NO141358B - PROCEDURE AND CARALYZER MIXTURE FOR THE PREPARATION OF HALOGENATED C1 - C20 ALIFATIC HYDROCARBONS FOR GAS PHASE HALOGENATION - Google Patents

PROCEDURE AND CARALYZER MIXTURE FOR THE PREPARATION OF HALOGENATED C1 - C20 ALIFATIC HYDROCARBONS FOR GAS PHASE HALOGENATION Download PDF

Info

Publication number
NO141358B
NO141358B NO743162A NO743162A NO141358B NO 141358 B NO141358 B NO 141358B NO 743162 A NO743162 A NO 743162A NO 743162 A NO743162 A NO 743162A NO 141358 B NO141358 B NO 141358B
Authority
NO
Norway
Prior art keywords
hydrogen peroxide
solution
caralyzer
halogenated
procedure
Prior art date
Application number
NO743162A
Other languages
Norwegian (no)
Other versions
NO141358C (en
NO743162L (en
Inventor
Jacques Joseph
Original Assignee
Rhone Progil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Progil filed Critical Rhone Progil
Publication of NO743162L publication Critical patent/NO743162L/no
Publication of NO141358B publication Critical patent/NO141358B/en
Publication of NO141358C publication Critical patent/NO141358C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Fremgangsmåte til fra organiske arbeidsoppløsninger å fjerne små mengder hydrogenperoxyd. Method for removing small amounts of hydrogen peroxide from organic working solutions.

Det er kjent at hydrogenperoksyd kan It is known that hydrogen peroxide can

utvinnes av bestemte organiske forbindelser ved utnyttelse av autooxydasjon. Således kan antrakinon-forbindelser hydre-res katalytisk til de tilsvarende antrakino-ner som ved hjelp av oxygen eller en oxy-genholdig gass, såsom luft, oxyderes til ki-noner ved samtidig dannelse av hydrogenperoxyd, hvorpå det i de organiske oppløs-ningsmidler oppløste hydrogenperoxyd fjernes, hensiktsmessig ved ekstraksjon . med vann. Denne fremgangsmåte gjen-nomføres i et kretsløp. is extracted from certain organic compounds by utilizing autoxidation. Thus, anthraquinone compounds can be hydrogenated catalytically to the corresponding anthraquinones which, with the help of oxygen or an oxygen-containing gas, such as air, are oxidized to quinones by the simultaneous formation of hydrogen peroxide, after which the dissolved in the organic solvents hydrogen peroxide is removed, conveniently by extraction. with water. This procedure is carried out in a circuit.

En rekke forslag er gjort med hensyn til valget av et egnet oppløsningsmiddel. Ofte foretrekkes en spesiell oppløsnings-middelblanding, hvis komponenter enten virker godt oppløsende bare på kinon- eller bare på hydrokinonformen. Til oppløsning av kinonformen anvendes f. eks. aroma-tiske hydrocarboner, halogenhydrocarbo-ner, ketoner og eter. Hydrogen-formen lar seg lett oppløse i alkoholer. Der finnes også oppløsningsmidler som i like stor grad er i stand til å oppløse både kinon- og hydrokinon-formen, såsom visse estere av mono-eller dicarbon-syrer. Da det etter oxyda-sjonstrinnet dannede hydrogenperoxyd vanligvis ekstraheres med vann, gjelder for samtlige oppløsningsmidler imidlertid den forutsetning at de ikke har noen eller bare meget liten vannoppløselighet. A number of suggestions have been made with regard to the selection of a suitable solvent. A special solvent mixture is often preferred, the components of which either have a good dissolving effect only on the quinone or only on the hydroquinone form. To dissolve the quinone form, e.g. aromatic hydrocarbons, halogen hydrocarbons, ketones and ether. The hydrogen form can be easily dissolved in alcohols. There are also solvents which are equally capable of dissolving both the quinone and hydroquinone forms, such as certain esters of mono- or dicarboxylic acids. As the hydrogen peroxide formed after the oxidation step is usually extracted with water, however, the condition that they have no or only very little water solubility applies to all solvents.

Hydreringen av kinonene utføres i nærvær av en kjent metall-hydrerings-katalysator. I alminnelighet anvendes palladium på en bærer, såsom aluminiumoxyd, magnesiumoxyd, kalsiumcarbonat, kalsi-umfosfat eller Raney-nikkel. Før disse ka-talysatorer innsettes i hydreringsinnret-ningen, har de en definert aktivitet som kan måles ved hjelp av kjente metoder. The hydrogenation of the quinones is carried out in the presence of a known metal hydrogenation catalyst. Generally, palladium is used on a carrier such as aluminum oxide, magnesium oxide, calcium carbonate, calcium phosphate or Raney nickel. Before these catalysts are inserted into the hydration device, they have a defined activity which can be measured using known methods.

I løpet av den kontinuerlig utførte prosess mister hydreringskatalysatoren i større eller mindre grad sin aktivitet, slik at der stadig må tilsettes ny katalysator. Grunnen til dette tap av aktivitet skyldes i første rekke tilstedeværelsen av helt spe-sifikke katalysatorgifter. Hvis disse gifter ikke kan elimineres helt eller nesten helt, vil der oppstå betydelige omkostninger til katalysator. During the continuously carried out process, the hydrogenation catalyst loses its activity to a greater or lesser extent, so that new catalyst must be constantly added. The reason for this loss of activity is primarily due to the presence of very specific catalyst poisons. If these poisons cannot be completely or almost completely eliminated, significant costs for the catalyst will arise.

Det er kjent at hydrogenperoxyd allerede i meget lav konsentrasjon represente-rer en sterk katalysatorgift for Raney-nikkel. Når dette anvendes som hydrerings-katalysator, vil man derfor søke å fjerne denne katalysatorgift. Under kretsløpspro-sessen blir arbeidsoppløsningen som kjent ekstrahert med vann etter oxydasjonstrin-net for om mulig å fjerne alt hydrogenperoxyd. Som følge av fordelingslikevekten mellom den organiske og den vandige fase, lykkes det imidlertid ikke å få ekstrahert de siste mengder av hydrogenperoxyd, slik at Raney-nikkelen kontinuerlig taper sin aktivitet. It is known that hydrogen peroxide already in very low concentration represents a strong catalyst poison for Raney nickel. When this is used as a hydrogenation catalyst, one will therefore seek to remove this catalyst poison. During the circuit process, as is known, the working solution is extracted with water after the oxidation step in order to remove all hydrogen peroxide if possible. However, as a result of the distribution equilibrium between the organic and the aqueous phase, it is not possible to extract the last amounts of hydrogen peroxide, so that the Raney nickel continuously loses its activity.

Av disse grunner er der allerede blitt fremsatt forslag med sikte på å fjerne det hydrogenperoxyd som ennu er tilstede i små mengder i arbeidsoppløsningen, fra hydreringstrinnet. Således er det kjent at hydrogenperoxydet kan spaltes katalytisk ved hjelp av forskjellige tungmetaller, såsom jern, nikkel, kobber, eller edelmetaller, såsom platina eller palladium. På lignende måte virker også de tilsvarende metall-oxyder eller -hydroxyder. Denne behandling har imidlertid den store ulempe at det frigjorte oxygen er i stand til å reagere med de hydrokinon-andeler som ennu er tilstede i oppløsningen, og på ny danne hydrogenperoxyd. For these reasons, proposals have already been made with the aim of removing the hydrogen peroxide which is still present in small amounts in the working solution, from the hydration step. Thus, it is known that the hydrogen peroxide can be split catalytically with the help of various heavy metals, such as iron, nickel, copper, or noble metals, such as platinum or palladium. The corresponding metal oxides or hydroxides also work in a similar way. However, this treatment has the major disadvantage that the liberated oxygen is capable of reacting with the hydroquinone portions still present in the solution, and forming new hydrogen peroxide.

Også behandlingen med faste eller i vann oppløste substanser som er istand til å binde hydrogenperoxyd, såsom natrium-hydroxyd, natriummetaborat eller natri-umcarbonat, er kjent. Ved denne arbeids-måte, som ofte er forbundet med en kje-misk forandring av den organiske krets-løpsoppløsning, er virkningen dog meget liten, da der blir igjen andeler av hydro-peroxyd i den organiske oppløsning. Treatment with solid or water-dissolved substances capable of binding hydrogen peroxide, such as sodium hydroxide, sodium metaborate or sodium carbonate, is also known. With this method of working, which is often associated with a chemical change of the organic circuit solution, the effect is however very small, as portions of hydroperoxide remain in the organic solution.

Det er også blitt foreslått å behandle den organiske oppløsning med mangano-og ferroforbindelser, såsom en FeS04-opp-løsning, samt med alkoholiske oppløsnin-ger eller suspensjoner som inneholder Fe (OH)„. Ved denne behandling skal også eventuelt oppløst oxygen bli fjernet, da disse forbindelser, særlig i alkalisk medium, lett lar seg oxydere. Dette forslag er imidlertid heller ikke tilfredsstillende, bortsett fra kjemikalieforbruket, da jern eller man-gan forholdsvis lett kommer inn i den organiske oppløsning, slik at der i oxyda-sjonstrinnet opptrer spaltninger. It has also been proposed to treat the organic solution with manganese and ferrous compounds, such as an FeSO 4 solution, as well as with alcoholic solutions or suspensions containing Fe (OH)„. During this treatment, any dissolved oxygen must also be removed, as these compounds, especially in an alkaline medium, can easily oxidize. However, this proposal is also not satisfactory, apart from the chemical consumption, as iron or manganese enters the organic solution relatively easily, so that cleavages occur in the oxidation step.

Det er blitt konstatert at de nevnte ulemper kan unngås og at en fullstendig fjernelse av de hydrogenperoxydandeler som ennu finnes i arbeidsoppløsningen ved antrakinonmetoden, på enkel måte kan oppnås foran hydreringstrinnet, hvis den organiske oppløsning behandles med en vandig oppløsning av et to verdig tinnsalt. Det er overraskende at toverdige tinnsalt-oppløsninger er praktisk talt indifferente like overfor antrakinon-oppløsningene i den korte tid som er nødvendig for ekstraksjonen, og bare reagerer med hydrogenperoxydet. Fortrinnsvis arbeides der ved rom-temperatur. Ennvidére er det fordelaktig i henhold til oppfinnelsen å anvende toverdig tinnklorid, men også andre vann-oppløselige toverdige tinnsalter, f. eks. et sulfat og et fluorid, kan anvendes. It has been established that the aforementioned disadvantages can be avoided and that a complete removal of the hydrogen peroxide parts still present in the working solution by the anthraquinone method can be easily achieved before the hydration step, if the organic solution is treated with an aqueous solution of a divalent tin salt. It is surprising that divalent tin salt solutions are practically indifferent to the anthraquinone solutions for the short time required for the extraction, and only react with the hydrogen peroxide. Work is preferably done at room temperature. Furthermore, it is advantageous according to the invention to use divalent tin chloride, but also other water-soluble divalent tin salts, e.g. a sulfate and a fluoride, can be used.

Konsentrasjonen av de toverdige tinnsalter i den vandige fase kan velges vilkår-lig og retter seg i første rekke etter hvor meget hydrogenperoxyd der finnes i den organiske oppløsning da der alltid, naturlig nok, må være tilstede et overskudd av ved-kommende toverdige tinnsalt for at man skal oppnå en fullstendig fjernelse av hy-drogenperoksydet. Som regel anvendes imidlertid 1—5 pst.'s oppløsninger av de toverdige tinnsalter. The concentration of the divalent tin salts in the aqueous phase can be chosen arbitrarily and depends primarily on how much hydrogen peroxide is present in the organic solution, as there must always, naturally enough, be an excess of the corresponding divalent tin salt in order for complete removal of the hydrogen peroxide must be achieved. As a rule, however, 1-5 percent solutions of the divalent tin salts are used.

Ved å tilsette en liten mengde mineralsyre kan man hindre den mulige ut-felling av oxygenforbindelser eller hydr-oxyd henholdsvis oxyd som virker forstyr-rende inn på væske-væske-ekstraksjonen. Dessuten virker innstillingen av den vandige fase på et lavt pH-område meget gunstig når det dreier seg om å skille den organiske og den vandige fase etter ekstraksjonen. slik at man unngår en uøn-sket emulsjonsdannelse. By adding a small amount of mineral acid, it is possible to prevent the possible precipitation of oxygen compounds or hydroxides or oxides which interfere with the liquid-liquid extraction. Moreover, the setting of the aqueous phase at a low pH range is very beneficial when it comes to separating the organic and the aqueous phase after the extraction. so that unwanted emulsion formation is avoided.

En særlig fordel ved anvendelsen av toverdige tinnsaltoppløsninger når man skal fjerne mindre mengder hydrogenperoxyd fra de organiske oppløsninger ved antrakinonmetoden, består i den letthet med hvilken de dannede firverdige tinn-saltoppløsninger lar seg regenerere. Man kan f. eks. på kjent måte redusere en SnCl4-oppløsning elektrolytisk til en SnCl2-oppløsning. Den én gang innførte vandige SnCl2-oppløsning kan følgelig stadig holdes i kretsløpet, idet den først bringes i berøring med den organiske opp-løsning for å fjerne H202-andelene, derpå skilles ut og så føres gjennom en elektro-lyseinnretning for reduksjon av det dannede Sn<*>. Naturligvis kan der til re-generering av tinnsaltoppløsningen også anvendes andre reduksjonsmidler. ;I den arbeidsoppløsning som anvendes til fremstilling av hydrogenperoxyd i henhold til antrakinonmetoden, befinner der seg før innføringen i hydrereringsappara-turen stadig en andel av hydrerte antra-kinonforbihdelser. Da disse forbindelser er istand til å reagere med oxygen til de tilsvarende kinonforbindelser og hydrogenperoxyd, er det på sin plass under behandlingen med toverdige tinnforbindelser å utelukke tilførsel av oxygen ved anvendelse av en inert gassatmosfære, fortrinnsvis nitrogen. I tillegg til dette kan man også spyle oppløsningen med nitrogen før behandlingen, for å fjerne oppløst luft. ;Eksempel 1. ;En oppløsning av 60 g ethylantrakinon i 500 ml benzol og 500 ml octanol ble rørt med hydrogen ved 40—50° C i nærvær av Raney-nikkel inntil omtrent halvparten av den mengde ethylantrakinon ble dannet, som teoretisk kunne ventes. Etter at kata-lysatoren var skilt fra, ble oppløsningen oxydert fullstendig ved innblåsing av luft, hvorved der dannet seg 4 g hydrogenperoxyd. Umiddelbart etter ble der ekstrahert fem ganger, hver gang med 50 ml vann. — Etter denne behandling inneholdt den organiske oppløsning ennu 25 mg H202 i oppløst tilstand. For å fjerne den oppløste luft ble der gjennom oppløsningen i løpet av kort tid ledet nitrogen ved hjelp av en glassfritte. Derpå ble der ekstrahert med en vandig SnCl2-oppløsning som besto av 3 g SnCl2 i 100 ml vann og som på forhånd var tilsatt noen dråper saltsyre. Etter at de to faser var blitt adskilt, kunne der ikke lenger påvises noe tilstedeværende hydrogenperoxyd. Noen reduksjon av ethylantrakinonet lot seg ikke påvise. ;Eksempel 2. 1 liter av en teknisk arbeidsoppløsning for antrakinonmetoden for fremstilling av hydrogenperoxyd, som før hydreringstrinnet ved siden av en liten mengde hydrokinon, også inneholdt 15 mg H202, ble tilsatt 80 ml av en 5 pst.'s SnCl2-oppløs-ning som var blitt gjort sur ved hjelp av saltsyre, og kraftig blandet i en rysteinnretning. Etter adskillelsen av de to faser som fant sted forholdsvis hurtig, kunne der i arbeidsoppløsningen ikke lenger påvises noe hydrogenperoxyd. I den organiske opp-løsning kunne der heller ikke påvises noe trinn. ;Eksempel 3. ;Til 250 ml av en teknisk arbeidsopp-løsning for antrakinonmetoden for fremstilling av hydrogenperoxyd ble der tilsatt 25 ml av en 1 pst.'s vandig SnS04-oppløs-ning som var blitt gjort sur ved hjelp av litt svovelsyre. Etter kraftig rysting i en skilletrakt og adskillelse av de to faser ble hydrogenperoxydmengden i den organiske oppløsning bestemt. Mens der i den med luft mettede utgangsoppløsning befant seg ;5,6 mg hydrogenperoxyd, var det bare mulig å påvise 0,3 mg i den med SnS04-oppløs-ningen behandlede organiske oppløsning. ;Eksempel 4. ;En 6 pst.'s oppløsning av 2-ethylantrakinon i en oppløsningsmiddelblanding av 500 ml trimetylbenzol og 500 ml diiso-butylcarbinol inneholdt oppløst 2,8 mg hydrogenperoxyd pr. liter. 250 ml av denne oppløsning ble kraftig blandet med 25 ml av en 2 pst.'s vandig SnF2-oppløsning som var tilført en meget liten mengde fluorhydrogensyre, i en rysteinnretning under nitrogen. Etter adskillelse av de to faser kunne der ikke påvises noe mer hydrogenperoxyd i den klare organiske oppløsning. *A particular advantage of the use of divalent tin salt solutions when removing smaller amounts of hydrogen peroxide from the organic solutions by the anthraquinone method consists in the ease with which the formed tetravalent tin salt solutions can be regenerated. One can e.g. in a known manner reduce a SnCl4 solution electrolytically to a SnCl2 solution. The once-introduced aqueous SnCl2 solution can therefore be continuously kept in the circuit, as it is first brought into contact with the organic solution to remove the H202 portions, then separated and then passed through an electrolysis device to reduce the formed Sn<*>. Naturally, other reducing agents can also be used to regenerate the tin salt solution. In the working solution used for the production of hydrogen peroxide according to the anthraquinone method, there is always a proportion of hydrogenated anthraquinone compounds before introduction into the hydrogenation apparatus. As these compounds are capable of reacting with oxygen to the corresponding quinone compounds and hydrogen peroxide, it is appropriate during the treatment with divalent tin compounds to exclude the supply of oxygen by using an inert gas atmosphere, preferably nitrogen. In addition to this, the solution can also be flushed with nitrogen before treatment, to remove dissolved air. ;Example 1. ;A solution of 60 g of ethylanthraquinone in 500 ml of benzene and 500 ml of octanol was stirred with hydrogen at 40-50° C in the presence of Raney nickel until about half the amount of ethylanthraquinone was formed, which could theoretically be expected. After the catalyst had been separated, the solution was oxidized completely by blowing in air, whereby 4 g of hydrogen peroxide was formed. Immediately afterwards, extraction was carried out five times, each time with 50 ml of water. — After this treatment, the organic solution still contained 25 mg of H202 in a dissolved state. In order to remove the dissolved air, nitrogen was passed through the solution within a short time using a glass frit. Extraction was then carried out with an aqueous SnCl2 solution consisting of 3 g of SnCl2 in 100 ml of water to which a few drops of hydrochloric acid had previously been added. After the two phases had been separated, no more hydrogen peroxide could be detected. No reduction of the ethylanthraquinone could be detected. Example 2. 1 liter of a technical working solution for the anthraquinone method for the production of hydrogen peroxide, which before the hydration step, in addition to a small amount of hydroquinone, also contained 15 mg of H 2 O 2 , was added to 80 ml of a 5% SnCl 2 solution which had been acidified using hydrochloric acid, and vigorously mixed in a shaker. After the separation of the two phases, which took place relatively quickly, no hydrogen peroxide could be detected in the working solution. In the organic solution, no step could be detected either. ;Example 3. ;To 250 ml of a technical working solution for the anthraquinone method for the production of hydrogen peroxide, 25 ml of a 1% aqueous SnSO 4 solution which had been acidified with a little sulfuric acid was added. After vigorous shaking in a separatory funnel and separation of the two phases, the amount of hydrogen peroxide in the organic solution was determined. While there were 5.6 mg of hydrogen peroxide in the air-saturated starting solution, it was only possible to detect 0.3 mg in the organic solution treated with the SnSO 4 solution. Example 4. A 6% solution of 2-ethylanthraquinone in a solvent mixture of 500 ml of trimethylbenzene and 500 ml of diisobutylcarbinol contained dissolved 2.8 mg of hydrogen peroxide per litres. 250 ml of this solution was vigorously mixed with 25 ml of a 2% aqueous SnF 2 solution to which a very small amount of hydrofluoric acid had been added, in a shaker under nitrogen. After separation of the two phases, no more hydrogen peroxide could be detected in the clear organic solution. *

Claims (3)

1. Fremgangsmåte til fra organiske ar-beidsoppløsninger å fjerne små mengder hydrogenperoxyd som forekommer ved fremstillingen av hydrogenperoxyd under anvendelse av autoxyderbare forbindelser, særlig antrakinonforbindelser, ved hjelp av lett oxyderbare anorganiske stoffer, karakterisert ved at den organiske arbeidsoppløsning behandles med en vandig oppløsning av et toverdig tinnsalt, fortrinnsvis kloridet, fluoridet, eller sulfatet.1. Method for removing from organic working solutions small amounts of hydrogen peroxide that occur during the production of hydrogen peroxide using autoxidizable compounds, in particular anthraquinone compounds, by means of easily oxidizable inorganic substances, characterized in that the organic working solution is treated with an aqueous solution of a divalent tin salt, preferably the chloride, fluoride, or sulfate. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at den vandige oppløsning av toverdig tinnsalt gjøres sur ved hjelp av en mineralsyre, fortrinnsvis saltsyre, fluorhydrogensyre eller svovelsyre.2. Method according to claim 1, characterized in that the aqueous solution of divalent tin salt is made acidic by means of a mineral acid, preferably hydrochloric acid, hydrofluoric acid or sulfuric acid. 3. Fremgangsmåte ifølge påstandene 1 og 2, karakterisert ved at der arbeides under en inert gassatmosfære, fortrinnsvis nitrogenatmosfære.3. Method according to claims 1 and 2, characterized in that work is carried out under an inert gas atmosphere, preferably a nitrogen atmosphere.
NO743162A 1973-09-04 1974-09-03 PROCEDURE AND CARALYSTOR MIXTURE FOR PREPARATION OF HALOGENATED C1 - C20 ALIFATIC HYDROCARBONES BY OXYHALOGENATION IN GAS PHASE NO141358C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7331837A FR2242143B1 (en) 1973-09-04 1973-09-04

Publications (3)

Publication Number Publication Date
NO743162L NO743162L (en) 1975-04-01
NO141358B true NO141358B (en) 1979-11-19
NO141358C NO141358C (en) 1980-02-27

Family

ID=9124596

Family Applications (1)

Application Number Title Priority Date Filing Date
NO743162A NO141358C (en) 1973-09-04 1974-09-03 PROCEDURE AND CARALYSTOR MIXTURE FOR PREPARATION OF HALOGENATED C1 - C20 ALIFATIC HYDROCARBONES BY OXYHALOGENATION IN GAS PHASE

Country Status (21)

Country Link
JP (1) JPS5324045B2 (en)
AR (1) AR201883A1 (en)
AU (1) AU7293474A (en)
BE (1) BE819480A (en)
BR (1) BR7407330D0 (en)
CA (1) CA1024998A (en)
DK (1) DK151007C (en)
EG (1) EG11251A (en)
ES (1) ES429752A1 (en)
FR (1) FR2242143B1 (en)
GB (1) GB1474258A (en)
IE (1) IE39884B1 (en)
IN (1) IN143087B (en)
IT (1) IT1019186B (en)
NL (1) NL189855C (en)
NO (1) NO141358C (en)
PH (1) PH12560A (en)
PL (1) PL96475B1 (en)
RO (1) RO72689A (en)
SU (1) SU567397A3 (en)
TR (1) TR18376A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX152427A (en) * 1979-09-12 1985-07-15 Mexicano Inst Petrol IMPROVED REACTOR AND PROCEDURE FOR ETHYLENE OXYCHLORATION
FR2641779B1 (en) * 1988-12-26 1991-04-19 Atochem OXYCHLORATION PROCESS AND CATALYST, THEIR APPLICATION TO THE PRODUCTION OF 1-2 DICHLOROETHANE
DE68918258T2 (en) * 1988-12-29 1995-05-04 Monsanto Co Fluidized bed process.
US5079379A (en) * 1988-12-29 1992-01-07 Monsanto Company Fluid bed process
JPH0414509U (en) * 1990-05-29 1992-02-05
FR2663629B1 (en) * 1990-06-25 1992-12-18 Atochem OXYCHLORATION PROCESS AND CATALYST, THEIR APPLICATION TO THE PRODUCTION OF 1-2 DICHLOROETHANE.
US5243111A (en) * 1990-06-25 1993-09-07 Atochem Catalytic oxychlorination of hydrocarbons to produce chlorocarbons
TWI341218B (en) * 2005-11-14 2011-05-01 Oxy Vinyls Lp Catalyst compositions and process for oxychlorination
US11059774B2 (en) 2018-06-28 2021-07-13 Ascend Performance Materials Operations Llc Processes and systems for using silica particles in fluid bed reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866830A (en) * 1956-05-31 1958-12-30 Dow Chemical Co Fixed bed oxychlorination of hydrocarbons
GB894138A (en) * 1958-06-24 1962-04-18 Columbia Southern Chem Corp Process for the production of chlorinated hydrocarbons
DE1142161B (en) * 1958-06-24 1963-01-10 Pittsburgh Plate Glass Co Process for the oxychlorination of aliphatic saturated hydrocarbons with 1 to 4 carbon atoms
NL280859A (en) * 1961-07-13

Also Published As

Publication number Publication date
NL7411646A (en) 1975-03-06
FR2242143A1 (en) 1975-03-28
RO72689A (en) 1981-03-30
JPS5070306A (en) 1975-06-11
TR18376A (en) 1977-05-01
CA1024998A (en) 1978-01-24
DK464874A (en) 1975-05-05
NO141358C (en) 1980-02-27
IT1019186B (en) 1977-11-10
DE2442182B2 (en) 1976-06-16
IE39884L (en) 1975-03-04
PH12560A (en) 1979-06-15
BR7407330D0 (en) 1975-07-01
IE39884B1 (en) 1979-01-17
DE2442182A1 (en) 1975-03-27
EG11251A (en) 1977-01-31
IN143087B (en) 1977-10-01
NL189855B (en) 1993-03-16
SU567397A3 (en) 1977-07-30
AU7293474A (en) 1976-03-11
NL189855C (en) 1993-08-16
DK151007B (en) 1987-10-12
AR201883A1 (en) 1975-04-24
NO743162L (en) 1975-04-01
FR2242143B1 (en) 1978-03-24
DK151007C (en) 1988-02-29
JPS5324045B2 (en) 1978-07-18
PL96475B1 (en) 1977-12-31
GB1474258A (en) 1977-05-18
ES429752A1 (en) 1976-11-01
BE819480A (en) 1975-03-03

Similar Documents

Publication Publication Date Title
NO141358B (en) PROCEDURE AND CARALYZER MIXTURE FOR THE PREPARATION OF HALOGENATED C1 - C20 ALIFATIC HYDROCARBONS FOR GAS PHASE HALOGENATION
US4241029A (en) Liquid/liquid extraction of gallium values from basic aqueous solutions thereof
US4169130A (en) Liquid/liquid extraction of gallium values from highly basic aqueous solutions thereof
US3965251A (en) Method of regenerating a degraded working solution for the production of hydrogen peroxide
US3912766A (en) Regeneration of degraded quinones for the production of hydrogen peroxide
US4800070A (en) Catalysts for absorptive air separation
AR245675A1 (en) Procedure for the production of chlorine dioxide, by making the chlorate of an alkaline metal and a mineral acid react, with methanol as the reducing agent.
KR810001297B1 (en) Method for extraction of gallium values
US3432267A (en) Regeneration of anthraquinone working solution used in the production of hydrogen peroxide
US3107151A (en) Process for the removal of small amounts of hydrogenperoxide from organic operating solutions
JP3557685B2 (en) A method for separating and recovering a platinum group element from a platinum group containing iron alloy.
TW202028167A (en) Processing method for working solution
AU649577B2 (en) Process for the manufacture of hydrogen peroxide
AU633900B2 (en) Purification of hydrogen peroxide
SE186222C1 (en)
US4033765A (en) Extractions of copper from solutions by reduction with anthraquinols
US1774882A (en) Process of recovering iodine
JP3693124B2 (en) Method for treating metal ions in aqueous solution
JP3309814B2 (en) How to remove platinum and palladium
US4072721A (en) Purification of hydroquinone
JP2015148018A (en) Method for leaching gold from sulfide ore
RU2190700C1 (en) Method of recovering bromine and iodine from natural waters
US3330626A (en) Manufacture of hydrogen peroxide
US4994625A (en) Production of hydrogen peroxide
JPS6281347A (en) Production of quinone compound