NO139796B - DC DC OVEN. - Google Patents

DC DC OVEN. Download PDF

Info

Publication number
NO139796B
NO139796B NO773285A NO773285A NO139796B NO 139796 B NO139796 B NO 139796B NO 773285 A NO773285 A NO 773285A NO 773285 A NO773285 A NO 773285A NO 139796 B NO139796 B NO 139796B
Authority
NO
Norway
Prior art keywords
electrodes
furnace
furnaces
current
direct current
Prior art date
Application number
NO773285A
Other languages
Norwegian (no)
Other versions
NO773285L (en
NO139796C (en
Inventor
Eivind Christian Kroe Svendsen
Original Assignee
Elkem Spigerverket As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Spigerverket As filed Critical Elkem Spigerverket As
Priority to NO773285A priority Critical patent/NO139796C/en
Priority to ZA784897A priority patent/ZA784897B/en
Priority to YU02094/78A priority patent/YU209478A/en
Priority to FR7825795A priority patent/FR2404186A1/en
Priority to SE7809783A priority patent/SE434432B/en
Priority to MX174924A priority patent/MX144969A/en
Priority to JP53114702A priority patent/JPS582574B2/en
Priority to ES473538A priority patent/ES473538A1/en
Priority to BR7806278A priority patent/BR7806278A/en
Priority to DE19782841458 priority patent/DE2841458A1/en
Priority to CA000312100A priority patent/CA1120522A/en
Priority to IN1092/CAL/78A priority patent/IN150223B/en
Publication of NO773285L publication Critical patent/NO773285L/en
Publication of NO139796B publication Critical patent/NO139796B/en
Publication of NO139796C publication Critical patent/NO139796C/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/60Heating arrangements wherein the heating current flows through granular powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • F27D11/04Ohmic resistance heating with direct passage of current through the material being heated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

Oppfinnelsen angår en elektrotermisk reduksjonsovn som drives med likestrøm. The invention relates to an electrothermal reduction furnace which is operated with direct current.

De første elektrotermiske reduksjonsovner som kom i drift i slutten The first electrothermal reduction furnaces that came into operation at the end

av forrige århundre, ble drevet med likestrøm. Utviklingen av veksel-strømsgeneratorer med tre faser og forbedret kraftoverføring medførte imidlertid at man gikk over til å drive de elektrotermiske reduksjonsovner med vekselstrøm. Først i den senere tid har den forbedrede omforming fra vekselstrøm til likestrøm ved hjelp av tørrlikerettere åpnet for nye muligheter for anvendelse av likestrøm 'iforbindelse med elektrotermiske reduksjonsovner. of the last century, were powered by direct current. However, the development of alternating current generators with three phases and improved power transmission led to a switch to operating the electrothermal reduction furnaces with alternating current. Only recently has the improved transformation from alternating current to direct current by means of dry rectifiers opened up new possibilities for the use of direct current in connection with electrothermal reduction furnaces.

De likestrømsovner som hittil er bygget for bruk i forbindelse med * elektrotermiske reduksjoner, er som regel utført med én toppelektrode og en bunnelektrode. Disse ovner er meget små i forhold til vanlig kommersielle vekselstrømsovner og er mest anvendt som forsøksovner. Ved enkelte prosesser har imidlertid like strøm .vist seg å ha visse fordeler, idet det medfører mindre tap og dermed lavere spesifikk strøm-forbruk for det produserte materiale. The direct current furnaces that have so far been built for use in connection with * electrothermal reductions, are usually made with one top electrode and one bottom electrode. These ovens are very small compared to normal commercial AC ovens and are mostly used as experimental ovens. In certain processes, however, equal current has been shown to have certain advantages, as it entails less loss and thus lower specific power consumption for the produced material.

Ved bruk av likestrøm>sovner må man, som ved elektrolyseanlegg, installere tørrlikerettere mellom ovnen . og sekundær siden av ovns-transformatoren . Transformatoren er utstyrt med trinnkobler, slik at man til enhver tid kan få den spenning som passer til prosessen cg ovnslasten. Innenfor et visst spenningsområde er størrelsen og prisen for likerettere kun avhengig av strømmen som den leverer. For å When using direct current furnaces, as with electrolysis plants, dry rectifiers must be installed between the furnaces. and the secondary side of the furnace transformer. The transformer is equipped with tap changers, so that the voltage that suits the process and the furnace load can be obtained at all times. Within a certain voltage range, the size and price of rectifiers depends only on the current that it delivers. In order to

kunne oppnå samme last som ved en trefase vekselstrømsovn med tre topelektroder trenges det således et forholdsvis stort og dyrt elektrisk anlegg. Det er således tvilsomt om selv store likestrømsovner av nevnte type kan konkurrere økonomisk med trefase vekselstrømsovner og det har hittil ikke lykkes å konstruere, konkurransedyktige likestrøms-ovner. could achieve the same load as with a three-phase alternating current furnace with three top electrodes, a relatively large and expensive electrical installation is therefore needed. It is thus doubtful whether even large direct current furnaces of the aforementioned type can compete economically with three-phase alternating current furnaces and it has so far not succeeded in constructing competitive direct current furnaces.

Oppfinneren har nu imidlertid funnet en koblingsanordiing som gjør at spenning og ovnslast kan økes uten at prisen på elektrisk utstyr øker i tilsvarende grad. However, the inventor has now found a connection arrangement which means that voltage and furnace load can be increased without the price of electrical equipment increasing to a corresponding degree.

Ovnen, ifølge oppfinnelsen har ingen bunnelektrode, men er utstyrt The furnace according to the invention has no bottom electrode, but is equipped

med fire toppelektroder som er plassert i kvadratisk stilling og elektroctene er koblet "i serie slik at en elektrode innen hvert par virker som katode , mens den annen virker som anode. with four top electrodes that are placed in a square position and the electrodes are connected "in series so that one electrode within each pair acts as the cathode, while the other acts as the anode.

i in

Herved oppnås en meget god utnyttelse av ovnsarealet, og ved samme elektrodedirhensjon oppnås såvel fordoblet strømstyrke som fordoblet spenning sammenlignet med ovner med en toppelektrode og en bunnelektrode dvs. lasten blir fire ganger så stor som for en ovn med en topp- og en bunnelektrode. Ved hjelp av polvendere oppnås lik varme-utvikling i krateret og likt forbruk av elektrodene over lengere perioder. Det anvendes en polvender i skinnsystemet for hvert elektrodepar. Venderen består av et støpsel som virker som f orbindelsesledd, og polvending skjer når støpselet forskyves en halv skinnedeling på tvers av skinneretningen. Polvendingen kan eventuelt tilpasses tapperutinen. Ved hjelp av slik polvending oppnås som nevnt jevn forbruk av elektrodene. In this way, a very good utilization of the furnace area is achieved, and with the same electrode orientation, both doubled current strength and doubled voltage are achieved compared to furnaces with a top electrode and a bottom electrode, i.e. the load is four times as great as for a furnace with a top and a bottom electrode. With the help of pole reversers, equal heat generation in the crater and equal consumption of the electrodes over longer periods is achieved. A pole reverser is used in the rail system for each pair of electrodes. The reverser consists of a plug that acts as a connecting link, and pole reversal occurs when the plug is moved half a rail division across the direction of the rail. The pole reversal can possibly be adapted to the tapping routine. With the help of such polarity reversal, even consumption of the electrodes is achieved as mentioned.

Sammenlignet med en rund vekselstrømsovn med tre elektroder av ' samme dimensjoner vil ovnslasten kunne bli 4/3 ganger større ved anvendelse av HkestrørrBOvn med fire parvis seriekoblede toppelektroder. Hvis man anvender større elektroder i likestrømsovner, blir denne faktor enda større, idet strømfortregningen ved vekselstrøm øker betydelig Ved de største elektrode-diametre. Dette vil igjen si at elektrodene i en likestrørrsovn kan belastes med høyere strøm enn tilsvarende elektroder i vekselstrømsovner. Compared to a round alternating current furnace with three electrodes of the same dimensions, the furnace load could be 4/3 times greater when using a Hkestrørr furnace with four pairs of series-connected top electrodes. If larger electrodes are used in direct current furnaces, this factor becomes even greater, as the current displacement with alternating current increases significantly with the largest electrode diameters. This again means that the electrodes in a direct current furnace can be charged with a higher current than corresponding electrodes in alternating current furnaces.

Oppfinnelsen er skjematisk illustrert på vedlagte figur I og II hvor The invention is schematically illustrated in the attached figures I and II where

Fig. I viser et vertikalt snitt gjennom en rund ovn med fire toppelektroder mens Fig. I shows a vertical section through a round furnace with four top electrodes while

Fig. II viser et grunnriss av en ovn med strømtilførsel. Fig. II shows a floor plan of a furnace with power supply.

På figurene betegner 1 selve smelteovnen med chargen 2 og smeltebadet In the figures, 1 denotes the melting furnace itself with the charge 2 and the melting bath

3. 4 er elektrodene. Strømmen føres fra likeretteren 5 via samle-skinner 6 fremover til de to: skinnebunter 7 og videre til hvert sitt par elektroder, idet de to elektroder innen hvert par er koblet i serie. Fra de elektroder som utgjør anodene, passerer strømmen gjennom den mer eller mindre halvsmeltede charge 2 over til de elektroder som arbeider som katoder, idet mesteparten av strømmen går gjennom smeltebadet 3-Innen for hver skinnebunt 7 er installert en polvender 8 som kan være fjernstyrt. Man kan eventuelt etablere en viss syklus for polvendingen, således at fire forskjellige konstellasjoner av anoder og katoder oppnås i passende rekkefølge. 3. 4 are the electrodes. The current is led from the rectifier 5 via collector rails 6 forward to the two: rail bundles 7 and on to each pair of electrodes, the two electrodes within each pair being connected in series. From the electrodes that make up the anodes, the current passes through the more or less half-melted charge 2 over to the electrodes that work as cathodes, with most of the current going through the molten bath 3-Inside each rail bundle 7 is installed a pole reverser 8 that can be remotely controlled. One can possibly establish a certain cycle for the pole reversal, so that four different constellations of anodes and cathodes are achieved in a suitable order.

Ved de største vekselstrømsovner som bygges idag, er tapet på grunn av strømfortregning, hvirvelstrøn og hysteresis betydelig. Disse tap unngår man ved anvendelse av likestrøm. Det oppnås da en besparelse i strømforburket som etter rimelig tid vil oppveie de meromkostninger man får ved det elektriske anlegg. In the case of the largest alternating current furnaces built today, the loss due to current displacement, eddy currents and hysteresis is significant. These losses are avoided by using direct current. A saving is then achieved in the power consumption which, after a reasonable time, will offset the additional costs incurred by the electrical installation.

Den beste utnyttelse av likeretteren kan oppnås ved at man kobler to eller flere ovner i serie slik at et større like antall elektroder blir koblet i serie. The best utilization of the rectifier can be achieved by connecting two or more furnaces in series so that a larger equal number of electrodes are connected in series.

Claims (1)

Elektrotermisk reduksjonsovn som drives med likestrøm som tilføres gjennom vertikale topp-elektroder, karakterisert vedElectrothermal reduction furnace operated with direct current supplied through vertical top electrodes, characterized by at det anvendes fire topp elektroder som er plassert i kvadratisk stilling, og hvor to og to er koblet i serie slik at en elektrode innen hvert par virker som katode mens den annen virker som anode.that four top electrodes are used which are placed in a square position, and where two and two are connected in series so that one electrode within each pair acts as cathode while the other acts as anode. Elektrotermisk reduksjonsovn som i krav 1 karakterisert ved at anodene/katodene byttes om ved hjelp av en pol-vender (8) som er anbrakt en for hvert elektrodepar i skinnebunten (7) mellom elektrodeparet og likeretteren (5).Electrothermal reduction furnace as in claim 1, characterized in that the anodes/cathodes are changed using a pole-reverse (8) which is placed one for each electrode pair in the rail bundle (7) between the electrode pair and the rectifier (5).
NO773285A 1977-09-26 1977-09-26 DC DC OVEN. NO139796C (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
NO773285A NO139796C (en) 1977-09-26 1977-09-26 DC DC OVEN.
ZA784897A ZA784897B (en) 1977-09-26 1978-08-28 Direct current smelting furnace
YU02094/78A YU209478A (en) 1977-09-26 1978-09-04 Dc fed furnace for electrochemical reduction
FR7825795A FR2404186A1 (en) 1977-09-26 1978-09-07 Electrode arrangement for dc electrothermal furnaces - having four electrode arranged in a square with polarity changer connections
SE7809783A SE434432B (en) 1977-09-26 1978-09-18 ELECTROTHERMIC REDUCTION OVEN OPERATED WITH DC
MX174924A MX144969A (en) 1977-09-26 1978-09-18 IMPROVEMENTS IN DIRECT CURRENT ELECTROTHERMAL REDUCTION OVEN
JP53114702A JPS582574B2 (en) 1977-09-26 1978-09-20 Direct current electric heating reduction furnace
ES473538A ES473538A1 (en) 1977-09-26 1978-09-21 Electrically heating type reducing furnace by direct current
BR7806278A BR7806278A (en) 1977-09-26 1978-09-22 ELECTRICAL-THERMAL REDUCTION OVEN
DE19782841458 DE2841458A1 (en) 1977-09-26 1978-09-23 ELECTRODE ARRANGEMENT FOR DC-REDUCTION OVENS
CA000312100A CA1120522A (en) 1977-09-26 1978-09-26 Direct current smelting furnace
IN1092/CAL/78A IN150223B (en) 1977-09-26 1978-10-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO773285A NO139796C (en) 1977-09-26 1977-09-26 DC DC OVEN.

Publications (3)

Publication Number Publication Date
NO773285L NO773285L (en) 1979-01-29
NO139796B true NO139796B (en) 1979-01-29
NO139796C NO139796C (en) 1979-05-09

Family

ID=19883734

Family Applications (1)

Application Number Title Priority Date Filing Date
NO773285A NO139796C (en) 1977-09-26 1977-09-26 DC DC OVEN.

Country Status (12)

Country Link
JP (1) JPS582574B2 (en)
BR (1) BR7806278A (en)
CA (1) CA1120522A (en)
DE (1) DE2841458A1 (en)
ES (1) ES473538A1 (en)
FR (1) FR2404186A1 (en)
IN (1) IN150223B (en)
MX (1) MX144969A (en)
NO (1) NO139796C (en)
SE (1) SE434432B (en)
YU (1) YU209478A (en)
ZA (1) ZA784897B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648315B2 (en) * 1987-09-16 1994-06-22 動力炉・核燃料開発事業団 Thermal decomposition treatment equipment for radioactive waste

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE147582C (en) *
FR400655A (en) * 1908-06-15 1909-08-04 Charles Albert Keller Control system for circuits feeding electric multi-electrode furnaces
FR941145A (en) * 1944-06-24 1949-01-03 Electric liquid resistance furnace for smelting and refining metals, for making alloys, reducing minerals and for other similar purposes
US2958719A (en) * 1958-09-18 1960-11-01 Nat Res Corp Production of metal
DE1161042B (en) * 1961-09-06 1964-01-09 Duisburger Kupferhuette Round three-phase electric furnace with a four-electrode system, in particular a reduction furnace for electrothermal zinc extraction
AT285839B (en) * 1969-02-03 1970-11-10 Boehler & Co Ag Geb Plant for electroslag remelting of metals, especially steels
BG17932A1 (en) * 1972-08-29 1974-03-05

Also Published As

Publication number Publication date
NO773285L (en) 1979-01-29
BR7806278A (en) 1979-05-08
ES473538A1 (en) 1979-04-01
FR2404186B1 (en) 1983-11-25
SE7809783L (en) 1979-03-27
CA1120522A (en) 1982-03-23
YU209478A (en) 1982-06-30
JPS582574B2 (en) 1983-01-17
ZA784897B (en) 1980-04-30
DE2841458A1 (en) 1979-04-05
FR2404186A1 (en) 1979-04-20
SE434432B (en) 1984-07-23
MX144969A (en) 1981-12-08
NO139796C (en) 1979-05-09
IN150223B (en) 1982-08-21
JPS5454906A (en) 1979-05-01

Similar Documents

Publication Publication Date Title
NO150306B (en) CLOSETING WITH A DEVICE FOR THE APPLICATION AND MOVING OF A HOSE SHAPE PROTECTIVE STRENGTH ON THE CLOSETING
FR2735624B1 (en) CHARGER FOR ELECTRIC ENERGY ACCUMULATOR
CN103840685B (en) The direct current electric arc furnace supply unit of the controlled polarity of three-phase
CN109000481B (en) Variable direct current flows back to Lu Tiege gold ore deposit hot stove
NO139796B (en) DC DC OVEN.
US4254298A (en) Direct current smelting furnace
CN210469139U (en) DC electric arc furnace power supply device with two controllable poles
US2959630A (en) Electric arc reduction furnace
CN202246087U (en) Opening device in silicon metal smelting process
CN209844550U (en) Direct-current submerged arc furnace structure capable of eliminating uneven consumption of positive electrode and negative electrode
CN204705213U (en) The energy-conservation heat transmitting furnace of medium-frequency induction of integral type Thyristors in series semi-bridge inversion resonance
JPH06194051A (en) Electric furnace apparatus
CN208501117U (en) A kind of novel electrolytic bath that electrolytic efficiency can be improved
CN111394539B (en) DC control method and device for three-phase AC electric arc furnace
CN216282677U (en) Low-current arc-uninterrupted arc furnace
CN211744046U (en) Unattended star-delta power supply system of submerged arc electric furnace for ore smelting
CN217282229U (en) Reactive power compensation device and rectification system
CN208835818U (en) A kind of photovoltaic intelligent distribution system
RU2324281C1 (en) Dc power supply unit for arc furnace (options thereof)
CN207410240U (en) A kind of mounting structure for being used to be electrolysed electroplating power supply system and electrolytic cell
SU813628A1 (en) Ac-to-dc voltage converter
Jarrett Future Developments in the Bayer--Hall--Heroult Process
US3573189A (en) Electrical bus bar grounding
SU873220A2 (en) Automatic temperature regulation system
JP2940148B2 (en) DC graphitization furnace electrical equipment