NO138454B - PROCEDURES FOR ANTI-CORROSION TREATMENT OF ZIRCONIUM ALLOYS - Google Patents

PROCEDURES FOR ANTI-CORROSION TREATMENT OF ZIRCONIUM ALLOYS Download PDF

Info

Publication number
NO138454B
NO138454B NO760851A NO760851A NO138454B NO 138454 B NO138454 B NO 138454B NO 760851 A NO760851 A NO 760851A NO 760851 A NO760851 A NO 760851A NO 138454 B NO138454 B NO 138454B
Authority
NO
Norway
Prior art keywords
plate
temperature
frequency
heated
speed
Prior art date
Application number
NO760851A
Other languages
Norwegian (no)
Other versions
NO760851L (en
NO138454C (en
Inventor
Gunnar Vesterlund
Original Assignee
Asea Atom Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7502865A external-priority patent/SE391952B/en
Priority claimed from SE7511523A external-priority patent/SE394201B/en
Application filed by Asea Atom Ab filed Critical Asea Atom Ab
Publication of NO760851L publication Critical patent/NO760851L/no
Publication of NO138454B publication Critical patent/NO138454B/en
Publication of NO138454C publication Critical patent/NO138454C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • General Induction Heating (AREA)

Abstract

Fremgangsmåte ved antikorrosjonsbehandling av zirkoniumlegeringer.Method of anti-corrosion treatment of zirconium alloys.

Description

Oppfinnelsen angår en fremgangsmåte ved antikorrosjonsbehandling av plater av en zirkoniumlegering som er beregnet for reaktorformål. The invention relates to a method for the anti-corrosion treatment of sheets of a zirconium alloy intended for reactor purposes.

Den efter en tid forekommende plastiske deformasjon av en hylse, såkalt siging, er bestemmende for levealderen for-en hylse av en zirkoniumlegering for en brenselpatron som anvendes i en kokende reaktor. Denne siging påskyndes hurtig på grunn av materialtap ved korrosjon. The plastic deformation of a sleeve that occurs over time, so-called sagging, determines the lifespan of a sleeve made of a zirconium alloy for a fuel cartridge used in a boiling reactor. This aging is rapidly accelerated due to material loss through corrosion.

Det er kjent at plater av Zircaloy som er blitt varmebe-handlet ved oppvarming til 900°C, er blitt undersøkt for å fast-slå korrosjon, og ved disse undersøkelser er forholdene i en kokende reaktor blitt efterlignet ifølge anbefalinger utgitt av American Society for Testing and Materials, og .den slutning kunne da trekkes at den angjeldende behandling hadde negativ innvirkning da korrosjonsmotstanden minsket med ca. 10%. Oppfinnelsen bygger imidlertid på undersøkelser av Zircaloy-plater som i en rekke år er blitt anvendt i en kokende reaktor som hele tiden er blitt holdt i drift. Det viste seg overraskende nok at den ovennevnte . varmebehandling i et autentisk reaktormiljø økte korrosjonsmotstanden 3 eller 4 ganger. It is known that plates of Zircaloy which have been heat-treated by heating to 900°C have been examined to determine corrosion, and in these examinations the conditions in a boiling reactor have been imitated according to recommendations published by the American Society for Testing and Materials, and the conclusion could then be drawn that the treatment in question had a negative impact as the corrosion resistance decreased by approx. 10%. However, the invention is based on investigations of Zircaloy plates which have been used for a number of years in a boiling reactor which has been continuously kept in operation. Surprisingly enough, it turned out that the above . heat treatment in an authentic reactor environment increased corrosion resistance 3 or 4 times.

Da Zircaloy oxyderes meget fort ved høy temperatur, er diet ved en slik antikorrosjonsbehandling nødvendig å utføre både oppvarming og avkjøling hurtig. Det bør fortrinnsvis tillates høyst 60 sekunder innen temperaturområdet over 500°C ved oppvarming, og derefter bør temperaturen umiddelbart kunne senkes med 200°C i løpet av høyst 60 sekunder. As Zircaloy oxidizes very quickly at high temperatures, with such an anti-corrosion treatment it is necessary to carry out both heating and cooling quickly. A maximum of 60 seconds should preferably be allowed within the temperature range above 500°C during heating, and then the temperature should be able to be immediately lowered by 200°C within a maximum of 60 seconds.

Oppfinnelsen angår således en fremgangsmåte ved antikorrosjonsbehandling av plater av en zirkoniumlegering som er beregnet for reaktorformål, og fremgangsmåten er særpreget ved at platene oppvarmes sonevis til en temperatur av minst 900°C mens temperatur-økningen fra 500°C og opp til denne temperatur tar høyst 60 sekunder, hvorefter hver oppvarmet sone straks underkastes en temperatursenkning av minst 200°C i løpet av høyst 60 sekunder. The invention thus relates to a method for the anti-corrosion treatment of plates made of a zirconium alloy intended for reactor purposes, and the method is characterized by the fact that the plates are heated in zones to a temperature of at least 900°C, while the temperature increase from 500°C and up to this temperature takes at most 60 seconds, after which each heated zone is immediately subjected to a temperature drop of at least 200°C within a maximum of 60 seconds.

Oppfinnelsen vil nedenfor bli beskrevet under henvisning til tegningen, The invention will be described below with reference to the drawing,

hvor where

Fig. 1 viser et vertikalsnitt gjennom et utstyr for utfør-else av en fremgangsmåte ifølge en første utførelsesform av oppfinnelsen. Ved denne utførelsesform anvendes intet kjølemiddel ved avkjøling av den oppvarmede Zircaloy-plate. Ifølge en annen utførelsesform av oppfinnelsen foretas avkjølingen med kjølégass som blåses mot Zircaloy-platen. Fig. 2 viser et vertikalsnitt gjennom et utstyr for ut-førelse av en fremgangsmåte ifølge denne utførelsesform av oppfinnelsen, og Fig. 1 shows a vertical section through an equipment for carrying out a method according to a first embodiment of the invention. In this embodiment, no coolant is used when cooling the heated Zircaloy plate. According to another embodiment of the invention, the cooling is carried out with cooling gas which is blown against the Zircaloy plate. Fig. 2 shows a vertical section through an equipment for carrying out a method according to this embodiment of the invention, and

Fig. 3 viser et fastslått strømningslinjebilde i form åv Fig. 3 shows a determined flow line image in the form of Fig

et snitt vinkelrett mot platens fremmatningsretning. Strømnings-linjebildetviser konveksjonen i nærheten av en horisontal plate med høy temperatur, f.eks. 900°C. Fig. 4 viser eri fastslått temperaturfordeling over platebredden ved avkjøling ifølge utførelsesformen som vist på fig. 2, dvs. uten anvendelse av en gassblåseanordning, og Fig. 5 viser strømningslinjebilder ved tvungen luftavkjøl-ing ifølge oppfinnelsen. a cut perpendicular to the plate's feed direction. The streamline image shows the convection near a horizontal plate of high temperature, e.g. 900°C. Fig. 4 shows the determined temperature distribution over the plate width during cooling according to the embodiment as shown in fig. 2, i.e. without the use of a gas blowing device, and Fig. 5 shows flow line images for forced air cooling according to the invention.

På Fig. 1 betegner 1 en 4 mm tykk valset plate av en zirkoniumlegering som selges under varemerket "Zircaloy"-4. In Fig. 1, 1 denotes a 4 mm thick rolled plate of a zirconium alloy sold under the trademark "Zircaloy"-4.

Platen føres ved hjelp av transportvalser 2 gjennom en spole 3 The plate is guided by means of transport rollers 2 through a coil 3

som er koblet til<e>?iøyfrekvensgenerator 4 med en frekvens som kan innstilles innen området 0,2-30 MHz. Valsene 2 kan drives med en omkretshastighet som er varierbar innen området 0,5-3 m/s. Før platen har passert spolen 3, har platematerialet bare a-struk-tur. Efter at spolen 3 er blitt passert, får plateskiktet 5 en såkalt Wiedmanståttenstruktur som gir en øket korrosjonsbe-standighet. I platetverrsnittets midtparti har derimot ingen vesentlig strukturendring funnet sted. Et visst overflateareal av platen 1 oppvarmes hvert øyeblikk på grunn av at en middel-effekt som er minst 1 kw/cm tilføres. Dette overflateareal har forholdsvis liten utstrekning i platens bevegelsesretning, which is connected to island frequency generator 4 with a frequency that can be set within the range 0.2-30 MHz. The rollers 2 can be driven at a peripheral speed which is variable within the range 0.5-3 m/s. Before the plate has passed the coil 3, the plate material only has an a-structure. After the coil 3 has been passed, the sheet layer 5 acquires a so-called Wiedmanståten structure, which provides increased corrosion resistance. In the middle part of the plate cross-section, however, no significant structural change has taken place. A certain surface area of the plate 1 is heated every moment due to the fact that an average power of at least 1 kw/cm is supplied. This surface area has a relatively small extent in the plate's direction of movement,

som regel under 3 cm, og helst under 1 cm. usually under 3 cm, and preferably under 1 cm.

Istedenfor den viste spole . 3 kan det anvendes en spole som er anordnet med den ene éndeoverf.late rettet mot båndets over-. eller underside. Instead of the coil shown. 3, a coil can be used which is arranged with one end surface directed towards the surface of the tape. or underside.

Ved induksjonsoppvarming, f.eks. som vist på tegningen, minsker inntrengningsdybden for den magnetiske flux med økende frekvens. Ved valg av høy frekvens og høy effekt oppvarmes bare et overflateskikt av Zircaloy-platen. Når platen derfor har passert induksjonssonen, fås en meget hurtig temperatursenkning i overflateskiktet på grunn av at overflatevarmen hurtig ledes nedad i platen, -og.det fås derfor ingen .oxydas jonsproblemer og ingen holdfasthetsnedsettende kornvekst. Avkjølingen er. meget jevn og gir ingen deformasjon av platen. Platen kan ifølge oppfinnelsen også gjennomvarmes slik.at det fås en strukturomvandling over hele tverrsnittet. Det kan da, selv ved anvendelse av et kjølefluidum, være vanskelig å avkjøle plateoverflaten tilstrek-kelig hurtig til at Zircaloy-platen ikke vil deformeres. En slik deformasjon unngås ved den ovennevnte annen utførelsesform av oppfinnelsen. På Fig. 4 er temperaturen avsatt langs ordinat-aksen og avstanden 1 fra den ene plåtekant til det angjeldende punkt langs abscisseaksen. Temperaturfordelingen over platens underside er antydet ved hjelp av kurven 18 og på oversiden ved hjelp av kurven 19. Det fremgår av kurvene at platens underside har en høyere temperatur enn oversiden og at platens kanter av-kjøles hurtigere enn midten av platen og derfor får en lavere temperatur. Dette fører til en sterk deformasjon av platen. In the case of induction heating, e.g. as shown in the drawing, the penetration depth of the magnetic flux decreases with increasing frequency. When selecting high frequency and high power, only a surface layer of the Zircaloy plate is heated. When the plate has therefore passed the induction zone, there is a very rapid temperature drop in the surface layer due to the fact that the surface heat is quickly conducted downwards in the plate, -and there are therefore no oxidation problems and no strength-reducing grain growth. The cooling is. very smooth and does not cause any deformation of the plate. According to the invention, the plate can also be heated through so that a structural transformation occurs over the entire cross-section. It can then, even when using a cooling fluid, be difficult to cool the plate surface fast enough so that the Zircaloy plate will not deform. Such a deformation is avoided by the above-mentioned other embodiment of the invention. In Fig. 4, the temperature is plotted along the ordinate axis and the distance 1 from one plate edge to the relevant point along the abscissa axis. The temperature distribution over the underside of the plate is indicated using curve 18 and on the upper side using curve 19. It is clear from the curves that the underside of the plate has a higher temperature than the upper side and that the edges of the plate cool faster than the center of the plate and therefore have a lower temperature. This leads to a strong deformation of the plate.

Ved tvungen luftavkjøling ifølge oppfinnelsen, som vist på fig.5, oppnås tilnærmet de ideelle forhold, hvor. tilsvarende teroperatur-kurver (ikke vist) har form av to rette, horisontale linjer med liten innbyrdes avstand. With forced air cooling according to the invention, as shown in Fig. 5, approximately the ideal conditions are achieved, where. corresponding teroperatur curves (not shown) have the form of two straight, horizontal lines with a small mutual distance.

På tegningen betegner 11 en plate av en zirkoniumlegering. Platen føres ved hjelp av transportvalser 12 gjennom en spalte In the drawing, 11 denotes a plate of a zirconium alloy. The plate is guided by means of transport rollers 12 through a slot

13 som er koblet til en høyfrekvensgenerator.14 med en frekvens innen området 1-1000 kHz. Valsene 12 kan drives med en omkretshastighet innen området 0,1-30 cm/s. Kjølegass ,fortrinnsvis en . inert gass, f.eks. argon, blåses på platene ved hjelp av ut-blåsningsbokser 16 og 17 som er forsynt med utblåsingsmunn-stykker som er vinkelrett rettet mot platen, og de mot platen vinkelrett rettede luftstrømmer har alle en bredde d som er 10- 13 which is connected to a high frequency generator. 14 with a frequency within the range 1-1000 kHz. The rollers 12 can be driven at a peripheral speed within the range of 0.1-30 cm/s. Refrigerant gas, preferably a . inert gas, e.g. argon, is blown onto the plates by means of blow-out boxes 16 and 17 which are provided with blow-out nozzles which are perpendicularly directed to the plate, and the air streams directed perpendicularly to the plate all have a width d which is 10-

80% av platebredden D og er anordnet med ca. halvparten av dysene på hver side av et tenkt vertikalplan gjennom platens midtlinje i fremføringsretningen. Valsene 12 er fortrinnsvis avkjølte ved hjelp av strømmende kjølevann eller en kjølegasstrøm som er rettet mot valseoverflaten. 80% of the plate width D and is arranged with approx. half of the nozzles on each side of an imaginary vertical plane through the center line of the plate in the direction of advance. The rolls 12 are preferably cooled by means of flowing cooling water or a cooling gas stream which is directed towards the roll surface.

Claims (6)

1. Fremgangsmåte ved antikorrosjonsbehandling av plater av en zirkoniumlegering som ér beregnet for reaktorformål, karakterisert ved at platen oppvarmes sonevis til en temperatur av minst 900°C og slik at temperaturøkningen fra 500°C og opp til denne temperatur tar høyst 60 sekunder, hvorefter hver oppvarmet sone straks utsettes for en temperatursenkning av minst 200 C i løpet av høyst 60 sekunder.1. Procedure for the anti-corrosion treatment of plates made of a zirconium alloy intended for reactor purposes, characterized in that the plate is heated in zones to a temperature of at least 900°C and so that the temperature increase from 500°C and up to this temperature takes no more than 60 seconds, after which each heated zone is immediately exposed to a temperature drop of at least 200 C within a maximum of 60 seconds. 2. Fremgangsmåte ifølge krav 1,karakterisert ved at platen bare oppvarmes på sin overflate, hvorved temperatur-økningen i et indre tverrsnittsparti av platen er utilstrekkelig til å bevirke noen nevneverdig strukturforandring i dette parti.2. Method according to claim 1, characterized in that the plate is only heated on its surface, whereby the temperature increase in an internal cross-sectional part of the plate is insufficient to cause any significant structural change in this part. 3. Fremgangsmåte Ifølge krav 1, karakterisert ved at et overflateskikt oppvarmes til den nødvendige temperatur ved at det med en hastighet på minst 1 m/s føres forbi en induksjonsspole som er koblet til en høyfrekvensgenerator og som tilføres en høyfrekvensstrøm med en frekvens på minst 0,5 MHz.3. Method According to claim 1, characterized in that a surface layer is heated to the required temperature by passing it at a speed of at least 1 m/s past an induction coil which is connected to a high-frequency generator and which is supplied with a high-frequency current with a frequency of at least 0 .5 MHz. 4. Fremgangsmåte ifølge krav 2,karakterisert ved at det anvendes en frekvens av 0,5-30 MHz, en hastighet av 1-5 m/s og en fra høyfrekvensgeneratoren til platen avgitt momentaneffekt av minst 1 kw/cm 2.4. Method according to claim 2, characterized in that a frequency of 0.5-30 MHz, a speed of 1-5 m/s and an instantaneous power emitted from the high-frequency generator to the plate of at least 1 kw/cm 2 are used. 5. Fremgangsmåte ifølge krav 1, karakterisert ved at temperatursenkningen utføres ved hjelp av tvungen gassavkjøling, hvorved et midtfelt på minst 10% av platebredden utsettes for en fra en blåseanordning hovedsakelig vinkelrett mot platen rettet gasstrøm som gjennomsnittlig er minst 50% større pr. overflateenhet enn den tilsvarende verdi for platen forøvrig.5. Method according to claim 1, characterized in that the temperature lowering is carried out by means of forced gas cooling, whereby a central field of at least 10% of the plate width is exposed to a gas flow from a blowing device mainly perpendicular to the plate, which is on average at least 50% greater per surface unit than the corresponding value for the plate otherwise. 6. Fremgangsmåte ifølge krav 5,karakterisert ved at platen med en hastighet på 0,1-3.0 cm/s føres forbi en induksjonsspole som tilføres en strøm med en frekvens av 1-1000 kHz.6. Method according to claim 5, characterized in that the plate is passed at a speed of 0.1-3.0 cm/s past an induction coil which is supplied with a current with a frequency of 1-1000 kHz.
NO760851A 1975-03-14 1976-03-11 PROCEDURES FOR ANTI-CORROSION TREATMENT OF ZIRCONIUM ALLOYS NO138454C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7502865A SE391952B (en) 1975-03-14 1975-03-14 USE OF A CIRCULAR PLATE NUCLEAR REACTOR WHICH IS ANTI-CORROSION TREATED
SE7511523A SE394201B (en) 1975-10-15 1975-10-15 PROCEDURE FOR ANTI-CORROSION TREATMENT OF PLATE OF A ZIRCHONIUM ALLOY FOR REACTOR END

Publications (3)

Publication Number Publication Date
NO760851L NO760851L (en) 1976-09-15
NO138454B true NO138454B (en) 1978-05-29
NO138454C NO138454C (en) 1978-09-06

Family

ID=26656594

Family Applications (1)

Application Number Title Priority Date Filing Date
NO760851A NO138454C (en) 1975-03-14 1976-03-11 PROCEDURES FOR ANTI-CORROSION TREATMENT OF ZIRCONIUM ALLOYS

Country Status (10)

Country Link
JP (1) JPS51116106A (en)
DE (1) DE2608824A1 (en)
DK (1) DK106376A (en)
ES (1) ES445976A1 (en)
FI (1) FI58518C (en)
FR (1) FR2303865A1 (en)
GB (1) GB1537930A (en)
IT (1) IT1057731B (en)
NL (1) NL7602275A (en)
NO (1) NO138454C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE420218B (en) * 1978-08-22 1981-09-21 Asea Atom Ab DEVICE FOR HEAT TREATMENT OF A LONG-TERM PLATE
US4294631A (en) * 1978-12-22 1981-10-13 General Electric Company Surface corrosion inhibition of zirconium alloys by laser surface β-quenching
US4279667A (en) * 1978-12-22 1981-07-21 General Electric Company Zirconium alloys having an integral β-quenched corrosion-resistant surface region
US4584030A (en) * 1982-01-29 1986-04-22 Westinghouse Electric Corp. Zirconium alloy products and fabrication processes
US4648912A (en) * 1982-01-29 1987-03-10 Westinghouse Electric Corp. High energy beam thermal processing of alpha zirconium alloys and the resulting articles
US4576654A (en) * 1982-04-15 1986-03-18 General Electric Company Heat treated tube
JPS60165580A (en) * 1984-02-08 1985-08-28 株式会社日立製作所 Coated tube for reactor fuel and manufacture thereof
US4717428A (en) * 1985-08-02 1988-01-05 Westinghouse Electric Corp. Annealing of zirconium based articles by induction heating
US4671826A (en) * 1985-08-02 1987-06-09 Westinghouse Electric Corp. Method of processing tubing
FR2673198B1 (en) * 1991-02-22 1993-12-31 Cezus Cie Europ Zirconium PROCESS OF MANUFACTURING A STRIP OR SHEET IN ZIRCALOY 2 OR 4 AND PRODUCT OBTAINED.
FR2688232B1 (en) * 1992-03-04 1994-04-22 Cezus Co Europ Zirconium PROCESS FOR PRODUCING ZIRCONIUM TUBES FORMED FROM LAYERS OF DIFFERENT COMPOSITION.
US5361282A (en) * 1993-05-13 1994-11-01 General Electric Company Dimensionally stable and corrosion-resistant fuel channels and related method of manufacture
US5305359A (en) * 1993-05-13 1994-04-19 General Electric Company Dimensionally stable and corrosion-resistant fuel channels and related method of manufacture
FR2711147B1 (en) * 1993-10-11 1995-11-17 Cezus Co Europ Zirconium Method for manufacturing a flat zirconium alloy product comprising heating in the beta domain by infrared.
FR2716897B1 (en) * 1994-03-02 1996-04-05 Cezus Co Europ Zirconium A method of manufacturing a flat product of zirconium alloy or hafnium alloy comprising a further hot rolling after reheating by infrared and its uses.
SE9601594D0 (en) * 1996-04-26 1996-04-26 Asea Atom Ab Fuel boxes and a method for manufacturing fuel boxes
FR2858332B1 (en) * 2003-07-31 2005-10-28 Cezus Co Europ Zirconium METHOD FOR MANUFACTURING A ZIRCONIUM ALLOY FLAT PRODUCT, FLAT PRODUCT THUS OBTAINED, AND COMPONENT FUEL ASSEMBLY ELEMENT FOR NUCLEAR POWER PLANT REACTOR PRODUCED FROM THE FLAT PRODUCT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847684A (en) * 1973-09-20 1974-11-12 Teledyne Wah Chang Method of quenching zirconium and alloys thereof
AU498717B2 (en) * 1975-02-25 1979-03-22 General Electric Company Zirconium alloy heat treatment
AU8675375A (en) * 1975-02-25 1977-05-26 Gen Electric Zirconium alloy heat treatment process and product

Also Published As

Publication number Publication date
FI58518C (en) 1981-02-10
NO760851L (en) 1976-09-15
FI760638A (en) 1976-09-15
FI58518B (en) 1980-10-31
DE2608824A1 (en) 1976-09-23
JPS51116106A (en) 1976-10-13
GB1537930A (en) 1979-01-10
NL7602275A (en) 1976-09-16
FR2303865A1 (en) 1976-10-08
DK106376A (en) 1976-09-15
FR2303865B1 (en) 1979-08-10
NO138454C (en) 1978-09-06
ES445976A1 (en) 1977-10-16
IT1057731B (en) 1982-03-30

Similar Documents

Publication Publication Date Title
NO138454B (en) PROCEDURES FOR ANTI-CORROSION TREATMENT OF ZIRCONIUM ALLOYS
RU2010101900A (en) METHOD OF HOT ROLLING AND HEAT TREATMENT OF STEEL STRIP
US3969162A (en) Method of producing silicon steel strip
MX2015002539A (en) Rapidly heating device of continuous annealing equipment.
WO2022151739A1 (en) Controllable short-process preparation system for continuous casting and rolling preparation of titanium alloy wires
US2232391A (en) Method and apparatus for annealing strip
CN110218856A (en) A kind of apparatus for continuous heat treatment and its application method of thin-band material
US2412041A (en) Process for flattening silicon steel sheets
WO2014115190A1 (en) Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
US2205915A (en) Method and apparatus for annealing strip
US2194909A (en) Method of reconditioning metal
US2642764A (en) Method of rolling thin sheet metal
CN106670743B (en) A kind of manufacturing method of precision gas spring straight seam welded pipe
CN204874666U (en) Wire rod annealing device
JP2862484B2 (en) Method for producing flat articles of zirconium alloy including heating in the beta range by infrared
CN105642679A (en) Method and device for pre-detecting steel plate shape and controlling initial temperature
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
US4231818A (en) Methods of producing silicon steel strip
US2897698A (en) Continuous treatment of metal strip
JPS5847457B2 (en) Cooling method for steel strip in continuous annealing equipment
CN209522895U (en) A kind of jaundice furnace of the cutting die steel with partition heating structure
JPH02153023A (en) Roll cooling method for steel strip
CN113319130B (en) Continuous rolling plate temperature control method and device
JPS62188731A (en) Method for flattening steel strip
JPS5944367B2 (en) Water quenching continuous annealing method