 minutter. The agglomerate and the binder are mixed for at least one minute, usually for 1-10 minutes.

De.t annet trinn av den beskrevne fremstillingsmetode består The second step of the described production method consists of

i til massen av agglomerat og bindemiddel å tilsette 0,1-10%, in to the mass of agglomerate and binder to add 0.1-10%,

uttrykt som fluor, av ett eller flere fluorholdige produkter og på ny å blande i noen minutter. expressed as fluorine, of one or more fluorine-containing products and mixing again for a few minutes.

Blant de anvendbare fluorforbindelser kan nevnes alkali-metallfluorider, jordalkalimetallfluorider og fluorsilikatene. Among the fluorine compounds that can be used are alkali metal fluorides, alkaline earth metal fluorides and the fluorosilicates.

Det er fordelaktig å anvende en blanding av to fluorforbindelser, hvorav den ene er mer flyktig eller mer oppløselig i vann enn den annen. Et eksempel på en slik blanding er systemet bestående av 0,8-1,2% natriumfluorsilikat og 0,2-0,8% kalsiumfluorid som gir tilfredsstillende resultater. It is advantageous to use a mixture of two fluorine compounds, one of which is more volatile or more soluble in water than the other. An example of such a mixture is the system consisting of 0.8-1.2% sodium fluorosilicate and 0.2-0.8% calcium fluoride, which gives satisfactory results.

Det tredje arbeidstrinn består i å omrøre blandingen av agglomeratet, bindemidlet og fluorproduktet i vann i en mengde av 2-20% av blandingens vekt. The third work step consists in stirring the mixture of the agglomerate, the binder and the fluorine product in water in an amount of 2-20% of the mixture's weight.

Det foretrekkes å tilsette et bindingsretarderende middel It is preferred to add a binding retarder

til blandingsvannet. Det bindingsretarderende middel utgjør vanligvis 0,2-2% av blandingen av agglomerat, bindemiddel og fluorprodukt. to the mixed water. The binding retarder usually makes up 0.2-2% of the mixture of agglomerate, binder and fluorine product.

Blant de retardatorer som kan anvendes, foretrekkes de Among the retarders that can be used, they are preferred

såkalte "tilstoppingsmidler" som gjør kornoverflaten ugjennom-trengelig for midler som reduserer oppløseligheten. so-called "clogging agents" that make the grain surface impermeable to agents that reduce solubility.

Disse vannoppløselige eller overflateaktive "tilstoppings-midlermidler" utggjøres spesielt av glycolsyre, glycolaldehyd, tartronsyre, glycerinsyre, glycerol, pyruvinsyre, glyceraldehyd, dihydroxyacetaon, maleinsyré, ravsyre, malonsyre, vinsyre, These water-soluble or surface-active "clogging agents" are in particular glycolic acid, glycolaldehyde, tartaric acid, glyceric acid, glycerol, pyruvic acid, glyceraldehyde, dihydroxyacetaone, maleic acid, succinic acid, malonic acid, tartaric acid,

erythrol, dihydroxyvinsyre, a- og 3-cetoglutarsyrene, "arabitol, gluconsyre, galactonsyre, sorbitol, sitronsyre, salicylsyre, difenolene (resorcinol eller hydrokinon), benzokinon, gallus- erythrol, dihydroxytartaric acid, α- and 3-ketoglutaric acids, "arabitol, gluconic acid, galactonic acid, sorbitol, citric acid, salicylic acid, the diphenols (resorcinol or hydroquinone), benzoquinone, gallus-

syre, dioxan, organiske materialer fom flokkuleres i nærvær av Ca<++>, for eksempel digallussyre, casein, proteiner som albumin, acid, dioxane, organic materials fom flocculate in the presence of Ca<++>, for example digallic acid, casein, proteins such as albumin,

gummi, pepsin, melaminharpiks, lignosulfonater, fettsyrer med gum, pepsin, melamine resin, lignosulfonates, fatty acids incl

12-18 carbonatomer, oleinsyre, nafthensyrer, benzoesyre, penta-_ klorfenol, dialkylenglycoler, mono- og polyethanolamirfer, 12-18 carbon atoms, oleic acid, naphthenic acids, benzoic acid, penta-_ chlorophenol, dialkylene glycols, mono- and polyethanolamines,

glucider, glucose, saccharose, amidon, cellulose og andre sukker-arter etc. carbohydrates, glucose, sucrose, starch, cellulose and other sugars etc.

Det er overraskende at tilstedeværelsen av fluor som er en kjent retardator som anvendes for støping av betong, gjør det nødvendig ifølge oppfinnelsen å tilsette en annen retardator for å unngå en falskbinding, og spesielt da også aluminiumoxyd som sådant er kjent for å ha retarderende egenskaper overfor binding i mørtler og vanlige byggebetonger. It is surprising that the presence of fluorine, which is a known retarder used for casting concrete, makes it necessary according to the invention to add another retarder to avoid a false bond, and especially since aluminum oxide as such is also known to have retarding properties against bonding in mortars and normal building concrete.

Efter å ha tilsatt omrøringsvannet fortsettes eltingen After adding the stirring water, the kneading is continued

i minst 8 minutter, fortrinnsvis minst 10 minutter. for at least 8 minutes, preferably at least 10 minutes.

Det fås derved et materiale som det er tilstrekkelig å A material is thereby obtained which is sufficient to

helle i formen og å la herde, for derefter å langsomt oppvarme materialet f.eks. til 100-120°C, hvorefter temperaturen økes til ca. 700°C for å danne det ildfaste materiale for anvendelsen ifølge oppfinnelsen. pour into the mold and let harden, then slowly heat the material, e.g. to 100-120°C, after which the temperature is increased to approx. 700°C to form the refractory material for the use according to the invention.

Det ildfaste materiale kan anvendes i form av et hellbart materiale eller i form av hardstampede stykker eller Stener for oppbygning av ovner og annet utstyr for smeltet aluminium. The refractory material can be used in the form of a pourable material or in the form of hard-stamped pieces or stones for the construction of furnaces and other equipment for molten aluminium.

Eksempler 1- 10 Examples 1-10

På det ildfaste materiale som skal undersøkes, anbringes Place on the refractory material to be examined

to skiver med en høyde på 5 mm og en diameter på 15 mm av hver av tre legeringer som er valgt på grunn av deres trinnvise aggressivitet fra svak til meget sterk. De ildfaste stykker og skivene på disse anbringes derefter i en elektrisk muffelovn i 48 timer ved 800°C. Denne temperatur utgjør i virkeligheten et gjennomsnitt av de temperaturer som anvendes i smelteovner eller holdeovner for aluminium, og de valgte tider er tilstrek-kelige til å gi en tilstrekkelig ømfintlighet under forsøket. two discs with a height of 5 mm and a diameter of 15 mm of each of three alloys chosen for their graded aggressiveness from weak to very strong. The refractory pieces and the discs on them are then placed in an electric muffle furnace for 48 hours at 800°C. This temperature is in reality an average of the temperatures used in smelting furnaces or holding furnaces for aluminium, and the times chosen are sufficient to provide sufficient sensitivity during the experiment.

Reaksjonstallet bestemmes ved hjelp av en indeks som utgjør summen av tre reaksjonsindekser for hver av legeringene og som er definert som følger: 0: Ingen reaksjon og intet synbart merke på det ildfaste The reaction number is determined using an index which is the sum of three reaction indices for each of the alloys and which is defined as follows: 0: No reaction and no visible mark on the refractory

materiale. material.

1: Svakt merke på det ildfaste materiale, men skivens volum beholdes og skiven kan lett fjernes for hånden. 1: Faint mark on the refractory material, but the disc's volume is retained and the disc can be easily removed by hand.

2: Skiven" forankres til det ildfaste materiale og dens volum har minsket med minst 50% eller den sluttelige ring har en største dimensjon som ikke er over 22 mm, eller det be-gynner å dannes "sopp" på det ildfaste materiale. 2: The disc" is anchored to the refractory material and its volume has decreased by at least 50% or the final ring has a largest dimension that does not exceed 22 mm, or "mushroom" begins to form on the refractory material.

3: Skiven er forankret til det ildfaste materiale, og dens volum har minsket med over 50% eller den dannede ring har en største dimensjon på over 22 mm som diameter, eller det er sterk 'soppdannelse" på det ildfaste materiale. 3: The disc is anchored to the refractory material, and its volume has decreased by more than 50% or the formed ring has a largest dimension of more than 22 mm in diameter, or there is strong 'mushroom formation' on the refractory material.

Forsøkene (2 skiver av tre legeringer) utføres alltid dobbelt. The experiments (2 slices of three alloys) are always carried out in duplicate.

Under hensyntagen til en viss variasjon i resultatene (det tillates vanligvis at reaksjonen ikke skal finne sted før efter en begynnelsesperiode av vilkårlig varighet) beregnes den erholdte maksimale indeks for hver legering. Taking into account some variation in the results (it is usually allowed that the reaction should not take place until after an initial period of arbitrary duration) the maximum index obtained is calculated for each alloy.

Legeringene har den følgende sammensetning: The alloys have the following composition:

Legering med svak aggressivitet A: Zn 0% Alloy with weak aggressiveness A: Zn 0%

Aggressiv legering B: Zn 0,22% Aggressive alloy B: Zn 0.22%

Meget aggressiv legering G: Zn 2% Very aggressive alloy G: Zn 2%

I de tre leqerinqer er de andre elementer foruten-aluminium: jern 0,33%, silicium 8,7%, kobber 3,1% og magnesium 0,22%. In the three alloys, the other elements besides aluminum are: iron 0.33%, silicon 8.7%, copper 3.1% and magnesium 0.22%.

I den nedenstående tabell I er typen av det anvendte fluorprodukt angitt i den annen kolonne, innholdet, av fluorprodukt i den tredje kolonne og den erholdte indeks i den fjerde kolonne. Forsøket som er merket med en stjerne, er et sammenligningsforsøk som ble utført med et ildfast materiale som ikke inneholdt fluor. Agglomeratet er en blanding av sjamotte og bindemidlet som utgjør 30 vekt% av agglomeratet, er et kalsiumaluminat med 40% Al203. In the table I below, the type of fluorine product used is indicated in the second column, the content of fluorine product in the third column and the obtained index in the fourth column. The experiment marked with an asterisk is a comparison experiment that was carried out with a refractory material that did not contain fluorine. The agglomerate is a mixture of chamotte and the binder, which makes up 30% by weight of the agglomerate, is a calcium aluminate with 40% Al203.

Eksempel 11 Example 11

I en betongblandemaskin eltes 30 kg sjamotte med en korn-størrelse pa 2-4 mm, 22,5 kg sjamotte med en kornstørrelse på under 0,1 mm og 22,5 kg "Secar" i 2 minutter.. In a concrete mixer, 30 kg chamotte with a grain size of 2-4 mm, 22.5 kg chamotte with a grain size of less than 0.1 mm and 22.5 kg "Secar" are kneaded for 2 minutes.

0,5 kg CaF2 og 1 kg Na,,SiFg tilsettes, og eltingen fortsettes i 2 minutter. 0.5 kg of CaF2 and 1 kg of Na,,SiFg are added, and the kneading is continued for 2 minutes.

Det fremstilles en oppløsning av en retardator ved tilsetning av 10 1 vann pr. kg retardator. A solution of a retarder is prepared by adding 10 1 water per kg retarder.

Denne oppløsning helles i betongblandemaskinen, og det foretas en elting i 9 minutter. This solution is poured into the concrete mixer and kneaded for 9 minutes.

Massen fjernes fra betongblandemaskinen og helles mellom en form og en motform som er holdt i en avstand fra hverandre av 4 0 mm. The mass is removed from the concrete mixer and poured between a form and a counter form which are kept at a distance of 40 mm from each other.

Herdingen las finne sted i 24 timer under unngåelse av enhver uttørking. For å oppnå dette anvendes fuktige sekker. Curing was allowed to take place for 24 hours, avoiding any drying out. To achieve this, moist bags are used.

Motformen fjernes, og det støpte stykke får tørke i luft i 48 timer. The counter mold is removed and the cast piece is allowed to dry in air for 48 hours.

Det halvkuleformede stykke av materialet ifølge oppfinnelsen oppvarmes forsiktig i 24 timer til 115°C under unngåelse av enhver kontakt mellom stykket og en flamme. The hemispherical piece of the material according to the invention is carefully heated for 24 hours to 115°C, avoiding any contact between the piece and a flame.

Temperaturen økes gradvis til 700°C med en hastighet på 30°C pr. time. Temperaturen på 700°C opprettholdes i 6 timer. The temperature is gradually increased to 700°C at a rate of 30°C per hour. The temperature of 700°C is maintained for 6 hours.

Et prøvestykke av denne type motstår derefter gjentatte angrep av smeltet aluminium i over 4 måneder. A test piece of this type then withstands repeated attacks of molten aluminum for over 4 months.

Eksempel 12 Example 12

Eksempel 11 gjentas, men med den forandring som er angitt i tabell II. Example 11 is repeated, but with the change indicated in table II.

Eksempel 13 Example 13

Eksempel 11 gjentas, men med den forandring som er angitt i tabell II og ved å påføre materialet ved ramming på formen i stampet tilstand. Example 11 is repeated, but with the change indicated in Table II and by applying the material by ramming to the mold in a stamped state.

Claims (3)

1. Anvendelse av en ildfast betong med en sammensynkningstemperatur under belastning av over 1000°C og inneholdende 40-60 vekt% aluminium, uttrykt som A12C>3, 4-14 vekt% kalsium, uttrykt som CaO, i form av kalsiumaluminatsement, 20-60 vekt% silicium, uttrykt som Si02, og 0,1-10 vekt%,fortrinnsvis 0,2-2 vekt%, fluor som utgjør en del av betongens struktur, for å hemme innvirkningen av smeltet aluminium på en betong som er beregnet å komme i kontakt med det smeltede aluminium.1. Use of a refractory concrete with a slump temperature under load of over 1000°C and containing 40-60% by weight aluminium, expressed as A12C>3, 4-14% by weight calcium, expressed as CaO, in the form of calcium aluminate cement, 20- 60% by weight of silicon, expressed as SiO2, and 0.1-10% by weight, preferably 0.2-2% by weight, of fluorine which forms part of the structure of the concrete, to inhibit the effect of molten aluminum on a concrete intended to come into contact with the molten aluminum. 2. Anvendelse ifølge krav 1 hvor fluoret foreligger som CaF2 eller som en blanding av CaF2 og et fluorsilikat.2. Use according to claim 1 where the fluorine is present as CaF2 or as a mixture of CaF2 and a fluorosilicate. 3. Anvendelse ifølge krav 2, hvor CaF2 er tilstede i en mengde av 0,8-1,2 vekt % og fluorsilikatet i en mengde av 0,2-0,8 vekt %.3. Use according to claim 2, where CaF2 is present in an amount of 0.8-1.2% by weight and the fluorosilicate in an amount of 0.2-0.8% by weight.
NO761815A 1975-05-29 1976-05-28 USE OF ALUMINUM OXYDE-CONTAINED ILL-FIXED CONCRETE AS CONTACT MATERIAL WITH MELTED ALUMINUM OR ALLOYS THEREOF NO143152C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7516810A FR2312468A1 (en) 1975-05-29 1975-05-29 REFRACTORY MATERIAL, USEFUL IN PARTICULAR FOR THE PREPARATION AND TRANSPORT OF ALUMINUM

Publications (3)

Publication Number Publication Date
NO761815L NO761815L (en) 1976-11-30
NO143152B true NO143152B (en) 1980-09-15
NO143152C NO143152C (en) 1980-12-29

Family

ID=9155847

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761815A NO143152C (en) 1975-05-29 1976-05-28 USE OF ALUMINUM OXYDE-CONTAINED ILL-FIXED CONCRETE AS CONTACT MATERIAL WITH MELTED ALUMINUM OR ALLOYS THEREOF

Country Status (12)

Country Link
JP (1) JPS5230810A (en)
AU (1) AU497682B2 (en)
BE (1) BE842294A (en)
CA (1) CA1078106A (en)
CH (1) CH614687A5 (en)
DE (1) DE2624137A1 (en)
FR (1) FR2312468A1 (en)
GB (1) GB1525032A (en)
IT (1) IT1069781B (en)
NL (1) NL167667C (en)
NO (1) NO143152C (en)
SE (1) SE415754B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2441001A1 (en) * 1978-11-07 1980-06-06 Pechiney Aluminium PROCESS FOR TOPPING ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM
JPS58211060A (en) * 1982-06-01 1983-12-08 Nippon Denso Co Ltd Speed change controller for vehicle
DE3419199A1 (en) * 1984-05-23 1985-12-19 Didier-Werke Ag, 6200 Wiesbaden FIRE RESISTANT BODIES OR MEASURES, ESPECIALLY FOR THE LINING OF OEFENS OR CASES FOR MELTED METALS
AU627133B2 (en) * 1989-11-14 1992-08-13 Union Carbide Industrial Gases Technology Corporation Apparatus for holding and refining of molten aluminum
DE102007006452A1 (en) * 2007-02-05 2008-08-07 Weerulin Gmbh Refractory mass for lining a metallurgical vessel
DE202016002262U1 (en) 2016-04-11 2016-06-03 MAS GbR (vertretungsberechtiger Gesellschafter: Michael Schaaf, 04178 Leipzig) Düngemittelgranulierung
DE202019000813U1 (en) * 2019-02-20 2020-05-28 Intocast Aktiengesellschaft Feuerfestprodukte Und Giesshilfsmittel Cold hardening trickle mass
CN112331391B (en) * 2020-10-28 2022-04-22 江苏亿致通信科技有限公司 High-compression-resistance, noise-resistant, flame-retardant and high-temperature-resistant cable
CN114182111B (en) * 2022-01-05 2022-09-27 东北大学 Method for extracting zirconium oxide from zirconium silicate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154624A (en) * 1962-02-21 1964-10-27 Harbison Walker Refractories Ramming mix
DE1508460A1 (en) * 1966-07-23 1970-03-12 Bbc Brown Boveri & Cie Crucibles, especially for induction furnaces
DE1796037B1 (en) * 1968-08-21 1970-09-03 Rhebinol Gmbh Fabrik Hochfeuer Spraying agents and methods for dry spraying furnace linings

Also Published As

Publication number Publication date
IT1069781B (en) 1985-03-25
NL7605644A (en) 1976-12-01
GB1525032A (en) 1978-09-20
NO143152C (en) 1980-12-29
CH614687A5 (en) 1979-12-14
NL167667C (en) 1982-01-18
AU497682B2 (en) 1978-12-21
NO761815L (en) 1976-11-30
DE2624137A1 (en) 1976-12-23
BE842294A (en) 1976-11-26
CA1078106A (en) 1980-05-27
NL167667B (en) 1981-08-17
FR2312468B1 (en) 1981-12-11
AU1412076A (en) 1977-11-24
SE7605934L (en) 1976-11-30
SE415754B (en) 1980-10-27
JPS5230810A (en) 1977-03-08
FR2312468A1 (en) 1976-12-24

Similar Documents

Publication Publication Date Title
EP2167434B1 (en) Azs refractory composition
US4061501A (en) Refractory linings
CA1105500A (en) Refractory for aluminum-melting furnaces
CN101891485A (en) Pouring material for steel ladle
US4174972A (en) Nonfibrous castable refractory concrete having high deflection temperature and high compressive strength and process
US20230312418A1 (en) Dry material mixture for a backfill, preferably a refractory concrete backfill, for producing a heavy-clay refractory non-basic product, refractory concrete backfill and such a product, method for producing same, lining, and industrial furnace, channel transport system or mobile transport vessel
JPH021794B2 (en)
US2912341A (en) Castable refractory
NO143152B (en) USE OF ALUMINUM OXYDE-CONTAINED ILL-FIXED CONCRETE AS CONTACT MATERIAL WITH MELTED ALUMINUM OR ALLOYS THEREOF
US2364108A (en) Bonded silicon carbide refractories
JPH01192773A (en) Refractory composition
US3179526A (en) Refractory bonding mortar
US5744413A (en) Cryolite resistant refractory liner
EP0783468B1 (en) Cryolite resistant refractory
JPH082975A (en) Refractory for casting application
US3678143A (en) Use of refractory parting layer to aid skull removal from furnace linings
JPH08157267A (en) Castable refractory for flow-in execution
JP3212856B2 (en) Irregular cast refractories and their moldings
KR100276310B1 (en) Refractory material of magnesia castable block
Chan et al. Effect of rare-earth oxide concentrate on reaction, densification and slag resistance of Al2O3 SiO2 ceramic refractories
JPH06144939A (en) Basic castable refractory
JPH07291748A (en) Executing method of monolithic refractory
JPS5926979A (en) Basic indefinite form refractories for molten metal vessel
JPH0229630B2 (en)
JP3157310B2 (en) Refractory