NO139916B - SMOKE-FREE, STABLE-BURNING FUEL - Google Patents

SMOKE-FREE, STABLE-BURNING FUEL Download PDF

Info

Publication number
NO139916B
NO139916B NO742028A NO742028A NO139916B NO 139916 B NO139916 B NO 139916B NO 742028 A NO742028 A NO 742028A NO 742028 A NO742028 A NO 742028A NO 139916 B NO139916 B NO 139916B
Authority
NO
Norway
Prior art keywords
propellant
weight
combustion
amount
carbon
Prior art date
Application number
NO742028A
Other languages
Norwegian (no)
Other versions
NO139916C (en
NO742028L (en
Inventor
Joseph Cohen
Gilbert A Zimmerman
Original Assignee
Aerojet General Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerojet General Co filed Critical Aerojet General Co
Publication of NO742028L publication Critical patent/NO742028L/no
Publication of NO139916B publication Critical patent/NO139916B/en
Publication of NO139916C publication Critical patent/NO139916C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/02Compositions or products which are defined by structure or arrangement of component of product comprising particles of diverse size or shape
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/04Compositions characterised by non-explosive or non-thermic constituents for cooling the explosion gases including antifouling and flash suppressing agents
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Air Bags (AREA)

Description

Foreliggende oppfinnelse angår stabiltbrennende, røkfrie drivmidler, mer spesielt, høy-energetiske ammonium-perklorat-drivmidler basert på et polybutadien-bindemiddel. The present invention relates to stable burning, smokeless propellants, more particularly, high-energy ammonium perchlorate propellants based on a polybutadiene binder.

Et fravær av synlig eksos fra en rakettmotor er meget ønskelig, spesielt for militære formål. Et slikt fravær er mulig å oppnå ved at man fra drivmidlet eliminerer ethvert materiale som ved forbrenning vil danne et fast partikkelformet materiale (primærrøk). Dobbelt-baserte (nitrocellulose-nitroglycerin) drivmidler har vært de vanlige drivmidler som har vært anvendt for dette formål. Høy-energetiske sammensatte drivmidler basert på ammonium-perklorat i et organisk bindemiddel har brukt forskjellige forbindelser som danner faste partikler, da spesielt aluminium, for å eliminere forbrenningsustabiliteten og få en maksimal spesifikk impuls. Ved å eliminere aluminium fra systemet eliminerer man den primære røken, men får isteden et problem med en ustabil forbrenning når drivmidlene sammen-settes med høyt innhold av oksydasjonsmiddel, for derved å få høy spesifikk impuls. An absence of visible exhaust from a rocket engine is highly desirable, especially for military purposes. It is possible to achieve such an absence by eliminating from the propellant any material which, upon combustion, will form a solid particulate material (primary smoke). Double-based (nitrocellulose-nitroglycerin) propellants have been the usual propellants that have been used for this purpose. High-energy composite propellants based on ammonium perchlorate in an organic binder have used various compounds that form solid particles, aluminum in particular, to eliminate combustion instability and obtain a maximum specific impulse. By eliminating aluminum from the system, you eliminate the primary smoke, but instead get a problem with an unstable combustion when the propellants are combined with a high content of oxidizing agent, thereby obtaining a high specific impulse.

Undersøkelser har vist at røkfrie ammonium-perklorat-drivmidler (AP) hvor man bruker en hydroksy-terminert polybutadien (HTPB) vil gi en røkfri eksos (primærrøk) og brenne stabilt i en motor hvis brennhastigheten er ca. 1,0 cm/sek. eller lavere ved et trykk på ' JO kg/cm 2. Ved brennhastigheter over forannevnte nivå, har forbrenningsustabiliteten begrenset bruken av slike sammensetninger. Investigations have shown that smokeless ammonium perchlorate propellants (AP) using a hydroxy-terminated polybutadiene (HTPB) will produce a smokeless exhaust (primary smoke) and burn stably in an engine if the burning speed is approx. 1.0 cm/sec. or lower at a pressure of ' JO kg/cm 2 . At burning rates above the aforementioned level, combustion instability has limited the use of such compositions.

Røk er definert som fast drivmiddel-eksos og innbefatter alle synlige effekter med unntak av flamme- eller lyseffekter. Røk kan imidlertid strengt tatt deles i to generelle kategorier: Den kan være primær, hvor faste partikler i eksosen påvirker lysets gjennom-gang i selve eksosen, uavhengig av omgivelsene, eller sekundær (indu-sert), hvor noen av gasskomponentene i eksosen, såsom HC1, HF, NOg eller kondenserbar vanndamp påvirker den omkringliggende luft, slik at man får frembragt synlige aerosoler av faste partikler eller av væske-partikler. Kilder for primær røk fra drivmidlet innbefatter uforbrent karbon eller metall-oksyder. Smoke is defined as solid propellant exhaust and includes all visible effects with the exception of flame or light effects. However, smoke can strictly be divided into two general categories: It can be primary, where solid particles in the exhaust affect the passage of light in the exhaust itself, regardless of the surroundings, or secondary (induced), where some of the gas components in the exhaust, such as HC1, HF, NOg or condensable water vapor affect the surrounding air, so that visible aerosols of solid particles or of liquid particles are produced. Sources of primary smoke from the propellant include unburnt carbon or metal oxides.

Et valg av ethvert drivmiddel innbefatter et valg mellom drivfaktorer, sikkerhetsfaktorer, lagringsfaktorer og økonomiske faktorer. Drivfaktorene innbefatter spesifikk impuls, tetthet og varmeutvidelseskarakteristika, mekaniske egenskaper, brennhastighet, A choice of any propellant involves a choice between propellant factors, safety factors, storage factors and economic factors. The driving factors include specific impulse, density and thermal expansion characteristics, mechanical properties, burning rate,

forbrenningsstabilitet, kammertrykkets følsomhet overfor korntempera-tur samt drivmidlets erosjonsevne. Sikkerhetsfaktorer innbefatter følsomhet overfor slag, friksjon, fall, brann og gnister. Videre, kan man som sikkerhetsfaktorer angi varmestabilitet eller selvantenn-elsestemperatur, risiko ved bearbeiding og fremstilling, toksisitet og eventuell toksisitet på eksosprodukter. Lagringsfaktorer innbefatter polymer-nedbrytning, følsomhet overfor fuktighet, vandring av mykningsmidler og katastrofe-fenoméner forbundet med korn-oppsprekk-ing og nedbrytning av bindingene i drivmidlet. Hvis man tidligere utviklet røkfrihet hos drivmidlet, resulterte dette vanligvis i at én eller flere av ovennevnte faktorer ikke kunne oppfylles i ønskelig grad. combustion stability, the sensitivity of the chamber pressure to grain temperature as well as the erosiveness of the propellant. Safety factors include sensitivity to impact, friction, dropping, fire and sparks. Furthermore, heat stability or self-ignition temperature, risk during processing and manufacture, toxicity and possible toxicity of exhaust products can be specified as safety factors. Storage factors include polymer degradation, sensitivity to moisture, migration of plasticizers, and catastrophic phenomena associated with grain cracking and degradation of propellant bonds. If smokelessness was previously developed in the propellant, this usually resulted in one or more of the above-mentioned factors not being met to the desired extent.

Forbrenningsustabilitet er et komplekst fenomen som innbefatter en kombinasjon av motorens indre konfigurasjon og dimen-sjoner, såvel som drivmidlet. En motor viser ustabilitet når drivmidlets forbrenningsreaksjoner overfor trykk og hastighetsvariasjoner samvirker med de akustiske egenskaper i kammeret på en slik måte at man ved In eller flere frekvenser får tillagt den akustiske energi til den energi som utvikles av selve drivmidlet, og hvor denne samlede energi overstiger den som ledes vekk ved friksjonsdempning eller føres ut av kammeret ved konveksjon. Fordi nevnte fenomener innbefatter en samvirkning mellom motor-konfigurasjonen og drivmidlets egenskaper og fordi disse samvirkninger ikke fullt ut er forstått, er det ikke alltid mulig å utforme drivmidler og forbrenningskamre som vil garan-tere en stabil forbrenning. Combustion instability is a complex phenomenon that includes a combination of the engine's internal configuration and dimensions, as well as the propellant. An engine shows instability when the propellant's combustion reactions to pressure and speed variations interact with the acoustic properties in the chamber in such a way that at In or more frequencies the acoustic energy is added to the energy developed by the propellant itself, and where this total energy exceeds the which is led away by friction damping or led out of the chamber by convection. Because said phenomena include an interaction between the engine configuration and the properties of the propellant and because these interactions are not fully understood, it is not always possible to design propellants and combustion chambers that will guarantee stable combustion.

Forbrenningsustabilitet er for tiden det primære problem ved anvendelse av røkfrie drivmidler. Man har nå i mange år brukt store mengder aluminium i faste drivmidler fordi dette nesten fullstendig hemmer forbrenningsustabilitet. Hvis man fjerner aluminiumen ved derved å gjøre drivmidlet røkfritt, så gjør dette at selve drivmidlet viser helt uakseptable tendenser mot ustabil forbrenning. Combustion instability is currently the primary problem when using smokeless propellants. For many years now, large quantities of aluminum have been used in solid propellants because this almost completely inhibits combustion instability. If the aluminum is removed by thereby making the propellant smokeless, then this means that the propellant itself shows completely unacceptable tendencies towards unstable combustion.

Det er følgelig en hensikt ved foreliggende oppfinnelse It is therefore a purpose of the present invention

å tilveiebringe et røkfritt dri-vmiddel hvor man i alt vesentlig undertrykker forbrenningsustabilitet. to provide a smokeless propellant in which combustion instability is essentially suppressed.

Videre, er det en hensikt ved foreliggende oppfinnelse Furthermore, there is an object of the present invention

å tilveiebringe et drivmiddel som i alt vesentlig er fritt for primær røk i eksosen og som samtidig har høy spesifikk impuls og brennhastighet uten å vise forbrenningsustabilitet. to provide a propellant which is essentially free of primary smoke in the exhaust and which at the same time has a high specific impulse and burning rate without showing combustion instability.

Videre, er det en hensikt å tilveiebringe et ammonium-perklorat-inneholdende drivmiddel uten aluminium og som opprettholder forbrenningsstabilitet ved brennhastigheter på mer enn 1 cm/sek. ved Furthermore, it is an object to provide an ammonium perchlorate-containing propellant without aluminum and which maintains combustion stability at burning velocities greater than 1 cm/sec. by

o o

et trykk på ca. 70 kg/cm . a pressure of approx. 70 kg/cm.

Man har nå oppdaget at ved å tilsette små mengder av additiver valgt fra gruppen bestående av ildfaste metallkarbider eller oksyder, vil gi et stabilitbrennende, røkfritt drivmiddel for visse kammer-drivmiddelinteraktive resonansefrekvenser og ved brennhastigheter over ca. 1 cm/sek. Når man tilsetter små mengder karbon i form av hule, tynnveggede kuler, hele eller ødelagte, eller i form av flak, så utvider man også resonansfrekvensområdet for stabil forbrenning. Forbrenningsstabilitet i et enda bredere om- It has now been discovered that by adding small amounts of additives selected from the group consisting of refractory metal carbides or oxides, will provide a stable burning, smokeless propellant for certain chamber-propellant interactive resonance frequencies and at burning rates above approx. 1 cm/sec. When you add small amounts of carbon in the form of hollow, thin-walled balls, whole or broken, or in the form of flakes, you also expand the resonant frequency range for stable combustion. Combustion stability in an even wider environment

råde med hensyn til resonansfrekvenser, oppnås når man tilsetter små mengder karbonpulver sammen med metallkarbider eller oksyd og karbonkuler eller flak. prevail with respect to resonance frequencies, is achieved when adding small amounts of carbon powder together with metal carbides or oxide and carbon balls or flakes.

Disse og flere andre hensikter og fordeler ved foreliggende oppfinnelse vil fremgå av den etterfølgende beskrivelse, These and several other purposes and advantages of the present invention will be apparent from the following description,

hvor det henvises blant annet til de vedlagte tegninger, hvor where reference is made, among other things, to the attached drawings, where

figur 1 er et diagram som viser avfyringskurven for en dobbel reaksjonsmotor hvor drivmidlet inneholder additiver ifølge foreliggende oppfinnelse, og figure 1 is a diagram showing the firing curve for a double reaction engine where the propellant contains additives according to the present invention, and

figur 2 er et diagram som viser forbrenningskurven for figure 2 is a diagram showing the combustion curve for

et drivmiddel uten slike additiver. a propellant without such additives.

Ifølge foreliggende oppfinnelse er det tilveiebragt According to the present invention, it is provided

et stabiltbrennende, røkfritt fast drivmiddel som inneholder en a stable burning, smokeless solid propellant containing a

herdet intim blanding av: cured intimate blend of:

en større mengde av et fast uorganisk oksyderende salt, en mindre mengde av en forbrennbar syntetisk hydrokarbonelastomer dannet ved kjedeforlengelse og kryssbinding av funksjonelt-terminert, væskeformige butadienpolymerer, og 0,2-5 vekt-# av drivmidlet av et forbrenningsstabili-serende additiv, kjennetegnet ved at additivet vesentlig utgjøres av en kombinasjon av: (1) et oksyd eller karbid med smeltepunkt på minst 2000°C valgt fra torium-, wolfram-, silisium-, molybden-, aluminium-, hafnium-, zirkonium- og vanadiumoksyd og -karbid, og (2) partikkelformet karbon i form av små plater eller hule kuler med en tykkelse, respektiv veggtykkelse, på mellom 1 og 10 mikron og en lengde, respektivt diameter, på mellom 25 og 400 mikron. a major amount of a solid inorganic oxidizing salt, a minor amount of a combustible synthetic hydrocarbon elastomer formed by chain extension and cross-linking of functionally terminated liquid butadiene polymers, and 0.2-5 wt-# of the propellant of a combustion stabilizing additive, characterized in that the additive essentially consists of a combination of: (1) an oxide or carbide with a melting point of at least 2000°C selected from thorium, tungsten, silicon, molybdenum, aluminium, hafnium, zirconium and vanadium oxide and - carbide, and (2) particulate carbon in the form of small plates or hollow spheres with a thickness, or wall thickness, of between 1 and 10 microns and a length, or diameter, of between 25 and 400 microns.

Drivmidlet inneholder vanligvis en høy mengde for-brennbare, faste stoffer, typisk over 65 vekt-/?, og en mengde av det elastomere bindemiddel som vanligvis er under 15 vekt-#. Det benyttes også en mindre mengde brennhastighetsakseleratorer, vanligvis under 3 vekt-%. Oksydasjonsmidlet er fortrinnsvis ammonium-perklorat, idet andre muligheter er HMX og RDX. The propellant usually contains a high amount of combustible solids, typically over 65% by weight, and an amount of the elastomeric binder usually below 15% by weight. A smaller amount of burning rate accelerators is also used, usually below 3% by weight. The oxidizing agent is preferably ammonium perchlorate, as other possibilities are HMX and RDX.

Hydrokarbonelastomeren kan være karboksyterminert polybutadien herdet med aminer eller epoksyder, polybutadien-akrylo-nitril-akryliske terpolymerer herdet med epoksyder, samt hydroksy-terminerte polybutadiener herdet med diisocyanater. Det er foretrukket å bruke hydroksy-terminerte polybutadiener av økonomisk grunn, reaktivitet, de er lett tilgjengelige og har gode mekaniske, egenskaper. Butadienen kan være fremstilt ved såkalt litium-initiert polymerisering (Li-HTPB) eller en friradikal-initiert polymerisering The hydrocarbon elastomer can be carboxy-terminated polybutadiene hardened with amines or epoxides, polybutadiene-acrylonitrile-acrylic terpolymers hardened with epoxides, as well as hydroxy-terminated polybutadienes hardened with diisocyanates. It is preferred to use hydroxy-terminated polybutadienes for economic reasons, reactivity, they are easily available and have good mechanical properties. The butadiene can be produced by so-called lithium-initiated polymerization (Li-HTPB) or a free-radical-initiated polymerization

(FR-HTPB). (FR-HTPB).

Drivmidlet kan videre inneholde en mindre mengde, dvs. vanligvis under 10%, av forskjellige additiver, såsom herdningsfremmende midler, stabilisatorer eller tiksotrope reguleringsmidler eller reaktive polymere modifiserende forbindelser, såsom én eller flere dioler eller polyoler. Isocyanatet er vanligvis tilstede i en mengde som minst er ekvivalent til den som er nødvendig for å reagere med hydroksy-prepolymeren og hydroksyl-substituerte modifiserende forbindelser. Ekvivalent-vekten av den flytende prepolymer er minst The propellant may further contain a smaller amount, i.e. usually below 10%, of various additives, such as curing agents, stabilizers or thixotropic regulators or reactive polymeric modifying compounds, such as one or more diols or polyols. The isocyanate is usually present in an amount at least equivalent to that required to react with the hydroxy prepolymer and hydroxyl-substituted modifying compounds. The equivalent weight of the liquid prepolymer is the least

7,.iS. 7,.iS.

1.000, vanligvis ikke mer enn 5.000. Funksjonaliteten pa polymeren 1,000, usually not more than 5,000. The functionality of the polymer

er fordelaktig fra 1,7 til 3,0, fortrinnsvis fra 1,9 til 2,3, slik at man ved., tverrbinding og kjedeforlengelse får dannet elastomere polymerer med en molekylvekt på minst 3.000. Ettersom pre-polymerer med høy molekylvekt kan kreve varme for å redusere viskosi-teten, er molekylvekten fortrinnsvis fra 1.000 til 4»000. is advantageously from 1.7 to 3.0, preferably from 1.9 to 2.3, so that elastomeric polymers with a molecular weight of at least 3,000 are formed by cross-linking and chain extension. As high molecular weight prepolymers may require heat to reduce viscosity, the molecular weight is preferably from 1,000 to 4,000.

Pdlyisocyanatet for herding av prepolymeren kan velges fra de med generell formel R(NC0)m hvor R er et di- eller polyvalent organisk radikal med fra 2 til 30 karbonatomer, og hvor m er 2, 3 eller 4* R kan være alkylen, arylen, aralkylen eller cykloalkylen. Det er foretrukket at det organiske radikal i alt vesentlig er et hydrokarbon av karakter, skjønt et nærvær av ureaktive grupper inneholdende elementer forskjellig fra karbon og hydrogen kan tillates, noe som også er tilfelle med reaktive grupper som ikke er istand til å reagere med isocyanat-grupper som eventuelt er istand til å danne urea eller karbamat-bindinger,noe som vil påvirke den forønskede reaksjon. The pdlyisocyanate for curing the prepolymer can be chosen from those with the general formula R(NC0)m where R is a di- or polyvalent organic radical with from 2 to 30 carbon atoms, and where m is 2, 3 or 4* R can be alkylene, arylene , aralkylene or cycloalkylene. It is preferred that the organic radical is essentially a hydrocarbon in character, although the presence of unreactive groups containing elements other than carbon and hydrogen may be permitted, which is also the case with reactive groups which are not capable of reacting with isocyanate- groups that are possibly capable of forming urea or carbamate bonds, which will affect the desired reaction.

Eksempler på egnede forbindelser av denne type innbefatter benzen-l,3-diisocyanat, heksan-l,6-diisocyanat, toluen-2,4-diisocyanat (TDI), toluen-2,3-diisocyanat, difenyl-metan-4,4'-diisocyanat, naftylen-1,5-diisocyanat, difenyl-3,3'-dimetyl-4,4'-diisocyanat, difenyl-3,3'-dimetoksy-4,4'-diisocyanat, butan-1,4-diisocyanat, cykloheks-4-ene-l,2-diisocyanat, benzen-1,3,4-triisocyanat, naftylen-1, 3 > 5 >7-tetraisocyanat, metafenylen-diisocyanat (MDI), isocyanat-terminerte prepolymere, poly-aryl-polyisocyanater og lignende. Examples of suitable compounds of this type include benzene-1,3-diisocyanate, hexane-1,6-diisocyanate, toluene-2,4-diisocyanate (TDI), toluene-2,3-diisocyanate, diphenyl-methane-4,4 '-diisocyanate, naphthylene-1,5-diisocyanate, diphenyl-3,3'-dimethyl-4,4'-diisocyanate, diphenyl-3,3'-dimethoxy-4,4'-diisocyanate, butane-1,4- diisocyanate, cyclohex-4-ene-1,2-diisocyanate, benzene-1,3,4-triisocyanate, naphthylene-1, 3 > 5 >7-tetraisocyanate, metaphenylene diisocyanate (MDI), isocyanate-terminated prepolymers, poly- aryl polyisocyanates and the like.

Polyolene er fortrinnsvis, men ikke begrenset til, dioler eller trioler og kan enten være mettede eller umettede alifatiske, aromatiske eller visse polyester eller polyeter-produkter. Eksempler innbefatter glycerol, etylen-glykol, propylen-glykol, neopentylglykol, pentaerytritol, trimetyloletan, glycerol triricineolat eller alkylen-oksyd-addukter av anilin, såsom Isonol som er N,N-bis-(2-hydroksy-propyl)-anilin og mange andre velkjente polyoler som kan tilsettes bindemiddelsammensetningen for å regulere graden av tverrbinding. The polyols are preferably, but not limited to, diols or triols and can be either saturated or unsaturated aliphatic, aromatic or certain polyester or polyether products. Examples include glycerol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, trimethylolethane, glycerol triricineolate or alkylene oxide adducts of aniline such as Isonol which is N,N-bis-(2-hydroxy-propyl)-aniline and many other well-known polyols which can be added to the binder composition to control the degree of cross-linking.

Den spesielle forbindelse samt den mengde denne forbindelse anvendes i, er avhengig av funksjonaliteten og naturen på den hydroksyltermi-nerte prepolymer og det polyisocyanat som brukes i bindemiddelsammensetningen. The particular compound as well as the amount of this compound used in depends on the functionality and nature of the hydroxyl-terminated prepolymer and the polyisocyanate used in the binder composition.

Ettersom funksjonaliteten på Li-HTPB vanligvis er noe under 2, er polyolen fortrinnsvis en triol, slik at man får en tverrbinding mellom polymere kjeder ved en reaksjon med isocyanater. As the functionality on Li-HTPB is usually somewhat below 2, the polyol is preferably a triol, so that a cross-link between polymer chains is obtained by a reaction with isocyanates.

Som eksempler på polyoler, kan man nevne glycerol-triricinoleat (GTRO) og Isonol (et propylen-oksyd-addukt av anilin), N,N-bis-(2-hydroksy-propyl)-anilin. Polyisocyanatet er tilstede i en tilstrekkelig mengde til å tilfredsstille støkiometrien, dvs. funksjonaliteten på HTPB og andre tilstedeværende polyoler. Polyisocyanatet kan være di-, tri-eller høyere funksjonelt og kan være alifatisk av natur, såsom heksan-diisocyanat, men er fortrinnsvis et aromatisk polyisocyanat såsom TDI. Man kan bruke et analytisk herdningsfremmende middel. Disse midler kan være metallsalter, såsom metall-acetylacetonater, fortrinnsvis torium-acetylacetonat (ThAA) eller jern-acetylacetonat (FeAA). As examples of polyols, one can mention glycerol triricinoleate (GTRO) and Isonol (a propylene oxide adduct of aniline), N,N-bis-(2-hydroxy-propyl)-aniline. The polyisocyanate is present in a sufficient amount to satisfy the stoichiometry, i.e. the functionality of HTPB and other polyols present. The polyisocyanate can be di-, tri- or higher functional and can be aliphatic in nature, such as hexane diisocyanate, but is preferably an aromatic polyisocyanate such as TDI. An analytical curing agent can be used. These agents can be metal salts, such as metal acetylacetonates, preferably thorium acetylacetonate (ThAA) or iron acetylacetonate (FeAA).

De forbrenningsstabilitetsfremmende additiver kan The combustion stability-promoting additives can

brukes alene, men blir fortrinnsvis brukt i kombinasjoner og anvendes i konsentrasjoner på 0,2-5 vekt-# av drivmidlet som enkelt-ingredienser eller kombinert. are used alone, but are preferably used in combinations and used in concentrations of 0.2-5 wt-# of the propellant as single ingredients or combined.

Bruken av karbon i de ildfaste metall-forbindelser, såsom zirkoniumkarbid, vil ha en minimal effekt på røkfriheten. Karbon vil selvsagt brenne fullstendig til CO og C02, mens zirkon-karbid i mengde på 0,5$ vil fremstille 0,7 g fast Zr02 pr. 100 g for-brent drivmiddel. Røkmålinger ved avfyringer av drivmidler fremstilt med additiv og et uten, viste at lystransmisjonen gjennom eksos-strålen var den samme for begge drivmidler, noe som viser at nevnte ZrC ikke hadde noen målbar effekt på mengden av den fremstilte primærrøk. The use of carbon in the refractory metal compounds, such as zirconium carbide, will have a minimal effect on the freedom from smoke. Carbon will of course burn completely to CO and C02, while zirconium carbide in an amount of 0.5$ will produce 0.7 g of solid Zr02 per 100 g of pre-burnt propellant. Smoke measurements during the firing of propellants produced with an additive and one without, showed that the light transmission through the exhaust jet was the same for both propellants, which shows that said ZrC had no measurable effect on the amount of primary smoke produced.

Man antar at både karbonet og ZrC funksjonerer via en spesiell dempningsmekanisme. Det tilstedeværende karbon og ZrC repre-senterer dessuten to forskjellige klasser av forbindelser. Én virker som en partikkelformet demper nær den forbrennende overflate. Karbon blir fullstendig forbrukt under forbrenningen og kan ikke virke slik at den tilveiebringer partikkelformet demping hele tiden mens gassen er tilstede i motoren. Det annet middel, nemlig ZrC er partikkelformet og er tilstede i gassfasen enten som ZrC eller ZrOg, mest sann-synlig som ZrC. It is assumed that both the carbon and ZrC function via a special damping mechanism. Moreover, the carbon and ZrC present represent two different classes of compounds. One acts as a particulate damper near the burning surface. Carbon is completely consumed during combustion and cannot act to provide particulate damping the entire time the gas is present in the engine. The other agent, namely ZrC is particulate and is present in the gas phase either as ZrC or ZrOg, most likely as ZrC.

Som karbon kan anvéndes "Thumax" (0,3v0, og når pro-duktet brukes i form av flak eller små plater, er den foretrukne størrelse fra 10 til 150 u x 1 til 8 p tykt. Hele kuler gir forbedret effektivitet sammenlignet med ødelagte kuler, idet man eliminerer en ustabilitet som opptrer omkring 2200 Hz. En elimina-sjon av frekvenser over 5-000 Hz kan tilveiebringes ved ytterligere å tilsette karbonpulver. As carbon can be used "Thumax" (0.3v0, and when the product is used in the form of flakes or small plates, the preferred size is from 10 to 150 u x 1 to 8 p thick. Whole spheres give improved efficiency compared to broken spheres , eliminating an instability that occurs around 2200 Hz. An elimination of frequencies above 5-000 Hz can be provided by further adding carbon powder.

Karbonkuler som har vist seg effektive i foreliggende oppfinnelse, er nedenforstående karbonkuler. Carbon spheres that have proven effective in the present invention are the following carbon spheres.

Teoretisk, er forbrenningshastigheten for et drivmiddel kun avhengig av kammertrykket. I virkeligheten er den også avhengig av hastigheten på den gass-strøm som går over den brennende overflaten. Jo høyere gass-hastighet på tvers av et punkt på et korn, jo høyere vil forbrenningshastigheten være på dette punkt. Noen drivmidler er mer følsomme overfor eroderende brenning enn andre. Imidlertid er eroderende brenning mer fremherskende hos drivmidler med lav forbrenningshastighet enn hos de som har høye forbrenningshastigheter. Theoretically, the combustion rate of a propellant depends only on the chamber pressure. In reality, it also depends on the speed of the gas flow that passes over the burning surface. The higher the gas velocity across a point on a grain, the higher the combustion rate will be at this point. Some propellants are more sensitive to erosive burning than others. However, erosive burning is more prevalent in propellants with low burn rates than in those with high burn rates.

Ustabil forbrenning er et fenomen som er vanlig i alle drivmiddelsystemer, dog ikke for alle spesifikke drivmidler innen ett enkelt system. Videre, er det slik at additiver som i ett system kan regulere forbrenningsustabiliteten, kan ha ingen effekt eller skadelig effekt på et annet drivmiddel eller annet bindemiddelsystem. Tilsyne-latende er ustabil forbrenning mer vanlig hos drivmidler med høy energi enn lav-energetiske drivmidler. Prøver indikerer at ustabil forbrenning skyldes at det oppstår transverse eller langsgående akustiske svingninger i forbrenningsgassen under forbrenningen. Disse svingninger resulterer i områder med høy og lav hastighet omkring og langs kornene, og dette har en markert effekt på den lokale forbrenningshastigheten. I områder med høy hastighet stiger forbrenningshastigheten meget raskt, noe som frembringer en ytterligere økning i trykket. I områder med lav hastighet eller i knutepunktene vil forbrenningshastigheten være meget lav. Man kan i slike tilfeller se at en ujevn forbrenning av kornene kan frembringe en for tidlig oppbryt-ning, selv om det midlere kammertrykk ikke overstiger det maksimale kammertrykk. Ekstremt uregelmessig drift og kammersammenbrudd er vanligvis forbundet med forverret og uregulerbar resonans eller ustabil forbrenning, skjønt man i visse raketter bare kan påvise dette ved hjelp av høyfrekvensapparatur. Det synes som om eroderende og ustabil forbrenning er nær sammenknyttede fenomener. Unstable combustion is a phenomenon that is common in all propellant systems, although not for all specific propellants within a single system. Furthermore, it is the case that additives which in one system can regulate the combustion instability, can have no effect or a harmful effect on another propellant or other binder system. Apparently, unstable combustion is more common with high-energy propellants than with low-energy propellants. Tests indicate that unstable combustion is due to the occurrence of transverse or longitudinal acoustic oscillations in the combustion gas during combustion. These fluctuations result in areas of high and low velocity around and along the grains, and this has a marked effect on the local burning rate. In high-velocity areas, the rate of combustion rises very rapidly, producing a further increase in pressure. In low-velocity areas or at junctions, the burning rate will be very low. In such cases, it can be seen that an uneven combustion of the grains can produce a premature breakdown, even if the average chamber pressure does not exceed the maximum chamber pressure. Extremely erratic operation and chamber breakdown are usually associated with worsened and uncontrollable resonance or unstable combustion, although in some rockets this can only be detected with the help of high-frequency equipment. It seems that erosive and unstable combustion are closely related phenomena.

Forbrenningsustabilitet i røkfrie drivmidler i overens-stemmelse med foreliggende oppfinnelse ble studert i nT,,-brenner som er en standardanordning for eksperimentell måling av forbrenningsustabilitet. Nevnte brenneranordning bruker motstående sylindriske korn og blir vanligvis brukt ved trykk fra 35 til " JO kg/cm . Kammer-lengden ble variert for å få fundamentale akustiske frekvenser nær 3-000 og 4.000 Hz. Disse prøvene ble utført.for å bestemme følgende parametre: Combustion instability in smokeless propellants in accordance with the present invention was studied in nT,, burner which is a standard device for experimental measurement of combustion instability. Said combustor uses opposing cylindrical grains and is typically used at pressures from 35 to " JO kg/cm. The chamber length was varied to obtain fundamental acoustic frequencies near 3,000 and 4,000 Hz. These tests were performed to determine the following parameters :

otg = vekstkonstant for akustisk trykk otg = growth constant for acoustic pressure

AP = amplitude for akustiske trykk-svingninger AP = amplitude for acoustic pressure fluctuations

Rk = responsfunksjon, forbrenningshastighetsforandringer Rk = response function, burning rate changes

i forhold til trykkforandringer in relation to pressure changes

Det ble fremstilt sylindriske korn med 12 deler av et hydroksy-terminert polybutadien-bindemiddelsystem inneholdende en støkiometrisk mengde TDI og en passende mengde av ammonium-perklorat og forskjellige additiver. Preparatet ble opparbeidet til sylindriske korn som var egnet for nevnte "T'*-brennerprøve, og resultatene av prøven er angitt i den følgende tabell. Cylindrical 12-part grains of a hydroxy-terminated polybutadiene binder system containing a stoichiometric amount of TDI and an appropriate amount of ammonium perchlorate and various additives were prepared. The preparation was worked up into cylindrical grains which were suitable for the aforementioned "T'* burner test, and the results of the test are given in the following table.

Drivmidlet med høy forbrenningshastighet og uten additiv, dvs. Eksempel nr. 2, er mer ustabilt ved 3.000 Hz, dvs. høyere a AP og 11^. De drivmidler som inneholdt oppbrukne karbonkuler (Eksempel 5) eller zirkon-karbid (Eksempel 8) eller disse additiver i kombinasjon (Eksempel 7) eliminerer ustabiliteten ved 3«000 Hz, samtidig som man fikk en viss fordel ved 2.000 Hz, spesielt med hensyn til redusert responsfunksjon (R^). Drivmiddel nr. 6 som innbefattet standard amorft, karbonpulver av gummi-kvalitet, betegnelse P-33> viser noen reduksjon med hensyn til ustabilitet ved 3-000 Hz, men er ikke så effektivt som karbon i form av oppbrukne, hule kuler (Eksempel 5)-The high burn rate propellant without additive, i.e. Example No. 2, is more unstable at 3,000 Hz, i.e. higher a AP and 11^. The propellants that contained spent carbon balls (Example 5) or zirconium carbide (Example 8) or these additives in combination (Example 7) eliminated the instability at 3,000 Hz, while obtaining some advantage at 2,000 Hz, especially with regard to reduced response function (R^). Propellant No. 6 incorporating standard amorphous, rubber-grade carbon powder, designation P-33> shows some reduction in instability at 3-000 Hz, but is not as effective as carbon in the form of spent hollow spheres (Example 5 )-

Denne nedsetning i forbrenningsustabilitetén som ble vist i "T,,-brennerne er blitt verifisert i motorforbrenninger i en dobbelt reaksjonsmotor hvor kornene var sammensatt av 88% ammonium-perklorat (AP) i et HTPB-bindemiddel med 0,5% zirkonkarbid (ZrC). Skjønt man kunne observere noen ustabilitet på grunn av DC-forskyvningen, så var denne forskyvningen bare 10% av det som ble vist ved drivmidlet uten additiv. Videre, var begynnelsen av forskyvningen forsinket inntil slutten av forbrenningsfasen. This reduction in combustion instability shown in the "T,," burners has been verified in engine combustions in a dual reaction engine where the grains were composed of 88% ammonium perchlorate (AP) in an HTPB binder with 0.5% zirconium carbide (ZrC) .Although some instability due to the DC shift could be observed, this shift was only 10% of that seen with the propellant without additive.Furthermore, the onset of the shift was delayed until the end of the combustion phase.

Det ble avfyrt en annen motor hvor man brukte kombinasjonen av 0,5% ZrC og 0,5% delvis oppbrudte karbonkuler, dvs. sammensetning nr. 8. Resultatene var endog bedre med denne motor. DC-forskyvningen ble eliminert fullstendig, og man fikk et residualt trykk koplet med en maksimal amplityde på bare 0,07 kg/cm ved et driftstrykk på 84 kg/ cm 2. Denne mindre ustabilitet er helt akseptabel innenfor de vanlige driftsgrenser man opererer med i faste rakettmotorer.. Avfyringskurven for denne dobbelte reaksjonsmotor er vist i figur 1, hvor man brukte sammensetning nr. 8 i selve avfyringsfasen. Figur 2 viser et drivmiddel av samme sammensetning, men uten additiver, og viser store trykkvariasjoner, noe som er et resultat av forbrenningsustabilitet. Another engine was fired using the combination of 0.5% ZrC and 0.5% partially broken down carbon balls, i.e. composition no. 8. The results were even better with this engine. The DC offset was completely eliminated, and a residual pressure coupled with a maximum amplitude of only 0.07 kg/cm at an operating pressure of 84 kg/cm 2 was obtained. This minor instability is perfectly acceptable within the normal operating limits of fixed rocket engines.. The firing curve for this double reaction engine is shown in figure 1, where composition no. 8 was used in the firing phase itself. Figure 2 shows a propellant of the same composition, but without additives, and shows large pressure variations, which is a result of combustion instability.

Det ble utført ytterligere forsøk med <n>T<M->brenneren, for å undersøke effekten av 1% ZrC (intet karbon) på stabiliteten på de samme drivmidler som ble brukt for å bedømme 0,5% blandingen med Additional tests were carried out with the <n>T<M-> torch, to investigate the effect of 1% ZrC (no carbon) on the stability of the same propellants used to evaluate the 0.5% mixture with

karbon, dessuten for å undersøke effekten av å bruke et lavere prosent-vis innhold av ammonium-perklorat hvorved man fikk fremstilt et drivmiddel med lavere forbrenningshastighet. Resultatene er vist i den etterfølgende tabell. carbon, also to investigate the effect of using a lower percentage content of ammonium perchlorate, whereby a propellant with a lower combustion rate was produced. The results are shown in the following table.

Data fra ovennevnte tabell viser at 1% ZrC (Eksempel nr. 9) tilsvarer det drivmiddel som inneholdt blandingen av additiver (Eksempel nr. rJ). En anvendelse av noe karbon anses som betydelig bedre, ettersom dette ikke skaper noen partikkelformet røk. Avfyringer av drivmidlene fra Eksemplene nr. 10 og 11 var begge stabile inntil forholdet S^/S^ var 1 eller mindre, hvoretter avfyringen ble ustabil. Stø angir arealet av brennende drivmiddel, mens Sqq er tverr-snittsarealet i forbrenningskammeret. Langsomt-brennende drivmidler inneholdende en mindre mengde ammonium-perklorat, slik det er vist i Eksempel nr. 12, viser med denne sammensetning en forbedret stabilitet, idet det er stabilt ved frekvensene 2200 og 2600 Hz. Videre <n>T<M->brennerdata er vist i den etterfølgende tabell. Data from the above table shows that 1% ZrC (Example No. 9) corresponds to the propellant which contained the mixture of additives (Example No. rJ). A use of some carbon is considered significantly better, as this does not create any particulate smoke. Firings of the propellants of Examples Nos. 10 and 11 were both stable until the ratio S^/S^ was 1 or less, after which the firing became unstable. Stø indicates the area of burning propellant, while Sqq is the cross-sectional area of the combustion chamber. Slow-burning propellants containing a smaller amount of ammonium perchlorate, as shown in Example No. 12, show improved stability with this composition, being stable at frequencies of 2200 and 2600 Hz. Further <n>T<M->burner data is shown in the following table.

Kontroll-drivmidlene 17 og 18 viser at uten additiver var alle AP-drivmidler ustabile ved 2000 og 3000 Hz, skjønt de ble stabilisert ved en frekvens på 4000 Hz. Det er innlysende at høyere forbrenningshastigheter, dvs. drivmiddel nr. 18, der øker ustabiliteten ved 3000 Hz. Control propellants 17 and 18 show that without additives all AP propellants were unstable at 2000 and 3000 Hz, although they were stabilized at a frequency of 4000 Hz. It is obvious that higher burn rates, i.e. propellant no. 18, increase the instability at 3000 Hz.

Effekten av forskjellige former av karbon kan sees i drivmidlene 14, 29, 13 og 15- Hverken P-33 (Eksempel 14) eller karbon-fibrene (Eksempel 15) ga en forbedring med hensyn til stabiliteten ved 87% AP. Karbon-kuler A-100 (Eksempel 13) ga bedret stabilitet ved 87% AP og 3000 Hz. Ved 88% AP ga karbonkulene bedret stabilitet både ved 3000 og 4000 Hz. The effect of different forms of carbon can be seen in propellants 14, 29, 13 and 15- Neither the P-33 (Example 14) nor the carbon fibers (Example 15) provided an improvement in stability at 87% AP. Carbon balls A-100 (Example 13) provided improved stability at 87% AP and 3000 Hz. At 88% AP, the carbon balls gave improved stability at both 3000 and 4000 Hz.

Zirkon-karbid (Eksempel nr. 16) ga betydelig forbedret stabilitet ved 3000 og 4000 Hz. Ytterligere prøving av karbonkuler, Zirconium carbide (Example No. 16) provided significantly improved stability at 3000 and 4000 Hz. Further testing of carbon balls,

1% og ZrC, 0,5%, som enkelt-additiver i-en "T"-brenner og også i motorer (Eksemplene 19, 20 og 21) viste at disse sammensetninger var ustabile i <w>T"-brenneren ved 2500 Hz. Motor-avfyringer av drivmidlet fra Eksempel 21 viste også at disse sammensetninger var ustabile når drivmiddelbåndet var brent ut til en diameter som tilsvarer en frekvens på 4000 til 5000 Hz. 1% and ZrC, 0.5%, as single additives in a "T" burner and also in engines (Examples 19, 20 and 21) showed that these compositions were unstable in the <w>T" burner at 2500 Hz. Motor firings of the propellant from Example 21 also showed that these compositions were unstable when the propellant band had burned out to a diameter corresponding to a frequency of 4000 to 5000 Hz.

I kombinasjon ga ZrC og karbonkulene (Eksemplene 25, 19> 26, 23 og 24) stabil forbrenning i <n>T"-brenneren ved 25OO Hz og var også stabil i 22,5 cm O.D. korn, når drivmidlet ble avfyrt i motorer med en utbrenningsfrekvens på 27OO Hz. Effekten av kombinasjonen gir en forbedring i stabiliteten som er bedre enn den som vises av de enkle ingredienser når disse brukes alene. In combination, the ZrC and the carbon balls (Examples 25, 19> 26, 23 and 24) produced stable combustion in the <n>T" burner at 25OO Hz and was also stable in 22.5 cm O.D. grains, when the propellant was fired in engines with a burnout frequency of 27OO Hz. The effect of the combination provides an improvement in stability that is better than that shown by the single ingredients when used alone.

En videre bedømmelse av effekten av karbon og ZrC ble prøvet i eksemplene 27, 28 og 29, og viste at både karbonpulvere såvel som kuler ga bedret stabilitet ved 2600 Hz, skjønt alle kombinasjoner var ustabile ved 2200 Hz. De amorfe svarte kullpulverene var stabile i "T"-brenneren, selv ved et S^/S^-forhold så langt ned som 1, dvs. forholdet mellom drivmidlets brennende overflate til tverrsnittarealet i forbrenningskammeret, mens drivmidlet med karbonkuler med ZrC var ustabilt i dette område. Skjønt denne ustabilitet var påvisbar i »»Tn-brennerne, kunne man ikke observere noen ustabilitet i motor-avfyringer, noe som skyldes at man ved S^/S^-forhold på 1 får en avfyring av kornene som flate stykker, og man får intet bidrag fra sideveggfor-brenning, noe som er typisk ved avfyring av korn med nevnte konfigurasjon. Resultatene viser at stabiliteten over 2500 Hz i alt vesentlig skyldes kombinasjonen av karbon og ZrC og er ikke avhengig av formen A further evaluation of the effect of carbon and ZrC was tried in examples 27, 28 and 29, and showed that both carbon powders as well as spheres gave improved stability at 2600 Hz, although all combinations were unstable at 2200 Hz. The amorphous black carbon powders were stable in the "T" burner, even at an S^/S^ ratio as low as 1, i.e., the ratio of the propellant's burning surface to the cross-sectional area of the combustion chamber, while the propellant with carbon balls with ZrC was unstable in this area. Although this instability was detectable in the »»Tn burners, no instability could be observed in engine firings, which is due to the fact that at an S^/S^ ratio of 1, the grains are fired as flat pieces, and you get no contribution from sidewall combustion, which is typical when firing grains with said configuration. The results show that the stability above 2500 Hz is essentially due to the combination of carbon and ZrC and is not dependent on the shape

på karbonet. on the carbon.

De data som er angitt i Tabell 5» viser en sammenligning mellom <w>T"-brenner-resultatene ved 63 og 175 kg/cm og prøver utført i en normal motor ved 63 og 105 kg/cm ved 21 C. Bindemidlet var i hvert eksempel et myknet HTPB. The data given in Table 5" show a comparison between the <w>T" burner results at 63 and 175 kg/cm and tests carried out in a normal engine at 63 and 105 kg/cm at 21 C. The binder was in each example a softened HTPB.

Korrelasjonen mellom motor-diameter og motor-resonans-frekvens er vist i den etterfølgende tabell: The correlation between motor diameter and motor resonance frequency is shown in the following table:

De i tabell 5 angitte data viser god korrelering mellom The data given in table 5 show a good correlation between

de resultater som ble oppnådd med en <M>T<M->brenner og motorene. Dette fremgår spesielt tydelig for eksempel nr. 471 hvor ""C-brenneren viser stabilitet ved 2600 Hz, mens motoren viste stabilitet ved 269O Hz, og hvor "TM<->brenneren viste ustabilitet ved lavere frekvenser under 2200 Hz. the results obtained with a <M>T<M->burner and the engines. This is particularly clear for example in No. 471 where the "C burner shows stability at 2600 Hz, while the engine showed stability at 2690 Hz, and where the "TM<-> burner showed instability at lower frequencies below 2200 Hz.

Eksempel nr. 36 {89% AP, hastighet =1,03 cm/sek. ved Example No. 36 {89% AP, speed =1.03 cm/sec. by

70 kg/cm 2 ) og som ikke inneholdt noe additiv, var ustabilt båode i wT"-brenneren ved 2500 Hz og i motoren endog ved en høyere frekvens på ca. 4000 Hz. 70 kg/cm 2 ) and which contained no additive, was unstable both in the wT" burner at 2500 Hz and in the engine even at a higher frequency of approx. 4000 Hz.

Eksempel nr. 37 (88% AP, 0,5% Fe^, hastighet = 1,47 cm/sek. ved 70 kg/cm^) var igjen ustabilt ved høyere frekvens i motoren, noe som indikerer en effekt av høyere forbrenningshastighet på ustabiliteten. Example No. 37 (88% AP, 0.5% Fe^, velocity = 1.47 cm/sec. at 70 kg/cm^) was again unstable at higher frequency in the engine, indicating an effect of higher burn rate on the instability.

Eksempel nr. 38 (87% SP, hastighet = 1,22 cm/sek. ved Example no. 38 (87% SP, speed = 1.22 cm/sec. at

70 kg/cm 2 ) som inneholdt 100 karbonkuler og 5 ^ ZrC var stabil båode i <«»>T"-brenneren og i motoren ved avfyringer ned til 48OO Hz, noe som illustrerer effekten av additiv-kombinasjonen. 70 kg/cm 2 ) containing 100 carbon balls and 5 ^ ZrC was stable in the <«»>T" burner and in the engine at firings down to 48OO Hz, illustrating the effect of the additive combination.

Eksempel nr. 39 (87% AP, hastighet =1,35 cm/sek. ved Example no. 39 (87% AP, speed = 1.35 cm/sec. at

70 kg/cm ) som inneholdt 200 y. karbonkuler og 5 ^ ZrC, var stabilt i "T<n->brenneren, noe som viser at 200 ji karbonkuler var like effektive som 100 ^u-kulene. 70 kg/cm ) which contained 200 y. carbon balls and 5 ^ ZrC, were stable in the "T<n->burner, showing that the 200 ji carbon balls were as effective as the 100 ^u balls.

Eksempel nr. 4-0 (88% AP, hastighet = 1,40 cm/sek. ved Example no. 4-0 (88% AP, speed = 1.40 cm/sec. at

70 kg/cm ) inneholdt bare 0,5% ZrC og var ustabilt i "T"-brenneren og ved ^5000 Hz i motoren, noe som viser at karbonkulene er nødvendig for stabilitet. 70 kg/cm ) contained only 0.5% ZrC and was unstable in the "T" burner and at ^5000 Hz in the motor, showing that the carbon balls are necessary for stability.

Eksempel nr. 41 (87% AP, hastighet = 1,32 cm/sek. ved Example no. 41 (87% AP, speed = 1.32 cm/sec. at

70 kg/cm ) som inneholdt 1% 200 ^1 karbonkuler, var ustabilt i "TM<->brenneren, noe som viser at det er nødvendig med ZrC i kombinasjon. 70 kg/cm ) containing 1% 200 ^1 carbon spheres was unstable in the "TM<->burner, showing that ZrC is required in combination.

Eksempel nr. 42 (88% AP, hastighet = 1,03 cm/sek. ved Example no. 42 (88% AP, speed = 1.03 cm/sec. at

70 kg/cm ) som inneholdt 1% 200 ^1 karbonkuler, var ustabilt i "TM-brenneren og i motoren ved ^4.000 Hz, noe som igjen viser at kombinasjonen var nødvendig for å oppnå stabilitet. 70 kg/cm ) containing 1% 200 ^1 carbon balls was unstable in the "TM burner and in the motor at ^4,000 Hz, again showing that the combination was necessary to achieve stability.

Gjenværende drivmidler illustrerer effekten av kombinasjonen av karbon-kuler og ZrC. Resultatene både fra <M>T<M->brenneren og motoren viser effektiviteten av additiv-kombinasjonen ved at man oppnår stabilitet innen et vidt område med hensyn til forbrenningshastigheter, dvs. fra 1,0 til 1,5 cm/sek. ved 70 kg/cm o ved frekvenser så lavt som 2500 Hz og et innhold av oksydasjonsmiddel fra 87 til 88%. Ved forbrenningshastigheter over 1,5 cm/sek. ved 70 kg/cm 2 var det Remaining propellants illustrate the effect of the combination of carbon balls and ZrC. The results from both the <M>T<M> burner and the engine show the effectiveness of the additive combination in that stability is achieved within a wide range with respect to combustion rates, i.e. from 1.0 to 1.5 cm/sec. at 70 kg/cm o at frequencies as low as 2500 Hz and a content of oxidizing agent from 87 to 88%. At burning speeds above 1.5 cm/sec. at 70 kg/cm 2 it was

en ustabilitet ved 2500 Hz i "T<w->brenneren. Stabiliteten i motoren ble opprettholdt i temperaturer fra -39,6° til 57i2°C noe som er vist ved den motor som ble avfyrt med drivmiddel fra Eksempel 47* an instability at 2500 Hz in the "T<w->burner. The stability of the engine was maintained at temperatures from -39.6° to 57i2°C as shown by the engine fired with the propellant of Example 47*

Det er således innlysende at faste additiver, såsom ildfaste metallkarbider alene, uregelmessige tynne karbon-partikler, såsom oppbrudte karbon-kuler eller kombinasjonen av ildfaste metall-forbindelser med diverse former for karbon, er istand til å tilveiebringe stabilt-brennende, høy-energetiske, røkfrie drivmidler uten betydelig tap av spesifikk impuls, selvom aluminium er fullstendig eliminert fra drivstoffet. It is thus obvious that solid additives, such as refractory metal carbides alone, irregular thin carbon particles, such as broken carbon balls or the combination of refractory metal compounds with various forms of carbon, are capable of providing stable-burning, high-energy, smokeless propellants without significant loss of specific impulse, even though aluminum is completely eliminated from the fuel.

Det er i den etterfølgende tabell angitt en serie prøver utført med en <M>T<n->brenner for drivstoffer inneholdende andre ildfaste forbindelser, såsom 0,5 vekt-% hafnium-oksyd, niob-karbid eller tantal-karbid i kombinasjon med 0,5 vekt-% 200 mikron karbon-kuler og 87% ammonium-perklorat (AP). The following table shows a series of tests carried out with a <M>T<n> burner for fuels containing other refractory compounds, such as 0.5% by weight of hafnium oxide, niobium carbide or tantalum carbide in combination with 0.5% by weight 200 micron carbon balls and 87% ammonium perchlorate (AP).

Eksempel 5^ Example 5^

Et drivmiddel ble fremstilt med følgende ingredienser: 19 kg av drivmidlet ble avfyrt i en normal motor. Motoren utviklet en kraft på fra l80 til 360 kg, og man fant ingen frekvenser over 5.000 Hz. A propellant was prepared with the following ingredients: 19 kg of the propellant was fired in a normal engine. The engine developed a force of from 180 to 360 kg, and no frequencies above 5,000 Hz were found.

Drivmidler som ikke inneholder additiver ifølge foreliggende oppfinnelse, vil ikke forbrenne stabilt hvis ikke ammonium-perklorat-innholdet er under 80 vekt-/?. Dette vil senke både drivmidlets impuls og tetthet. Drivmidlet ifølge foreliggende oppfinnelse inneholdende stabiliserende, røkfrie additiver, gjør at man kan opparbeide drivmidler inneholdende over 85$ ammonium-perklorat, hvorved man kan få fremstilt et fast drivmiddel med høy tetthet og som brenner stabilt med høy spesifikk impuls og uten synlig røk. Propellants which do not contain additives according to the present invention will not burn stably if the ammonium perchlorate content is not below 80% by weight. This will lower both the propellant's impulse and density. The propellant according to the present invention, containing stabilizing, smokeless additives, makes it possible to process propellants containing over 85% ammonium perchlorate, whereby a solid propellant with high density can be produced which burns stably with a high specific impulse and without visible smoke.

Claims (5)

1. Stabiltbrennende, røkfritt fast drivmiddel som inneholder en herdet intim blanding av: en større mengde av et fast uorganisk oksyderende salt, en mindre mengde av en forbrennbar syntetisk hydrokarbonelastomer dannet ved kjedeforlengelse og kryssbinding av funksjonelt-terminerte, væskeformige butadienpolymerer, og 0,2-5 vekt-% av drivmidlet av et forbrenningsstabili-serende additiv, karakterisert ved. at additivet vesentlig utgjøres av en kombinasjon av: (1) et oksyd eller karbid med smeltepunkt på minst 2000°C valgt fra torium-, wolfram-, silisium-, molybden-, aluminium-, hafnium-, zirkonium- og vanadiumoksyd og -karbid, og (2) partikkelformet karbon i form av små plater eller hule kuler med en tykkelse, respektiv veggtykkelse, på mellom 1 og 10 mikron og en lengde, respektivt diameter, på mellom 25 og HOO mikron.1. Stable-burning, smokeless solid propellant containing a cured intimate mixture of: a major amount of a solid inorganic oxidizing salt, a minor amount of a combustible synthetic hydrocarbon elastomer formed by chain extension and cross-linking of functionally-terminated liquid butadiene polymers, and 0.2 -5% by weight of the propellant of a combustion stabilizing additive, characterized by. that the additive essentially consists of a combination of: (1) an oxide or carbide with a melting point of at least 2000°C selected from thorium, tungsten, silicon, molybdenum, aluminium, hafnium, zirconium and vanadium oxide and carbide , and (2) particulate carbon in the form of small plates or hollow spheres with a thickness, respectively wall thickness, of between 1 and 10 microns and a length, respectively diameter, of between 25 and HOO microns. 2. Drivmiddel ifølge krav 1, karakterisert ved at den som bindemiddel benyttede hydrokarbonelastomer er tilstede i en mengde på høyst 15 vekt-%, og ved at additivet er tilstede i en mengde på 0,1-4 vekt-%.2. Propellant according to claim 1, characterized in that the hydrocarbon elastomer used as binder is present in an amount of no more than 15% by weight, and in that the additive is present in an amount of 0.1-4% by weight. 3- Drivmiddel ifølge krav 2, karakterisert ved at bindemidlet er en kjedeforlenget og herdet, væskeformig polybutadienpolymer med en ekvivalentvekt på mellom 1000 og 5000 og en funksjonalitet på mellom 1,7 og 3,0.3- Propellant according to claim 2, characterized in that the binder is a chain-extended and hardened, liquid polybutadiene polymer with an equivalent weight of between 1000 and 5000 and a functionality of between 1.7 and 3.0. 4. Drivmiddel ifølge krav 35karakterisert ved at det oksyderende salt er ammoniumperklorat i en mengde på mellom 85 og 90 vekt-%.4. Propellant according to claim 35, characterized in that the oxidizing salt is ammonium perchlorate in an amount of between 85 and 90% by weight. 5. Drivmiddel ifølge krav 1, karakterisert ved at additivet omfatter 0,2-1 vekt-% av et metallkarbid med en partikkelstørrelse i området 2-10 mikron.5. Propellant according to claim 1, characterized in that the additive comprises 0.2-1% by weight of a metal carbide with a particle size in the range of 2-10 microns.
NO742028A 1973-06-07 1974-06-05 SMOKE-FREE, STABLE-BURNING FUEL NO139916C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US360867A US3924405A (en) 1973-06-07 1973-06-07 Solid propellants with stability enhanced additives of particulate refractory carbides or oxides

Publications (3)

Publication Number Publication Date
NO742028L NO742028L (en) 1975-01-06
NO139916B true NO139916B (en) 1979-02-26
NO139916C NO139916C (en) 1979-06-06

Family

ID=23419724

Family Applications (1)

Application Number Title Priority Date Filing Date
NO742028A NO139916C (en) 1973-06-07 1974-06-05 SMOKE-FREE, STABLE-BURNING FUEL

Country Status (11)

Country Link
US (1) US3924405A (en)
JP (1) JPS5214285B2 (en)
BE (1) BE816054A (en)
CA (1) CA1039062A (en)
DE (1) DE2427480C3 (en)
FR (1) FR2232523B1 (en)
GB (1) GB1465804A (en)
IL (1) IL44980A0 (en)
NO (1) NO139916C (en)
SE (1) SE404359B (en)
TR (1) TR18072A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506185A (en) * 1975-06-11 1978-04-05 Bryant & May Ltd Match-head compositions
US4084992A (en) * 1976-04-22 1978-04-18 Thiokol Corporation Solid propellant with alumina burning rate catalyst
US4061511A (en) * 1976-08-02 1977-12-06 The United States Of America As Represented By The Secretary Of The Navy Aluminum silicate stabilizer in gas producing propellants
US4158583A (en) * 1977-12-16 1979-06-19 Nasa High performance ammonium nitrate propellant
GB2193491B (en) * 1978-07-21 1988-09-14 Imi Kynoch Limited Kynoch Work Improvements in propellants
FR2538378A1 (en) * 1982-12-28 1984-06-29 Poudres & Explosifs Ste Nale NOVEL COMBUSTION INHIBITORS BASED ON POLYURETHANE OXYGEN ELASTOMER COMPRISING FIBERS FOR DOUBLE-BASED PROGERGOLS
FR2564457B1 (en) * 1984-05-17 1986-09-26 Poudres & Explosifs Ste Nale COMBUSTION INHIBITOR BASED ON ALIPHATIC POLYURETHANE ELASTOMER FOR PROPERGOL, AND BLOCK COATED WITH THIS INHIBITOR
GB2159811A (en) * 1984-06-06 1985-12-11 Alan Richard Howard Bullock Composite propellant
US4574700A (en) * 1984-11-15 1986-03-11 The United States Of America As Represented By The Secretary Of The Air Force Solid rocket motor with nozzle containing aromatic amide fibers
US5867981A (en) * 1985-01-28 1999-02-09 The United States Of America As Represented By The Secretary Of The Air Force Solid rocket motor
DE3523953A1 (en) * 1985-07-04 1987-01-15 Fraunhofer Ges Forschung METHOD AND DEVICE FOR PRODUCING SOLID FUELS
JPS62263409A (en) * 1986-05-12 1987-11-16 Emupaiya Eapooto Service:Kk Encoder
JPS62276409A (en) * 1986-05-26 1987-12-01 Emupaiya Eapooto Service:Kk Rotary encoder
DE3704305A1 (en) * 1987-02-12 1988-08-25 Bayern Chemie Gmbh Flugchemie COMPOSITE SOLID FUEL
US5074938A (en) * 1990-05-25 1991-12-24 Thiokol Corporation Low pressure exponent propellants containing boron
US5334270A (en) * 1992-01-29 1994-08-02 Thiokol Corporation Controlled burn rate, reduced smoke, solid propellant formulations
US5339625A (en) * 1992-12-04 1994-08-23 American Rocket Company Hybrid rocket motor solid fuel grain
US5445690A (en) * 1993-03-29 1995-08-29 D. S. Wulfman & Associates, Inc. Environmentally neutral reformulation of military explosives and propellants
US5547525A (en) * 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US5470408A (en) * 1993-10-22 1995-11-28 Thiokol Corporation Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants
US5438824A (en) * 1994-03-21 1995-08-08 The United States Of America As Represented By The Secretary Of The Army Silicon as a high energy additive for fuel gels and solid fuel-gas generators for propulsion systems
DE4435524C2 (en) * 1994-10-05 1996-08-22 Fraunhofer Ges Forschung Solid fuel based on pure or phase-stabilized ammonium nitrate
DE4435523C1 (en) * 1994-10-05 1996-06-05 Fraunhofer Ges Forschung Solid fuel based on phase-stabilized ammonium nitrate
JPH08231291A (en) * 1994-12-27 1996-09-10 Daicel Chem Ind Ltd Gas generating agent composition
US5834680A (en) * 1995-09-22 1998-11-10 Cordant Technologies Inc. Black body decoy flare compositions for thrusted applications and methods of use
AU2196499A (en) * 1997-10-03 1999-04-27 Cordant Technologies, Inc. Advanced designs for high pressure, high performance solid propellant rocket motors
US6217682B1 (en) * 1997-10-27 2001-04-17 Cordant Technologies Inc. Energetic oxetane propellants
US6168677B1 (en) * 1999-09-02 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers
US6607617B1 (en) 2000-08-16 2003-08-19 Alliant Techsystems Inc. Double-base rocket propellants, and rocket assemblies comprising the same
US11434181B2 (en) * 2013-03-15 2022-09-06 Northrop Grumman Systems Corporation Precursor formulations for a propellant composition including high surface area amorphous carbon black

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926613A (en) * 1955-05-23 1960-03-01 Phillips Petroleum Co Composite rocket-ram jet fuel
US2995429A (en) * 1956-03-26 1961-08-08 Phillips Petroleum Co Solid composite rubber base ammonium nitrate propellant cured with metal oxide
US3822154A (en) * 1962-10-01 1974-07-02 Aerojet General Co Suppression of unstable burning using finely divided metal oxides
US3666575A (en) * 1970-03-10 1972-05-30 Us Army Solid propellant composition with burning rate catalyst
US3734786A (en) * 1971-02-16 1973-05-22 United Aircraft Corp Solid propellants fabricated from a mixed polymer system

Also Published As

Publication number Publication date
SE404359B (en) 1978-10-02
GB1465804A (en) 1977-03-02
DE2427480B2 (en) 1979-04-26
IL44980A0 (en) 1974-09-10
BE816054A (en) 1974-09-30
TR18072A (en) 1976-09-21
US3924405A (en) 1975-12-09
NO139916C (en) 1979-06-06
FR2232523A1 (en) 1975-01-03
FR2232523B1 (en) 1977-09-30
DE2427480C3 (en) 1979-12-13
CA1039062A (en) 1978-09-26
JPS5214285B2 (en) 1977-04-20
NO742028L (en) 1975-01-06
JPS5031015A (en) 1975-03-27
SE7407489L (en) 1974-12-09
DE2427480A1 (en) 1975-01-09

Similar Documents

Publication Publication Date Title
NO139916B (en) SMOKE-FREE, STABLE-BURNING FUEL
US20180334996A1 (en) Hybrid Rocket Motor
US5034073A (en) Insensitive high explosive
US3144829A (en) Solid propellant charge
US4002514A (en) Nitrocellulose propellant composition
Koch Insensitive high explosives: V. Ballistic properties and vulnerability of nitroguanidine based propellants
US4091729A (en) Low vulnerability booster charge caseless ammunition
US4263070A (en) Thermally stable gun and caseless cartridge propellants
US5811725A (en) Hybrid rocket propellants containing azo compounds
US4570540A (en) LOVA Type black powder propellant surrogate
US4072702A (en) Tri-functional isocyanate crosslinking agents for hydroxy-terminated polybutadiene binders
US3460922A (en) Method of producing gelled hydrocarbons employing polyurethanes
US2542193A (en) Thermally stabilized fuel
US3086895A (en) Solid composite propellant containing acetylenic polyurethane and process of making
US4239073A (en) Propellants in caseless ammunition
JPH075422B2 (en) Flame retardant explosive composition
US2936225A (en) Ammonium nitrate propellant
US2942964A (en) Stable gas-generating composition
US2991166A (en) Propellant and gas producing compositions of elastic gels containing inorganic oxidizing salts
US10591950B2 (en) Copolymerized bis-(ethylene oxy) methane polysulfide polymer and hydroxyl terminated poly butadiene as a solid fueled ramjet fuel
US2973256A (en) Ammonium nitrate solid composite propellant composition
KR102633762B1 (en) Insensitive smokeless solid propellant composition comprising N-Guanylurea dinitramide
US3245850A (en) Manganese salt additives for aluminized propellants
US3532567A (en) Polyurethane propellant compositions prepared with hydroxy-terminated polyesters
Dean High performance hybrid fuels