JPS582574B2 - Direct current electric heating reduction furnace - Google Patents

Direct current electric heating reduction furnace

Info

Publication number
JPS582574B2
JPS582574B2 JP53114702A JP11470278A JPS582574B2 JP S582574 B2 JPS582574 B2 JP S582574B2 JP 53114702 A JP53114702 A JP 53114702A JP 11470278 A JP11470278 A JP 11470278A JP S582574 B2 JPS582574 B2 JP S582574B2
Authority
JP
Japan
Prior art keywords
furnace
electrodes
electric heating
reduction furnace
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53114702A
Other languages
Japanese (ja)
Other versions
JPS5454906A (en
Inventor
エイビンド・クリスチアン・クロージヤー・スベンドセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem ASA
Original Assignee
Elkem Spigerverket AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Spigerverket AS filed Critical Elkem Spigerverket AS
Publication of JPS5454906A publication Critical patent/JPS5454906A/en
Publication of JPS582574B2 publication Critical patent/JPS582574B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/60Heating arrangements wherein the heating current flows through granular powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • F27D11/04Ohmic resistance heating with direct passage of current through the material being heated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【発明の詳細な説明】 本発明は直流による情熱式還元炉に関する。[Detailed description of the invention] The present invention relates to a passion reduction furnace using direct current.

19世紀の終りにかげて、操業されるようになった最初
の電熱式還元炉は直流方式のものであった。
The first electrically heated reduction furnaces that came into operation towards the end of the 19th century were of the direct current type.

交流三相発電機の出現と送電の改良の結果、電熱式還元
炉は交流により操作できるようになった。
As a result of the advent of three-phase alternating current generators and improvements in power transmission, electrothermal reduction furnaces could now be operated using alternating current.

しかしながら、乾式整流器により交流を直流に変換する
改良法により、近年になり電熱式還元炉に関して直流を
使用する新しい可能性が生れてきた。
However, improved methods of converting alternating current to direct current using dry rectifiers have recently opened up new possibilities for using direct current in electrothermal reduction furnaces.

電熱式還元方法に関して、従来使用されてきたかかる直
流方式の炉は、本発明者の知る限りではすべて単一の頂
部電極と単一の底部電極を備えたものである。
With respect to electrothermal reduction processes, all such DC type furnaces that have been used in the past, to the best of the inventor's knowledge, have a single top electrode and a single bottom electrode.

かかる炉は通常の工業的交流炉に比してきわめて小型で
あり、主として実験用に利用されている。
Such furnaces are much smaller than normal industrial AC furnaces and are mainly used for experiments.

しかしながら、直流は電流損失が小さいために比電流消
費量がより少ないので、ある種の方法によっては幾つか
の利点を有する。
However, direct current has some advantages for certain methods since it has lower specific current consumption due to lower current losses.

電解用プラントの場合のように、直流炉を用いる際には
炉と炉変圧器の第二の側との間に乾式整流器を設けるこ
とが必要である。
When using a DC furnace, as in the case of electrolysis plants, it is necessary to provide a dry rectifier between the furnace and the second side of the furnace transformer.

この変圧器には、プロセスと炉の負荷に適合する電圧を
得ることが常に可能となるようにステップコネクターが
設けられる。
This transformer is provided with a step connector so that it is always possible to obtain a voltage that is compatible with the process and furnace load.

ある電圧範囲内では整流器の大きさとコストはその電流
のみに依存する。
Within a certain voltage range, the size and cost of a rectifier depends only on its current.

従って、3個の頂部電極を有する三相交流炉の場合と同
じ負荷を得るためには、比較的大きなコスト高の電気装
置を必要とする。
Therefore, relatively large and costly electrical equipment is required to achieve the same load as in a three-phase AC furnace with three top electrodes.

かくして、この型の直流炉は大型のものであっても経済
的に三和交流炉と競合できるかは疑問であり、競合し得
る直流炉の考案はこれまで成功を収めていない。
Thus, even if this type of DC furnace is large, it is questionable whether it can economically compete with the Sanwa AC reactor, and attempts to create a competing DC reactor have not been successful so far.

今般本発明者は、電圧及び炉の負荷を電気装置のコスト
増をもたらすことなく増大せしめ得る接続配列を見出し
た。
The inventor has now discovered a connection arrangement that allows the voltage and furnace load to be increased without increasing the cost of the electrical equipment.

本発明の炉には底部電極は設けられず、対となる電極が
直列に接続されている4個の頂部電極が配置されている
The furnace of the invention is not provided with a bottom electrode, but instead has four top electrodes with pairs of electrodes connected in series.

2個の頂部電極を有する炉によって、1個の頂部電極と
1個の底部電極を有する炉による場合と同量の電流によ
り電圧の倍加と共に、両方の場合に同じ整流器の使用に
より炉負荷の倍加が得られる。
With a furnace with two top electrodes, the same amount of current as with a furnace with one top electrode and one bottom electrode, with a doubling of the voltage, and with the use of the same rectifier in both cases, the furnace load is doubled. is obtained.

本発明の炉には正方形の位置に配置された4個の電極を
有する円形炉ポットが設けられ、それによって炉面積の
きわめて良好な利用が達成される。
The furnace of the invention is equipped with a circular furnace pot with four electrodes arranged in square positions, whereby a very good utilization of the furnace area is achieved.

頂部電極は対となって直列に接続され、同じ電極寸法に
より電流の倍加と共に電圧の倍加が得られる。
The top electrodes are connected in series in pairs, with the same electrode dimensions providing current doubling as well as voltage doubling.

すなわち、炉の負荷は単一の頂部電極と単一の底部電極
を有する炉の場合より4倍大きくなるであろう。
That is, the furnace load will be four times greater than for a furnace with a single top electrode and a single bottom electrode.

転極器により、長期間に亘ってクレータ(crater
)内における均等的な熱の発現と等しい電極消費が得ら
れる。
A polarity reversal device prevents crater formation over a long period of time.
) and equal electrode consumption is obtained.

各対電極についての母線系において単一の転極器が用い
られる。
A single polarizer is used in the busbar system for each counter electrode.

この転極器は接続部材として作用するコンタクトからな
り、極の変換はそのコンタクトが母線の中途において母
線の横方向に移動する時に起る。
This polarity changer consists of a contact that acts as a connecting member, and the change of pole occurs when the contact moves transversely to the busbar midway through the busbar.

極の変換はまた分岐路に適合させることもできる。Pole conversion can also be adapted to branch paths.

前述のように、かかる極変換により異なる電極について
一様の消費が得られる。
As mentioned above, such polar conversion results in uniform consumption for different electrodes.

同一寸法の3個の電極を有する円形交流炉に比して、本
発明による炉の負荷は対となって直列に接続された4個
の頂部電極を有する直流炉の使用により4/3倍大とな
り得る。
Compared to a circular AC furnace with three electrodes of the same size, the load of the furnace according to the invention is 4/3 times greater due to the use of a DC furnace with four top electrodes connected in series in pairs. It can be.

直流炉でのより大きい電極の使用によってこの炉はより
いっそう大となる。
The use of larger electrodes in DC furnaces makes the furnace even larger.

その理由は、交流により電流変位は最大の電極寸法によ
り大きく増すからである。
The reason is that with alternating current the current displacement increases greatly with the largest electrode dimension.

このことはまた、直流炉内の電極には交流炉内の相応す
る電極よりも多量の電流が供給され得ることを意味する
This also means that electrodes in a DC furnace can be supplied with a larger amount of current than corresponding electrodes in an AC furnace.

次に、本発明を図面を参照しつつ更に説明する。Next, the present invention will be further explained with reference to the drawings.

第1図は、装入物2及び溶融浴3を含む溶融炉を示すも
のであり、4は電極である。
FIG. 1 shows a melting furnace including a charge 2 and a melting bath 3, where 4 is an electrode.

整流器5から電流は母線6を通じて二つの棒束(bar
bundle)7に導かれ、そこから対となる電極に
(各対電極について1個の棒束が設けられる)導かれる
The current from the rectifier 5 passes through the bus 6 to two bar bundles.
bundle) 7 and from there to the paired electrodes (one rod bundle is provided for each counter electrode).

各対内の2個の電極は直列に接続されている。The two electrodes in each pair are connected in series.

陽極(アノ一ド)として作動する電極から電流が半溶融
程度の状態の装入物2を通じて陰極(カソード)として
作動する電極に流れ、その電流の主部分は溶融浴3に流
れる。
A current flows from the electrode acting as an anode through the semi-molten charge 2 to the electrode acting as a cathode, with the main part of the current flowing into the molten bath 3.

各棒束7内には遠隔制御できる1個の転極器8が設けら
れる。
In each rod bundle 7 there is provided one pole inverter 8 which can be controlled remotely.

ある極変換サイクルを、陽極と陰極との4組の異なる配
置が適消な配列で得られるように確保することもできる
A given polarity change cycle can also be ensured such that four different arrangements of anodes and cathodes are obtained in a suitable arrangement.

今日、設置されている最大の交流炉においては電流の変
位、うず電流及びヒステリシスによる損失が重大な問題
となる。
Losses due to current displacement, eddy currents and hysteresis are significant problems in the largest AC reactors installed today.

これらの損失は直流の使用により回避される。These losses are avoided by using direct current.

従って、ある時間後には電気装置に伴なう付加費用に匹
敵する電気消費の節約が得られる。
Thus, after a certain period of time, savings in electrical consumption are obtained that are comparable to the additional costs associated with electrical equipment.

また、より多数の電極を直列に接続させるように2個以
上の炉を直列に連結することによって、整流器の最良の
利用が達成される。
Also, best utilization of the rectifier is achieved by connecting two or more furnaces in series so that a larger number of electrodes are connected in series.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4個の頂部電極を備えた円形炉の垂直断面図で
あり、第2図は第1図と同じ炉の上面図である。 図中、1は溶融炉、2は装入物、3は溶融浴、4は電極
、5は整流器、6は母線、7は棒束、8は転極器を示す
FIG. 1 is a vertical cross-sectional view of a circular furnace with four top electrodes, and FIG. 2 is a top view of the same furnace as FIG. In the figure, 1 is a melting furnace, 2 is a charge, 3 is a molten bath, 4 is an electrode, 5 is a rectifier, 6 is a bus bar, 7 is a rod bundle, and 8 is a polarity switch.

Claims (1)

【特許請求の範囲】 1 正方形の位置に配設した4個の電極を用い、各対内
の一方の電極が陰極として作用しかつ他方の電極が陽極
として作用するように直列に対をなして接続したことを
特徴とする上方から電熱式還元炉中に挿入された垂直な
電極群によって印加される直流により操作される電熱式
還元炉。 2 対の電極の械性を転極器によって逆転することがで
き、該転極器が対の電極と整流器間で対の電極を接続す
るように配設してあることからなる特許請求の範囲第1
項記載の電熱式還元炉。
[Claims] 1. Using four electrodes arranged in square positions, connected in series in pairs such that one electrode in each pair acts as a cathode and the other electrode acts as an anode. An electric heating reduction furnace operated by direct current applied by a vertical electrode group inserted into the electric heating reduction furnace from above. 2. Claims consisting of the fact that the mechanical properties of the pair of electrodes can be reversed by a polarizer, and the polarizer is arranged to connect the paired electrodes between the pair of electrodes and the rectifier. 1st
The electric heating type reduction furnace described in section.
JP53114702A 1977-09-26 1978-09-20 Direct current electric heating reduction furnace Expired JPS582574B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO773285A NO139796C (en) 1977-09-26 1977-09-26 DC DC OVEN.

Publications (2)

Publication Number Publication Date
JPS5454906A JPS5454906A (en) 1979-05-01
JPS582574B2 true JPS582574B2 (en) 1983-01-17

Family

ID=19883734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53114702A Expired JPS582574B2 (en) 1977-09-26 1978-09-20 Direct current electric heating reduction furnace

Country Status (12)

Country Link
JP (1) JPS582574B2 (en)
BR (1) BR7806278A (en)
CA (1) CA1120522A (en)
DE (1) DE2841458A1 (en)
ES (1) ES473538A1 (en)
FR (1) FR2404186A1 (en)
IN (1) IN150223B (en)
MX (1) MX144969A (en)
NO (1) NO139796C (en)
SE (1) SE434432B (en)
YU (1) YU209478A (en)
ZA (1) ZA784897B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648315B2 (en) * 1987-09-16 1994-06-22 動力炉・核燃料開発事業団 Thermal decomposition treatment equipment for radioactive waste

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE147582C (en) *
FR400655A (en) * 1908-06-15 1909-08-04 Charles Albert Keller Control system for circuits feeding electric multi-electrode furnaces
FR941145A (en) * 1944-06-24 1949-01-03 Electric liquid resistance furnace for smelting and refining metals, for making alloys, reducing minerals and for other similar purposes
US2958719A (en) * 1958-09-18 1960-11-01 Nat Res Corp Production of metal
DE1161042B (en) * 1961-09-06 1964-01-09 Duisburger Kupferhuette Round three-phase electric furnace with a four-electrode system, in particular a reduction furnace for electrothermal zinc extraction
AT285839B (en) * 1969-02-03 1970-11-10 Boehler & Co Ag Geb Plant for electroslag remelting of metals, especially steels
BG17932A1 (en) * 1972-08-29 1974-03-05

Also Published As

Publication number Publication date
NO773285L (en) 1979-01-29
BR7806278A (en) 1979-05-08
NO139796B (en) 1979-01-29
ES473538A1 (en) 1979-04-01
FR2404186B1 (en) 1983-11-25
SE7809783L (en) 1979-03-27
CA1120522A (en) 1982-03-23
YU209478A (en) 1982-06-30
ZA784897B (en) 1980-04-30
DE2841458A1 (en) 1979-04-05
FR2404186A1 (en) 1979-04-20
SE434432B (en) 1984-07-23
MX144969A (en) 1981-12-08
NO139796C (en) 1979-05-09
IN150223B (en) 1982-08-21
JPS5454906A (en) 1979-05-01

Similar Documents

Publication Publication Date Title
CN109842287A (en) A kind of pfc circuit and its control method being compatible with the input of single-phase and three-phase alternating current
CN103299378B (en) Rectifier transformer
JPS582574B2 (en) Direct current electric heating reduction furnace
US4254298A (en) Direct current smelting furnace
US4313811A (en) Arrangement of busbars for electrolytic cells
CN202955987U (en) Direct current (DC) ore-smelting electric furnace with changeable return circuit
CN108448695A (en) Electric vehicle integrated charge device and charge control method
CN104467363A (en) High-power supply power converter
CN208046288U (en) Electric vehicle integrated charge device
CN202008906U (en) Energy-saving rectifier transformer with out-of-phase anti-parallel connection and in-line type line output
CN210469139U (en) DC electric arc furnace power supply device with two controllable poles
CN207376120U (en) A kind of aluminium frame anode for changing anode current circuit
CN216672889U (en) Generator excitation system convenient for polarity switching
CN218290550U (en) Electric control device for switching high-current direct-current electrode
PL80447B1 (en)
CN209844550U (en) Direct-current submerged arc furnace structure capable of eliminating uneven consumption of positive electrode and negative electrode
CN208817970U (en) Commutator transformer smelting device
CN215527945U (en) Connecting device for super-current conducting bar and polar plate
CN216282678U (en) Biphase series connection slag electric arc furnace device with controllable polarity
CN215113922U (en) Electric furnace device with integrated multiple power supply structures
CN216904309U (en) Short net structure of large-scale submerged arc furnace
CN217281927U (en) Fixing device for rapidly recovering butt joint of three-core cable
ES8308466A1 (en) Electrode arrangement for electric arc furnaces
JP2940149B2 (en) DC graphitization furnace electrical equipment
CN211606413U (en) Three-electrode direct-current power supply system for electric arc furnace and submerged arc furnace