NO139678B - METHOD OF PREPARATION OF BALL-SILICIUM DIOXYDE PARTICLES - Google Patents

METHOD OF PREPARATION OF BALL-SILICIUM DIOXYDE PARTICLES Download PDF

Info

Publication number
NO139678B
NO139678B NO753687A NO753687A NO139678B NO 139678 B NO139678 B NO 139678B NO 753687 A NO753687 A NO 753687A NO 753687 A NO753687 A NO 753687A NO 139678 B NO139678 B NO 139678B
Authority
NO
Norway
Prior art keywords
particles
silicon dioxide
water
hydrogel particles
hydrogel
Prior art date
Application number
NO753687A
Other languages
Norwegian (no)
Other versions
NO139678C (en
NO753687L (en
Inventor
Martinus Jan Lodewijk Van Beem
Nigel Wagstaff
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO753687L publication Critical patent/NO753687L/no
Publication of NO139678B publication Critical patent/NO139678B/en
Publication of NO139678C publication Critical patent/NO139678C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/51
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • C01B33/1546Preparation of hydrogels by acidic treatment of aqueous silicate solutions the first formed hydrosol being converted to a hydrogel by introduction into an organic medium immiscible or only partly miscible with water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Description

Oppfinnelsen angår en fremgangsmåte ved fremstilling av kuleformige siliciumdioxydpartikler med høy knusefasthet i løs eller upakket tilstand ("bulk crushing strength'} °g høy motstandsdyktighet overfor vann. The invention relates to a method for the production of spherical silicon dioxide particles with high crushing strength in a loose or unpackaged state ("bulk crushing strength') and high resistance to water.

Siliciumdioxydpartikler anvendes i stor målestpkk f.eks. Silicon dioxide particles are used in large quantities, e.g.

som katalysatorer, katalysatorbærere, adsorpsjonsmidler, tørre-midler og ionebyttere. For de fleste av disse anvendelser foretrekkes kuleformige partikler med jevn form og med høy knusefasthet i løs tilstand. En gunstig metode for fremstilling av slike partikler er den velkjente sol-gelmetode. Ifølge denne metode fremstilles en siliciumdioxydhydrosol ved å blande en vandig opp-løsning av et alkalimetallsilikat med en vandig oppløsning av en syre. Hydrosolen omdannes til små dråper, og disse geleres i en væske som ikke er blandbar med vann. Efter at alkalimetallinnholdet i de kuleformige siliciumdioxydhydrogelpartikler er blitt redusert i et vandig medium til under 1 vekt%, beregnet på tørt materiale, tørkes partiklene og kalsineres. such as catalysts, catalyst carriers, adsorbents, drying agents and ion exchangers. For most of these applications, spherical particles with a uniform shape and a high crushing strength in the loose state are preferred. A favorable method for producing such particles is the well-known sol-gel method. According to this method, a silicon dioxide hydrosol is prepared by mixing an aqueous solution of an alkali metal silicate with an aqueous solution of an acid. The hydrosol is converted into small droplets, and these are gelled in a liquid that is not miscible with water. After the alkali metal content in the spherical silicon dioxide hydrogel particles has been reduced in an aqueous medium to below 1% by weight, calculated on dry material, the particles are dried and calcined.

Uttrykket "partikler med høy knusefasthet i upakket tilstand" som anvendt heri er ment å betegne partikler med en knusefasthet i upakket tilstand på minst 12 kg/cm 2. Siliciumdioxydpartikler med en slik høy knusefasthet i upakket tilstand kan lett erholdes ved hjelp av sol-gelmetoden. De har imidlertid en lav motstandsdyktighet overfor vann. Dette er en alvorlig ulempe hvis siliciumdioxydpartiklene skal anvendes for formål hvor de må komme i kontakt med vann, f.eks. for fremstilling av på siliciumdioxyd baserte katalysatorer ved impregnering av siliciumdioxydpartiklene med en vandig oppløsning av forbindelser av katalytisk aktive metaller.. Når siliciumdioxydpartiklene med lav motstandsdyktighet overfor vann kommer i kontakt med vann, vil en betydelig andel av partiklene sprekke eller brytes istykker. The expression "particles with high crushing strength in the unpacked state" as used herein is intended to denote particles with a crushing strength in the unpacked state of at least 12 kg/cm 2. Silicon dioxide particles with such a high crushing strength in the unpacked state can be easily obtained using the sol-gel method . However, they have a low resistance to water. This is a serious disadvantage if the silicon dioxide particles are to be used for purposes where they must come into contact with water, e.g. for the production of silicon dioxide-based catalysts by impregnating the silicon dioxide particles with an aqueous solution of compounds of catalytically active metals. When the silicon dioxide particles with low resistance to water come into contact with water, a significant proportion of the particles will crack or break into pieces.

Uttrykket "partikler med høy motstandsdyktighet overfor The term "particles with high resistance to

vann" som anvendt heri er ment å betegne partikler med en motstandsdyktighet overfor vann på minst 80%. De kuleformige siliciumdioxydpartiklers motstandsdyktighet overfor vann bestemmes ved hjelp av et standard forsøk hvor 100 av de kuleformige siliciumdioxydpartikler i 5 minutter og ved værelsetemperatur bringes i kontakt med et vannvolum som er 5 ganger større enn volumet av de 100 kuleformige siliciumdioxydpartikler. Derefter undersøkes partiklene for å fastslå antallet av partikler som viser sprekker eller er blitt brutt istykker. De kuleformige siliciumdioxydpartiklers motstandsdyktighet overfor vann uttrykkes som den prosent av partiklene som ikke er blitt beskadiget ved kontakten med vann. water" as used herein is intended to denote particles with a resistance to water of at least 80%. The spherical silicon dioxide particles' resistance to water is determined by means of a standard test in which 100 of the spherical silicon dioxide particles are brought into contact with a volume of water that is 5 times greater than the volume of the 100 spherical silicon dioxide particles. The particles are then examined to determine the number of particles that show cracks or have been broken into pieces. The resistance of the spherical silicon dioxide particles to water is expressed as the percentage of particles that have not been damaged by contact with water.

Det har nu vist seg at kuleformige siliciumdioxydpartikler med høy motstandsdyktighet overfor vann kan fremstilles ved hjelp av sol-gelmetoden hvis minst 25S av den i siliciumdioxydhydrogelpartiklene tilstedeværende vannmengde fjernes fra partiklene ved fordampning før partiklenes alkalimetallinnhold reduseres. Det er meget overraskende at fjernelse av vann på dette trinn av fremstillingen er istand til å forbedre de ferdige siliciumdioxydpartiklers motstandsdyktighet overfor vann, og dette er så meget mer overraskende som vannfjernelsestrinnet etterfølges av et trinn som utføres i et vandig medium, og som fremstillingen allerede omfatter et vannfjernelsestrinn som sluttrinn. Det har ifølge oppfinnelsen vist seg at det er av vesentlig betydning at vannfjernelsestrinnet utføres før partiklenes alkalimetallinnhold reduseres og at den gunstige innvirkning av dette vannfjernelsestrinn på de ferdige siliciumdioxydpartiklers motstandsdyktighet overfor vann ikke påvirkes uheldig av den påfølgende behandling av partiklene i et vandig medium. It has now been shown that spherical silicon dioxide particles with high resistance to water can be produced using the sol-gel method if at least 25S of the amount of water present in the silicon dioxide hydrogel particles is removed from the particles by evaporation before the particles' alkali metal content is reduced. It is very surprising that the removal of water at this stage of the preparation is able to improve the resistance of the finished silicon dioxide particles to water, and this is all the more surprising as the water removal step is followed by a step carried out in an aqueous medium, and which the preparation already includes a water removal step as a final step. According to the invention, it has been shown that it is of significant importance that the water removal step is carried out before the particles' alkali metal content is reduced and that the beneficial effect of this water removal step on the finished silicon dioxide particles' resistance to water is not adversely affected by the subsequent treatment of the particles in an aqueous medium.

Uttrykket "fjernelse av vann ved fordampning" som anvendt heri er ment å særprege den ifølge oppfinnelsen anvendte vann-fjernelsesbehandling fra andre behandlinger for fjernelse av vann fra siliciumdioxydhydrogeler, som en behandling av siliciumdioxydhydrogelpartiklene med en vandig oppløsning av ammoniakk. The expression "removal of water by evaporation" as used herein is intended to distinguish the water removal treatment used according to the invention from other treatments for removing water from silicon dioxide hydrogels, such as a treatment of the silicon dioxide hydrogel particles with an aqueous solution of ammonia.

Det har vist seg at den sistnevnte behandling er istand til å forbedre de ferdige kuleformige siliciumdioxydpartiklers motstandsdyktighet overfor vann, men ikke i tilstrekkelig grad til å øke partiklenes motstandsdyktighet overfor vann til over de nød-vendige 80%. En alvorlig ulempe ved denne behandling som gjør at den er fullstendig uegnet for det foreliggende formål, er at som et resultat av denne behandling avtar partiklenes knusefasthet i upakket tilstand meget sterkt til langt under det nødvendige nivå av 12 kg/cm<2.>It has been shown that the latter treatment is able to improve the finished spherical silicon dioxide particles' resistance to water, but not sufficiently to increase the particles' resistance to water to above the necessary 80%. A serious disadvantage of this treatment which makes it completely unsuitable for the present purpose is that, as a result of this treatment, the crushing strength of the particles in the unpacked state decreases very strongly to well below the required level of 12 kg/cm<2.>

Oppfinnelsen angår derfor en fremgangsmåte ved fremstilling av kuleformige siliciumdioxydpartikler med høy motstandsdyktighet overfor vann og høy knusefasthet i upakket tilstand, omfattende de følgende trinn: a) det fremstilles en siliciumdioxydhydrosol ved å blande en vandig oppløsning av alkalimetallsilikat som eventuelt inneholder et fyllstoff, med en vandig oppløsning av en syre som eventuelt inneholder et fyllstoff, b) hydrosolen som eventuelt inneholder fyllstoff i en mengde ikke over 2 5% av mengden av tilstedeværende siliciumdioxyd, omdannes The invention therefore relates to a method for the production of spherical silicon dioxide particles with high resistance to water and high crush strength in the unpacked state, comprising the following steps: a) a silicon dioxide hydrosol is produced by mixing an aqueous solution of alkali metal silicate, possibly containing a filler, with an aqueous solution of an acid which optionally contains a filler, b) the hydrosol which optionally contains filler in an amount not exceeding 25% of the amount of silicon dioxide present, is converted

til små dråper, into small drops,

c) de små dråper geleres i en væske som ikke er blandbar med vann, d) hydrogelpartiklenes alkalimetallinnhold reduseres i et vandig medium til under 1 vekt%, beregnet på det tørre materiale, og e) de kuleformige siliciumdioxydpartikler tørkes og kalsineres, og fremgangsmåten er særpreget ved at mellom trinnene c) og d) c) the small droplets are gelled in a liquid that is not miscible with water, d) the alkali metal content of the hydrogel particles is reduced in an aqueous medium to below 1% by weight, calculated on the dry material, and e) the spherical silicon dioxide particles are dried and calcined, and the method is characterized by the fact that between steps c) and d)

fjernes minst 25% av mengden av det i hydrogelpartiklene tilstedeværende vann ved fordampning. at least 25% of the amount of water present in the hydrogel particles is removed by evaporation.

Foruten muligheten av å fremstille kuleformige siliciumdioxydpartikler med en høy motstandsdyktighet overfor vann ved hjelp av sol-gelmetoden, gir innføringen av det ifølge oppfinnelsen anvendte vannfjernelsestrinn økonomiske besparelser da mindre materialvolum må håndteres i de forskjellige trinn av prosessen. Besides the possibility of producing spherical silicon dioxide particles with a high resistance to water using the sol-gel method, the introduction of the water removal step used according to the invention provides financial savings as less material volume has to be handled in the various steps of the process.

Ved den foreliggende fremgangsmåte fremstilles først en siliciumdioxydhydrosol ved å blande en vandig oppløsning av et alkalimetallsilikat med en vandig oppløsning av en syre. Dette trinn kan bekvemt utføres ved å lede utgangsoppløsningene adskilt inn i et blandekammer hvori oppløsningene blandes ved omrøring. Natriumsilikat og svovelsyre er meget vel egnede som hhv. alkalimetallsilikat og syre. Efter at siliciumdioxydhydrosolen er blitt dannet, omdannes den til små dråper og geleres i en væske som ikke er blandbar med vann. Dette trinn kan bekvemt utføres ved å innføre hydrosolen gjennom en smal åpning i bunnen av blandekammeret inn i den øvre ende av et vertikalt anordnet rør som er fylt med olje. Geldannelsen forekommer mens de små hydrosoldråper beveger seg nedad gjennom oljen. Ved bunnen av røret kan de kuleformige hydrogelpartikler oppfanges i vann, skilles fra vannet, f.eks. ved filtrering, vaskes med vann og derefter underkastes vannfjernelsestrinnet. Det er også mulig å utføre vannfjernelsestrinnet i den samme olje hvori geldannelsen har funnet sted. In the present method, a silicon dioxide hydrosol is first prepared by mixing an aqueous solution of an alkali metal silicate with an aqueous solution of an acid. This step can conveniently be carried out by passing the starting solutions separately into a mixing chamber in which the solutions are mixed by stirring. Sodium silicate and sulfuric acid are very well suited as, respectively. alkali metal silicate and acid. After the silicon dioxide hydrosol has been formed, it is converted into small droplets and gelled in a liquid which is not miscible with water. This step can conveniently be carried out by introducing the hydrosol through a narrow opening at the bottom of the mixing chamber into the upper end of a vertically arranged tube which is filled with oil. The gel formation occurs as the small hydrosol droplets move downwards through the oil. At the bottom of the tube, the spherical hydrogel particles can be collected in water, separated from the water, e.g. by filtration, washed with water and then subjected to the water removal step. It is also possible to carry out the water removal step in the same oil in which the gel formation has taken place.

I vannfjernelsestrinnet som anvendes ifølge oppfinnelsen, fjernes minst 25%, fortrinnsvis minst 50%, av det i hydrogelpartiklene tilstedeværende vann. Dette vannfjernelsestrinn kan utføres på forskjellige måter. Vann kan f.eks. fjernes fra hydrogelpartiklene ved å bringe disse i kontakt med en tørr gasstrøm, f.eks. en tørr luftstrøm ved forhøyet temperatur eller ikke. In the water removal step used according to the invention, at least 25%, preferably at least 50%, of the water present in the hydrogel particles is removed. This water removal step can be carried out in different ways. Water can e.g. is removed from the hydrogel particles by bringing them into contact with a dry gas stream, e.g. a dry airflow at elevated temperature or not.

Vann kan også fjernes fra hydrogelpartiklene ved å oppvarme disse ved atmosfæretrykk eller ved redusert eller forhøyet trykk. Andre måter å fjerne vann fra hydrogelpartiklene på er å bringe partiklene i kontakt med en inert væske ved en temperatur over 100°C eller ved å bringe partiklene ved forhøyet temperatur i kontakt med vanndamp eller en vanndampholdig gasstrøm. Eksempler på behandlinger som bekvemt kan anvendes for å fjerne i det minste 75% av det i hydrogelpartiklene tilstedeværende vann, er de følgende: a) oppvarming av hydrogelpartiklene ved en temperatur på ca. 100°C og under redusert trykk. b) Oppvarming av hydrogelpartiklene ved en temperatur på over 100°C i en luftstrøm. c) Oppvarming av hydrogelpartiklene ved en temperatur på ca. 100°C og under redusert trykk, fulgt av en oppvarming av Water can also be removed from the hydrogel particles by heating them at atmospheric pressure or at reduced or increased pressure. Other ways of removing water from the hydrogel particles are by contacting the particles with an inert liquid at a temperature above 100°C or by contacting the particles at an elevated temperature with water vapor or a water vapor-containing gas stream. Examples of treatments that can conveniently be used to remove at least 75% of the water present in the hydrogel particles are the following: a) heating the hydrogel particles at a temperature of approx. 100°C and under reduced pressure. b) Heating the hydrogel particles at a temperature of over 100°C in an air stream. c) Heating the hydrogel particles at a temperature of approx. 100°C and under reduced pressure, followed by a heating of

partiklene ved en temperatur på ca. 500°C i en luftstrøm. the particles at a temperature of approx. 500°C in an air stream.

d) Bringe hydrogelpartiklene i kontakt med en hydrocarbonolje ved en temperatur på over 100°C. e) Oppvarming av hydrogelpartiklene ved en temperatur på over 100°C i en autoklav under selvinnstillende trykk. f) Oppvarming av hydrogelpartiklene i en strøm av luft og vanndamp . d) Bring the hydrogel particles into contact with a hydrocarbon oil at a temperature of over 100°C. e) Heating the hydrogel particles at a temperature of over 100°C in an autoclave under self-adjusting pressure. f) Heating the hydrogel particles in a stream of air and water vapour.

Efter behandlingstrinnet hvori minst 25% av det i hydrogelpartiklene tilstedeværende vann fjernes fra partiklene ved fordampning, minskes alkalimetallinnholdet i hydrogelpartiklene i et vandig medium til under 1 vekt% ,beregnet på tørt materiale. Denne fjernelse av alkalimetall kan bekvemt utføres ved å behandle hydrogelpartiklene med en vandig oppløsning av ammoniumnitrat inntil det ønskede lave alkalimetallinhold er blitt nådd. After the treatment step in which at least 25% of the water present in the hydrogel particles is removed from the particles by evaporation, the alkali metal content in the hydrogel particles in an aqueous medium is reduced to less than 1% by weight, calculated on dry material. This alkali metal removal can conveniently be carried out by treating the hydrogel particles with an aqueous solution of ammonium nitrate until the desired low alkali metal content has been reached.

Hydrogelpartiklene blir til slutt tørket og kalsinert. Tørking og kalsinering av hydrogelpartiklene kan utføres f.eks. ved å oppvarme partiklene i en viss tid ved en temperatur på hhv. 100-200°C og 450-550°C. The hydrogel particles are finally dried and calcined. Drying and calcination of the hydrogel particles can be carried out e.g. by heating the particles for a certain time at a temperature of 100-200°C and 450-550°C.

Om ønsket kan en liten mengde av et fyllstoff innarbeides . If desired, a small amount of a filler can be incorporated.

i siliciumdioxydpartiklene fremstilt ifølge oppfinnelsen. Innarbeidelsen av et fyllstoff kan være ønsket av forskjellige grunner. For det første kan de ferdige siliciumdioxydpartiklers porøsitet påvirkes ved denne forholdsregel. Dessuten kan det for visse anvendelser av siliciumdioxydpartiklene være ønsket at disse inneholder et fyllstoff, f.eks. et aluminiumoxydfyllstoff. Det er også mulig å minske omkostningene ved fremstillingen av siliciumdioxydpartiklene ved i disse å innarbeide et billig fyllstoff. Innarbeidelsen av fyllstoffet i siliciumdioxydpartiklene kan bekvemt utføres ved å tilsette fyllstoffet til den vandige oppløsning av alkalimetallsilikatet og/eller til den vandige opp-løsning av syren hvorav hydrosolen fremstilles ved blanding. Eksempler på egnede fyllstoffer er kaolin, montmorillonitt, bentonitt, felte siliciumdioxydfyllstoffer, aluminiumoxydkvaliteter, zeolittkvaliteter og amorfe siliciumdioxyd/aluminiumoxydkvaliteter. in the silicon dioxide particles produced according to the invention. The incorporation of a filler may be desired for various reasons. Firstly, the porosity of the finished silicon dioxide particles can be affected by this precaution. Moreover, for certain applications of the silicon dioxide particles, it may be desired that these contain a filler, e.g. an aluminum oxide filler. It is also possible to reduce the costs of the production of the silicon dioxide particles by incorporating a cheap filler into them. The incorporation of the filler in the silicon dioxide particles can conveniently be carried out by adding the filler to the aqueous solution of the alkali metal silicate and/or to the aqueous solution of the acid from which the hydrosol is prepared by mixing. Examples of suitable fillers are kaolin, montmorillonite, bentonite, fused silicon dioxide fillers, aluminum oxide grades, zeolite grades and amorphous silicon dioxide/aluminium oxide grades.

Hva gjelder den fyllstoffmengde som kan innarbeides i de What about the amount of filler that can be incorporated into them

ved hjelp av den foreliggende fremgangsmåte fremstilte siliciumdioxydpartikler, har det vist seg at tilstedeværelsen av et fyllstoff i de ferdige siliciumdioxydpartikler nedsetter partiklenes knusefasthet i løs tilstand, og denne virkning blir tydeligere efter hvert som fyllstoffinnholdet i partiklene øker. Da sol-gelmetoden imidlertid som regel gir kuleformige siliciumdioxydpartikler med en meget høy knusefasthet i løs tilstand, er en liten minskning av knusefastheten uten betydning, og kuleformige siliciumdioxydpartikler som inneholder fyllstoff og som meget vel tilfredsstiller minstekravet på 12 kg/cm 2 for knusefastheten i løs tilstand kan lett fremstilles, forutsatt at den i partiklene innarbeidede fyllstoffmengde ikke er over 25% av siliciumdioxyd-mengden som er tilstede i den hydrosol hvorav siliciumdioxydpartiklene fremstilles. En innarbeidelse av større fyllstoffmengder i siliciumdioxydpartiklene medfører risiko for at det vil dannes siliciumdioxydpartikler med en knusefasthet i løs tilstand på silicon dioxide particles produced by the present method, it has been shown that the presence of a filler in the finished silicon dioxide particles reduces the crushing strength of the particles in the loose state, and this effect becomes more evident as the filler content in the particles increases. However, as the sol-gel method usually produces spherical silicon dioxide particles with a very high crushing strength in the loose state, a small reduction in the crushing strength is insignificant, and spherical silicon dioxide particles that contain filler and which very well satisfy the minimum requirement of 12 kg/cm 2 for the crushing strength in the loose condition can be easily produced, provided that the amount of filler incorporated in the particles is not more than 25% of the silicon dioxide amount present in the hydrosol from which the silicon dioxide particles are produced. The incorporation of larger quantities of filler in the silicon dioxide particles entails the risk that silicon dioxide particles will be formed with a crushing strength in the loose state of

2 2

under 12 kg/cm . below 12 kg/cm .

Kuleformige siliciumdioxydpartikler fremstilt ved hjelp av den foreliggende fremgangsmåte kan anvendes f.eks. som katalysatorer, katalysatorbærere, adsorpsjonsmidler, tørkemidler og ionebyttere. De er spesielt viktige som bærermaterialer for ett eller flere metaller med katalytisk aktivitet. Katalysatorer omfattende de ved hjelp av den foreliggende fremgangsmåte fremstilte siliciumdioxydpartikler som bærermateriale kan anvendes for forskjellige prosesser innen den kjemiske industri og petroleumsindustrien. Katalysatorene kan fremstilles ved hjelp av en hvilken som helst kjent metode for fremstilling av bårne katalysatorer, f.eks. ved å impregnere de kuleformige siliciumdioxydpartikler med en vandig oppløsning omfattende salter av de angjeldende katalytisk aktive metaller, fulgt av tørking og kalsinering av bland-ingen. En gunstig måte å fremstille disse katalysatorer på er å innarbeide de katalytisk aktive metaller i bærermaterialet på et tidlig trinn av fremstillingen av bærermaterialet, f.eks. når dette fremdeles foreligger som en hydrogel. Ikke bare kan den ferdige katalysators porøsitet påvirkes, men denne fremstillings-metode byr på den fordel at det er overflødig å foreta en ytter-ligere tørking og kalsinering efter impregneringen. Spherical silicon dioxide particles produced using the present method can be used, e.g. such as catalysts, catalyst carriers, adsorbents, drying agents and ion exchangers. They are particularly important as carrier materials for one or more metals with catalytic activity. Catalysts comprising the silicon dioxide particles produced by the present method as carrier material can be used for various processes within the chemical industry and the petroleum industry. The catalysts can be prepared using any known method for preparing supported catalysts, e.g. by impregnating the spherical silicon dioxide particles with an aqueous solution comprising salts of the relevant catalytically active metals, followed by drying and calcining the mixture. A favorable way of producing these catalysts is to incorporate the catalytically active metals into the carrier material at an early stage of the production of the carrier material, e.g. when this is still present as a hydrogel. Not only can the porosity of the finished catalyst be affected, but this production method offers the advantage that it is unnecessary to carry out further drying and calcination after the impregnation.

Kuleformige siliciumdioxydpartikler fremstilt ved hjelp av Spherical silicon dioxide particles produced using

den foreliggende fremgangsmåte er av spesiell viktighet som bærermaterialer for katalysatorer som anvendes for hydroavmetallisering av tunge hydrocarbonoljer og for epoxydering av olefinisk umettede forbindelser med et organisk hydroperoxyd. the present method is of particular importance as carrier materials for catalysts used for the hydrodemetallation of heavy hydrocarbon oils and for the epoxidation of olefinically unsaturated compounds with an organic hydroperoxide.

Hydroavmetallisering av tunge hydrocarbonoljer er en vel- Hydrodemetallization of heavy hydrocarbon oils is a well-

kjent prosess innen petroleumsindustrien og anvendes bl.a. for å minske meta11innholdet i tunge hydrocarbonoljer som skal anvendes som tilførselsmateriale for katalytiske behandlingsprosesser, som hydroavsvovling, eller katalytiske omdannelsesprosesser, som hydrocracking og katalytisk cracking. På grunn av avmetalliser-ingen forlenges brukstiden for katalysatoren i den påfølgende be-handlings- eller omdannelsesprosess. Hydroavmetallisering utføres ved å bringe den tunge hydrocarbonolje ved forhøyet temperatur og trykk og i nærvær av hydrogen i kontakt med en katalysator. Foretrukne katalysatorer for dette formål er katalysatorer som om- known process within the petroleum industry and is used i.a. to reduce the meta11 content in heavy hydrocarbon oils to be used as feed material for catalytic treatment processes, such as hydrodesulphurisation, or catalytic conversion processes, such as hydrocracking and catalytic cracking. Due to the demetallisation, the service life of the catalyst is extended in the subsequent treatment or conversion process. Hydrodemetallization is carried out by bringing the heavy hydrocarbon oil at elevated temperature and pressure and in the presence of hydrogen into contact with a catalyst. Preferred catalysts for this purpose are catalysts which re-

fatter ett eller flere metaller bestående av nikkel, kobolt, molybden, wolfram eller vanadium på et siliciumdioxydbærermateriale. Spesielt foretrukne er katalysatorer som omfatter minst ett metall bestående av nikkel eller kobolt og minst ett metall bestående av molybden, wolfram eller vanadium, som metallkombinasjonen nikkel/ comprises one or more metals consisting of nickel, cobalt, molybdenum, tungsten or vanadium on a silicon dioxide carrier material. Particularly preferred are catalysts comprising at least one metal consisting of nickel or cobalt and at least one metal consisting of molybdenum, tungsten or vanadium, such as the metal combination nickel/

vanadium, nikkel/molybden eller kobolt/molybden på et siliciumdioxydbærermateriale. Kuleformige siliciumdioxydpartikler fremstilt ved hjelp av den foreliggende fremgangsmåte er foretrukne bærermaterialer for disse katalysatorer. vanadium, nickel/molybdenum or cobalt/molybdenum on a silicon dioxide carrier material. Spherical silicon dioxide particles produced by the present method are preferred carrier materials for these catalysts.

Epoxydering av olefinisk umettede forbindelser med et organisk hydroperoxyd er en velkjent prosess innen den kjemiske industri og anvendes bl.a. for fremstilling av propylenoxyd og epiklorhydrin fra hhv. propylen og allylklorid . Epoxyderingen av olefinisk umettede forbindelser med et organisk hydroperoxyd utføres ved å bringe reaktantene fortrinnsvis ved forhøyet temperatur og trykk i kontakt med en katalysator. Som organisk hydroperoxyd foretrekkes ethylbenzenhydroperoxyd da methylfenylcarbinolen som erholdes som biprodukt ved omsetningen, lett kan omdannes til det verdifulle styren. Foretrukne katalysatorer for epoxyderingen er katalysatorer som omfatter minst ett metall bestående av molybden, wolfram, titan, zirkonium eller vanadium på et siliciumdioxydbærermateriale. Katalysatorer omfattende titan på et siliciumdioxydbærermateriale er spesielt foretrukne. Kuleformige siliciumdioxydpartikler fremstilt ved hjelp av den foreliggende fremgangsmåte er foretrukne bærermaterialer for disse katalysatorer. Epoxidation of olefinically unsaturated compounds with an organic hydroperoxide is a well-known process within the chemical industry and is used e.g. for the production of propylene oxide and epichlorohydrin from respectively propylene and allyl chloride. The epoxidation of olefinically unsaturated compounds with an organic hydroperoxide is carried out by bringing the reactants preferably at elevated temperature and pressure into contact with a catalyst. As an organic hydroperoxide, ethylbenzene hydroperoxide is preferred as the methylphenylcarbinol obtained as a by-product during the reaction can easily be converted into the valuable styrene. Preferred catalysts for the epoxidation are catalysts comprising at least one metal consisting of molybdenum, tungsten, titanium, zirconium or vanadium on a silicon dioxide carrier material. Catalysts comprising titanium on a silicon dioxide support material are particularly preferred. Spherical silicon dioxide particles produced by the present method are preferred carrier materials for these catalysts.

Oppfinnelsen vil bli nærmere beskrevet ved hjelp av de nedenstående eksempler. The invention will be described in more detail using the examples below.

Sammenligningseksempel A Comparative example A

En vandig natriumvannglassoppløsning omfattende 12 vekt% Si02 og med et molforhold Na20:Si02 på 0,3:1 ble kontinuerlig blandet i et blandekammer med en vandig 1,2 N svovelsyreoppløsning i et volumforhold mellom syreoppløsning og vannglassoppløsning på 0,75:1. Efter en oppholdstid på et par sekunder i blandekammeret ble den erholdte hydrosol omdannet til små dråper, og de små hydrosoldråper fikk falle gjennom et vertikalt anordnet, sylindrisk rør med en lengde på 1,8 m og fylt med en parafinisk hydrocarbonolje med en temperatur på 25°C. Under fallet gjennom røret inntrådte gelering. De kuleformige hydrogelpartikler ble ved bunnen av røret oppfanget An aqueous sodium water glass solution comprising 12 wt% SiO 2 and having a molar ratio of Na 2 O : SiO 2 of 0.3:1 was continuously mixed in a mixing chamber with an aqueous 1.2 N sulfuric acid solution in a volume ratio of acid solution to water glass solution of 0.75:1. After a residence time of a few seconds in the mixing chamber, the obtained hydrosol was converted into small drops, and the small hydrosol drops were allowed to fall through a vertically arranged, cylindrical tube with a length of 1.8 m and filled with a paraffinic hydrocarbon oil with a temperature of 25 °C. During the fall through the tube, gelation occurred. The spherical hydrogel particles were collected at the bottom of the tube

i vann med en temperatur på 25°C. Efter at de kuleformige hydrogelpartikler var blitt fraskilt ved filtrering, ble de vasket med vann. De kuleformige hydrogelpartiklers vanninnhold ble fastslått ved hjelp av en standard undersøkelse hvor en prøve ble oppvarmet i 3 timer fra værelsetemperatur til 600°C og derefter holdt ved in water with a temperature of 25°C. After the spherical hydrogel particles had been separated by filtration, they were washed with water. The water content of the spherical hydrogel particles was determined using a standard test where a sample was heated for 3 hours from room temperature to 600°C and then kept at

600°C i 1 time. Det viste seg at hydrogelpartiklenes vanninnhold var 90 vekt%. 600°C for 1 hour. It turned out that the water content of the hydrogel particles was 90% by weight.

Vanninnholdet i de i de nedenstående eksempler beskrevne siliciumdioxydhydrogelpartikler ble alle bestemt ved hjelp av den ovenfor beskrevne standardundersøkelse. The water content of the silicon dioxide hydrogel particles described in the examples below were all determined using the above-described standard test.

Sammenligningseksempel B Comparative example B

En andel av siliciumdioxydhydrogelpartiklene med et vanninnhold på 90 vekt% og fremstilt ifølge det ovenstående sammenligningseksempel A ble behandlet med en vandig 0,1 M ammonium-nitratoppløsning ved værelsetemperatur inntil partiklenes natrium-innhold hadde sunket til 0,2 vekt%, beregnet på det tørre materiale. A portion of the silicon dioxide hydrogel particles with a water content of 90% by weight and prepared according to the above comparative example A was treated with an aqueous 0.1 M ammonium nitrate solution at room temperature until the sodium content of the particles had dropped to 0.2% by weight, calculated on the dry basis material.

Efter tørking i 2 timer ved 100°C og kalsinering i 3 timer ved 500°C hadde de således erholdte kuleformige siliciumdioxydpartikler en motstandsdyktighet overfor vann på 30% og en knusefasthet i upakket tilstand på over 16,7 kg/cm 2 . (16,7 kg/cm 2er den høyeste verdi som kan måles ved hjelp av den anvendte metode for å fastslå knusefastheten i upakket tilstand.) After drying for 2 hours at 100°C and calcining for 3 hours at 500°C, the spherical silicon dioxide particles thus obtained had a resistance to water of 30% and a crushing strength in the unpacked state of over 16.7 kg/cm 2 . (16.7 kg/cm 2 is the highest value that can be measured using the method used to determine the crushing strength in the unpackaged state.)

Eksempel 1 Example 1

En andel av siliciumdloxydhydrogelpartiklene med et vanninnhold på 90 vekt% og fremstilt ifølge det ovenstående sammenligningseksempel A ble tørket i 2 timer ved 100°C under redusert trykk. Efter denne behandling var hydrogelpartiklenes vanninnhold 18 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 95% og en knusefasthet i upakket tilstand på over 16,7 kg/cm 2. A portion of the silicon dioxide hydrogel particles with a water content of 90% by weight and prepared according to the above comparative example A was dried for 2 hours at 100°C under reduced pressure. After this treatment, the water content of the hydrogel particles was 18% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 95% and a crushing strength in the unpacked state of more than 16.7 kg/cm 2.

Eksempel 2 Example 2

En andel av siliciumdioxydhydrogelpartiklene med et vanninnhold på 90 vekt% og fremstilt ifølge sammenligningseksempel A ble tørket i 3 timer ved 120°C i en luftstrøm. Efter denne behandling var hydrogelpartiklenes vanninnhold 14 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 93% og en knusefasthet i upakket tilstand på over 16,7 kg/cm 2• A portion of the silicon dioxide hydrogel particles with a water content of 90% by weight and prepared according to comparative example A was dried for 3 hours at 120°C in an air stream. After this treatment, the water content of the hydrogel particles was 14% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 93% and a crushing strength in the unpacked state of over 16.7 kg/cm 2•

Eksempel 3 Example 3

En andel av siliciumdioxydhydrogelpartiklene med et vanninnhold på 90 vekt% og fremstilt ifølge sammenligningseksempel A ble tørket i 2 timer ved 100°C under redusert trykk og derefter kalsinert i 3 timer ved 500°C i en luftstrøm. Efter denne behandling var partiklenes vanninnhold 3 vekt%. Partiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 9 5% og en knusefasthet i upakket tilstand på over 16,7 kg/cm 2. A portion of the silicon dioxide hydrogel particles with a water content of 90% by weight and prepared according to Comparative Example A was dried for 2 hours at 100°C under reduced pressure and then calcined for 3 hours at 500°C in an air stream. After this treatment, the water content of the particles was 3% by weight. The particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 95% and a crushing strength in the unpackaged state of over 16.7 kg/ cm 2.

Eksempel 4 Example 4

En andel av siliciumdioxydpartiklene med et vanninnhold på A proportion of the silicon dioxide particles with a water content of

90 vekt% og fremstilt ifølge sammenligningseksempel A ble holdt i kontakt med en paraffinisk hydrocarbonolje i 6 timer ved 150°C. Efter denne behandling hadde partiklenes vanninnhold sunket til 12 vekt%. Partiklene ble derefter behandlet med en vandig opp-løsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 96% og en knusefasthet i upakket tilstand på over 90% by weight and prepared according to comparative example A was kept in contact with a paraffinic hydrocarbon oil for 6 hours at 150°C. After this treatment, the water content of the particles had dropped to 12% by weight. The particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 96% and a crush strength in the unpacked state of over

2 2

16,7 kg/cm . 16.7 kg/cm .

Eksempel 5 Example 5

En andel av siliciumdioxydpartiklene med et vanninnhold på A proportion of the silicon dioxide particles with a water content of

90 vekt% og fremstilt ifølge sammenligningseksempel A ble oppvarmet i 1,5 time ved 185°C under selvinnstillende trykk i en autoklav. Efter denne behandling var hydrogelpartiklenes vanninnhold 15 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 94% og en knusefasthet i upakket tilstand på over 16,7 kg/cm2. 90% by weight and prepared according to comparative example A was heated for 1.5 hours at 185°C under self-adjusting pressure in an autoclave. After this treatment, the water content of the hydrogel particles was 15% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 94% and a crushing strength in the unpackaged state of over 16.7 kg/cm2 .

Eksempel 6 Example 6

Dette eksempel ble utført i det vesentlige på samme måte som eksempel 1, men for det foreliggende eksempel inneholdt den vandige natriumvannglassoppløsning 12 g pulverformig kaolinfyllstoff pr. liter (dette tilsvarer 10% av mengden av det i solen tilstedeværende siliciumdioxyd). De endelige kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 91% og en knusefasthet i upakket tilstand på 15 kg/cm 2. This example was carried out in substantially the same manner as example 1, but for the present example the aqueous sodium water glass solution contained 12 g of powdered kaolin filler per liters (this corresponds to 10% of the amount of silicon dioxide present in the sun). The final spherical silicon dioxide particles had a resistance to water of 91% and a crush strength in the unpacked state of 15 kg/cm 2 .

Eksempel 7 Example 7

En andel av siliciumdioxydpartiklene med et vanninnhold på A proportion of the silicon dioxide particles with a water content of

90 vekt% og fremstilt ifølge sammenligningseksempel A ble oppvarmet i 4 timer ved 120°C under selvinnstillende trykk i en autoklav. Efter denne behandling var hydrogelpartiklenes vanninnhold 60 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 98% og en knusefasthet i upakket tilstand på over 90% by weight and prepared according to comparative example A was heated for 4 hours at 120°C under self-adjusting pressure in an autoclave. After this treatment, the water content of the hydrogel particles was 60% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 98% and a crush strength in the unpacked state of over

2 2

16,7 kg/cm . 16.7 kg/cm .

Sammenligningseksempel C Comparative example C

Dette eksempel ble utført i det vesentlige på samme måte som eksempel 1, men for det foreliggende eksempel inneholdt den vandige natriumvannglassoppløsning 72 g pulverformig kaolinfyllstoff pr. liter (dette tilsvarer 60% av mengden av siliciumdioxyd som er tilstede i solen). De endelige kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 85% og en knusefasthet i upakket tilstand på 10 kg/cm 2. This example was carried out in substantially the same manner as example 1, but for the present example the aqueous sodium water glass solution contained 72 g of powdered kaolin filler per liters (this corresponds to 60% of the amount of silicon dioxide present in the sun). The final spherical silicon dioxide particles had a resistance to water of 85% and a crush strength in the unpackaged state of 10 kg/cm 2 .

Sammenligningseksempel D Comparative example D

En andel av siliciumdioxydhydrogelpartiklene med et vanninnhold på 90 vekt% og fremstilt ifølge sammenligningseksempel A ble dekket i 16 timer ved værelsetemperatur med en vandig oppløsning inneholdende 25 vekt% ammoniakk. Efter denne behandling var hydrogelpartiklenes vanninnhold 30 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 4 5% og en knusefasthet i upakket tilstand på 5 kg/cm 2. A portion of the silicon dioxide hydrogel particles with a water content of 90% by weight and prepared according to comparative example A was covered for 16 hours at room temperature with an aqueous solution containing 25% by weight of ammonia. After this treatment, the water content of the hydrogel particles was 30% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 45% and a crush strength in the unpacked state of 5 kg/cm 2 .

Sammenligningseksempel E Comparative example E

En andel av siliciumdioxydpartiklene med et vanninnhold på A proportion of the silicon dioxide particles with a water content of

90 vekt% og fremstilt ifølge sammenligningseksempel A ble oppvarmet i 0,5 time ved 120°C under selvinnstillende trykk i en autoklav. Efter denne behandling var hydrogelpartiklenes vanninnhold 72 vekt%. Hydrogelpartiklene ble derefter behandlet med en vandig oppløsning av ammoniumnitrat, tørket og kalsinert på samme måte som hydrogelpartiklene i sammenligningseksempel B. De således erholdte kuleformige siliciumdioxydpartikler hadde en motstandsdyktighet overfor vann på 50% og en knusefasthet i upakket tilstand på 8 kg/cm 2. 90% by weight and prepared according to comparative example A was heated for 0.5 hour at 120°C under self-adjusting pressure in an autoclave. After this treatment, the water content of the hydrogel particles was 72% by weight. The hydrogel particles were then treated with an aqueous solution of ammonium nitrate, dried and calcined in the same way as the hydrogel particles in comparative example B. The spherical silicon dioxide particles thus obtained had a resistance to water of 50% and a crushing strength in the unpackaged state of 8 kg/cm 2 .

Claims (2)

1. Fremgangsmåte ved fremstilling av kuleformige siliciumdioxydpartikler med høy motstandsdyktighet overfor vann og høy knusefasthet i upakket tilstand, omfattende de følgende trinn: a) det fremstilles en siliciumdioxydhydrosol ved å blande en vandig oppløsning av alkalimetallsilikat som eventuelt inneholder et fyllstoff, med en vandig oppløsning av en syre som eventuelt inneholder et fyllstoff, b) hydrosolen som eventuelt inneholder fyllstoff i en mengde ikke over 25% av mengden av tilstedeværende siliciumdioxyd, omdannes til små dråper, c) de små dråper geleres i en væske som ikke -er blandbar med vann, d) hydrogelpartiklenes alkalimetallinnhold reduseres i et vandig medium til under 1 vekt%, beregnet på det tørre materiale, og e) de kuleformige siliciumdioxydpartikler tørkes og kalsineres, karakterisert ved at mellom trinnene c) og d) fjernes minst 25% av mengden av det i hydrogelpartiklene tilstedeværende vann ved fordampning.1. Process for the production of spherical silicon dioxide particles with high resistance to water and high crush strength in the unpackaged state, comprising the following steps: a) a silicon dioxide hydrosol is produced by mixing an aqueous solution of alkali metal silicate, possibly containing a filler, with an aqueous solution of an acid which optionally contains a filler, b) the hydrosol, which optionally contains filler in an amount not exceeding 25% of the amount of silicon dioxide present, is converted into small droplets, c) the small droplets are gelled in a liquid which is not miscible with water, d) the alkali metal content of the hydrogel particles is reduced in an aqueous medium to below 1% by weight, calculated on the dry material, and e) the spherical silicon dioxide particles are dried and calcined, characterized in that between steps c) and d) at least 25% of the amount of the the hydrogel particles present water by evaporation. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at minst 50% av mengden av det i hydrogelpartiklene tilstedeværende vann fjernes ved fordampning.2. Method according to claim 1, characterized in that at least 50% of the amount of water present in the hydrogel particles is removed by evaporation.
NO753687A 1974-11-06 1975-11-04 METHOD OF MANUFACTURE OF BALL-SILICIUM DIOXYDE PARTICLES NO139678C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB47991/74A GB1525386A (en) 1974-11-06 1974-11-06 Process for the preparation of globular silica particles

Publications (3)

Publication Number Publication Date
NO753687L NO753687L (en) 1976-05-07
NO139678B true NO139678B (en) 1979-01-15
NO139678C NO139678C (en) 1979-04-25

Family

ID=10446985

Family Applications (1)

Application Number Title Priority Date Filing Date
NO753687A NO139678C (en) 1974-11-06 1975-11-04 METHOD OF MANUFACTURE OF BALL-SILICIUM DIOXYDE PARTICLES

Country Status (13)

Country Link
JP (1) JPS5823329B2 (en)
BE (1) BE834924A (en)
CA (1) CA1064008A (en)
DE (1) DE2549411C2 (en)
ES (1) ES442322A0 (en)
FR (1) FR2290395A1 (en)
GB (1) GB1525386A (en)
IT (1) IT1048821B (en)
NL (1) NL7512900A (en)
NO (1) NO139678C (en)
SE (1) SE411542B (en)
SU (1) SU784751A3 (en)
ZA (1) ZA756937B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1177811A (en) * 1981-04-13 1984-11-13 Theo G. Spek Process for the preparation of silica particles; silica particles with a narrow pore diameter distribution, catalysts made therefrom and use of these catalysts
JPS57200375A (en) * 1981-06-02 1982-12-08 Sumitomo Chem Co Ltd Preparation of epoxy compound
NL8204165A (en) * 1981-11-06 1983-06-01 Shell Int Research DEVICE FOR CLASSIFYING CATALYST PARTICLES AND CATALYTIC METHOD USING CATALYST PARTICLES CLASSIFIED WITH THE SAID DEVICE.
GB8419708D0 (en) * 1984-08-02 1984-09-05 Shell Int Research Preparation of silica spheres
JPS6316049A (en) * 1986-07-08 1988-01-23 Fuji Debuison Kagaku Kk Catalyst carrier for fluidized bed
BE1004675A3 (en) * 1991-03-11 1993-01-12 Solvay METHOD FOR OBTAINING PARTICLE microspheroidal HOMODISPERSES, microspheroidal SILICA PARTICLE SPECIFIC SURFACE HIGH, CATALYSTS SUPPORTED ON THESE PARTICLES AND METHOD FOR POLYMERIZATION OF ALPHA-OLEFINS IN THE PRESENCE OF THESE CATALYSTS.
DE69728341T2 (en) * 1996-10-07 2004-12-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound oxide, composite oxide carrier and catalyst
US6355596B2 (en) 1999-06-01 2002-03-12 Pq Holding, Inc. Method for preparing titanium on silica catalysts with controlled distributions
US6887822B2 (en) 2001-09-25 2005-05-03 Pq Corporation Method for making silica supported, crush-resistant catalysts
US7125819B2 (en) 2002-12-02 2006-10-24 Shell Oil Company Catalyst preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2385217A (en) * 1942-10-09 1945-09-18 Socony Vacuum Oil Co Inc Gel pellets
FR1035927A (en) * 1951-04-19 1953-09-01 Davison Chemical Corp Process for preparing silica-alumina catalyst microspheres
US2813836A (en) * 1953-03-25 1957-11-19 Houdry Process Corp Manufacture of gel beads
NL131567C (en) * 1964-11-25 1900-01-01
FR1473239A (en) * 1966-01-31 1967-05-29
DE2100220A1 (en) * 1971-01-05 1972-07-27 Farbenfabriken Bayer Ag, 5090 Leverkusen High porosity silica-base pearl prodn - for use as catalyst carrier

Also Published As

Publication number Publication date
DE2549411A1 (en) 1976-05-13
FR2290395A1 (en) 1976-06-04
JPS5168497A (en) 1976-06-14
SE7512343L (en) 1976-05-07
ZA756937B (en) 1976-10-27
NO139678C (en) 1979-04-25
CA1064008A (en) 1979-10-09
BE834924A (en) 1976-04-28
AU8630875A (en) 1977-05-12
SE411542B (en) 1980-01-14
GB1525386A (en) 1978-09-20
JPS5823329B2 (en) 1983-05-14
NL7512900A (en) 1976-05-10
DE2549411C2 (en) 1988-09-29
SU784751A3 (en) 1980-11-30
IT1048821B (en) 1980-12-20
FR2290395B1 (en) 1980-05-16
NO753687L (en) 1976-05-07
ES442322A0 (en) 1977-04-01

Similar Documents

Publication Publication Date Title
EP0067459B1 (en) Silica particles and method for their preparation
EP0170334B1 (en) Process for the preparation of silica spheres
JP5047050B2 (en) Titanium-containing aqueous solution and method for producing the same
NO750817L (en)
EP2185278B1 (en) An amorphous silica-alumina composition and a method of making and using such composition
NO139678B (en) METHOD OF PREPARATION OF BALL-SILICIUM DIOXYDE PARTICLES
EP2585214B1 (en) Catalyst supports, catalysts and their manufacture and use
EP0115927B1 (en) Catalyst supports and hydrocarbon conversion processes employing catalysts based on these supports
US2938874A (en) Preparation of phosphate-containing alumina gels
CN112642470A (en) Catalyst for catalytic cracking and preparation method thereof
CN116528978A (en) Silica-alumina composition comprising 1-30 wt% crystalline basic ammonium aluminum carbonate and process for preparing the same
US3207701A (en) Preparation of aluminosilicate molecular sieve-silica gel composites
Dochain et al. Aerosol-assisted sol–gel synthesis of mesoporous Ag–Ta–SiO 2 catalysts for the direct upgrading of ethanol to butadiene
GB1564223A (en) Catalyst comprising phosphoric acid on silica gel its preparation and use
US2847387A (en) Alumina compositions
EP2543436A1 (en) Catalyst for propylene production, method for producing same, and method for producing propylene
CN114433094A (en) High-activity nickel catalyst and preparation method and application thereof
JP2863920B2 (en) Method for catalytic conversion of hydrocarbon oils
WO2018039155A1 (en) Selective solid catalyst for tail end of olefin-epoxidation flow reactor
JP6644359B2 (en) Method for producing hydrorefining catalyst
RU2405626C1 (en) Method of preparing bead cracking catalyst
WO2021091830A1 (en) Titanated catalysts, methods of preparing titanated catalysts, and methods of epoxidation
CN115770594A (en) Preparation method and application of hydrophobic catalyst
CN117504845A (en) TiO 2 -SiO 2 Catalyst, preparation method thereof and application thereof in desulfurization
GB2188310A (en) A process for the preparation of silica particles