NO138410B - HEAT-CURTAINABLE, CORROSION-PROTECTIVE COATING OR COATING PASS ON THE BASIS OF AN ACID-WATER SOLUTION, CONTAINING A POWDER-SHAPED AL / MG ALLOY - Google Patents

HEAT-CURTAINABLE, CORROSION-PROTECTIVE COATING OR COATING PASS ON THE BASIS OF AN ACID-WATER SOLUTION, CONTAINING A POWDER-SHAPED AL / MG ALLOY Download PDF

Info

Publication number
NO138410B
NO138410B NO2789/72A NO278972A NO138410B NO 138410 B NO138410 B NO 138410B NO 2789/72 A NO2789/72 A NO 2789/72A NO 278972 A NO278972 A NO 278972A NO 138410 B NO138410 B NO 138410B
Authority
NO
Norway
Prior art keywords
alloy
magnesium
coating
aluminum
heat
Prior art date
Application number
NO2789/72A
Other languages
Norwegian (no)
Other versions
NO138410C (en
Inventor
Robert J Brumbaugh
Original Assignee
Teleflex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teleflex Inc filed Critical Teleflex Inc
Publication of NO138410B publication Critical patent/NO138410B/en
Publication of NO138410C publication Critical patent/NO138410C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Description

Foreliggende oppfinnelse vedrører en varmeherdbar belegg- eller overtrekks-masse, bestående av en dispersjon av et uorganisk fast material i partikkelform med en kornstørrelse på mindre enn 44 ^u.m i en vandig løsning av fosforsyre, kromsyre eller molybdensyre, henholdsvis metallsaltene av disse syrer, med minst ett mol pr. liter oppløst fosfat, minst o,3 mol pr. The present invention relates to a heat-curable coating or coating compound, consisting of a dispersion of an inorganic solid material in particle form with a grain size of less than 44 µm in an aqueous solution of phosphoric acid, chromic acid or molybdic acid, respectively the metal salts of these acids, with at least one mole per liter of dissolved phosphate, at least o.3 mol per

liter oppløst kromat og/eller molybdat og minst o,5 mol pr. liter of dissolved chromate and/or molybdate and at least o.5 mol per

liter oppløst metall,, idet det faste material i partikkel- liter of dissolved metal, as the solid material in particulate

form er tilstede i en mengde på lo til 2ooo g pr. liter av løsningen, "og det særegne ved. den varmeherdbare belegg- eller overtrekksmasse i henhold til oppfinnelsen er at minst lo.. vektprosent av det faste material er en legering av aluminium og. magnesium, som inneholder minst.3' vektprosent aluminium og minst 3 vektprosent magnesium, idet summen av. aluminium og-magnesium er minst 80 vektprosent. form is present in an amount of lo to 2ooo g per liters of the solution, "and the distinctive feature of the heat-curable coating or coating compound according to the invention is that at least 10% by weight of the solid material is an alloy of aluminum and magnesium, containing at least 3% by weight of aluminum and at least 3 weight percent magnesium, the sum of aluminum and magnesium being at least 80 weight percent.

Disse og andre trekk ved oppfinnelsen fremgår av patent- These and other features of the invention appear in patent

kravene. the requirements.

Ved en tidligere kjent varmeherdbar overtrekksmasse av denne In the case of a previously known heat-curable coating compound of this

type, kjent fra US patentskrift 3.248.251, ble det som fast material i partikkelform anvendt aluminiumpulver. Den kjente overtrekksmasse ble anvendt for å gi bedre korrosjonsbe-standighet for deler i jetmotorer-.. type, known from US patent 3,248,251, aluminum powder was used as solid material in particulate form. The known coating compound was used to provide better corrosion resistance for parts in jet engines.

Den oppgave som ligger til grunn for oppfinnelsen er å The task underlying the invention is to

forhøye den oppnåelige korrosjonsbeskyttelse i tidligere kjente overtrekksmasser av denne type. En slik forhøyelse av increase the achievable corrosion protection in previously known coating compounds of this type. Such an elevation of

korrosjonsbeskyttelsen kunne oppnås ved å tilsette magnesium som står høyere i den elektrokjemiske spenningsrekke og derfor ville ha bedre egenskaper med hensyn til korrosjonsbeskyttelse. Hvis imidlertid rent magnesiumpulver tilsettes til den vandige løsning av de nevnte syrer eller deres metallsalter, skjer det en kraftig reaksjon og oppløsning av magnesiumpulveret.. Det forhold at magnesium står høyere i den elektrokjemiske spenningsrekke kan således ikke utnyttes, the corrosion protection could be achieved by adding magnesium which is higher in the electrochemical voltage series and would therefore have better properties with regard to corrosion protection. If, however, pure magnesium powder is added to the aqueous solution of the aforementioned acids or their metal salts, a strong reaction and dissolution of the magnesium powder takes place. The fact that magnesium is higher in the electrochemical voltage series cannot therefore be exploited,

i og med at magnesium reagerer med den løsning som skal binde og dispergere det. De nevnte fordeler oppnås og de nevnte ulemper unngås imidlertid ved den foreliggende oppfinnelse ved at minst lo vektprosent av det faste material er en legering av aluminium og magnesium, som inneholder minst 3 vektprosent aluminium og minst 3 vektprosent magnesium, idet summen av aluminium og magnesium er minst 80 vektprosent. in that magnesium reacts with the solution to bind and disperse it. However, the aforementioned advantages are achieved and the aforementioned disadvantages are avoided by the present invention in that at least 10% by weight of the solid material is an alloy of aluminum and magnesium, which contains at least 3% by weight of aluminum and at least 3% by weight of magnesium, the sum of aluminum and magnesium being at least 80 percent by weight.

Det er i seg selv kjent å anvende en magnesium-aluminium-legering i overtrekksmidler av ellers organisk type. Det er videre velkjent å anvende sinkstøv i korrosjonsbeskyttende malinger. Således foreslås det i DDR patentskrift 38.316 å erstatte Zn med den legering som her er kalt " Al^ Mg^" It is known per se to use a magnesium-aluminium alloy in coating agents of an otherwise organic type. It is also well known to use zinc dust in corrosion-protective paints. Thus, it is proposed in GDR patent document 38,316 to replace Zn with the alloy here called "Al^ Mg^"

(magnesiuminnhold : 37,5%). Al/Mg-legeringer i pulverform er altså i og for seg kjente tilsetningsstoffer til korrosjonsbeskyttende malinger. Det byr imidlertid på problemer med å anvende Zn-støv i rent uorganiske malinger, og da legeringen "Al2Mg2" - ifølge tabellen i det nevnte DDR patentskrift - (magnesium content: 37.5%). Al/Mg alloys in powder form are thus in and of themselves known additives for corrosion-protective paints. However, there are problems with using Zn dust in purely inorganic paints, and then the alloy "Al2Mg2" - according to the table in the aforementioned GDR patent document -

er enda mer "uedel" enn Zn, skulle man da ha ventet at problem-ene ville bli enda større med denne legering. I DDR patentskriftet gis det da også bare eksempler på organiske bindemidler. is even more "impure" than Zn, one would then have expected that the problems would be even greater with this alloy. In the GDR patent document, only examples of organic binders are given.

Ved den varmeherdbare belegg- eller overtrekks-masse i henhold til oppfinnelsen forhindres reaksjon mellom magnesium og den vandige løsning av de nevnte syrer eller deres metallsalter ved at det som nevnt anvendes en nærmere angitt aluminium-magnesium-legering, slik at overtrekksmassen inneholder magnesium og dermed oppnår vesentlig bedre korrosjonsegenskaper samtidig med en bedre adhesjon. With the heat-curable coating or coating compound according to the invention, a reaction between magnesium and the aqueous solution of the aforementioned acids or their metal salts is prevented by using, as mentioned, a specified aluminium-magnesium alloy, so that the coating compound contains magnesium and thus achieves significantly better corrosion properties at the same time as better adhesion.

Det er fastslått at det foretrukne beleggmaterial i henhold til det ovennevnte US patentskrift - hvor aluminiumpulver anvendes som partikkelformet material - har den ønskede egen- It has been established that the preferred coating material according to the above-mentioned US patent - where aluminum powder is used as particulate material - has the desired property

skap å bevirke offer-korrosjonsbeskyttelse. D.v.s., når underlaget for belegget er jernholdig metall, kommer aluminium-pulveret i belegget på grunn av de elektrokjemiske reaksjoner som opptrer, til gradvis å ofre seg selv med det resultat at det inntrer liten eller ingen korrosjon av det jernholdige metall. cabinet to effect sacrificial corrosion protection. That is, when the substrate for the coating is ferrous metal, the aluminum powder in the coating, due to the electrochemical reactions that occur, gradually sacrifices itself with the result that little or no corrosion of the ferrous metal occurs.

Det har vist seg at denne offer-egenskap hos det kjente It has been shown that this sacrificial quality of the familiar

belegg sterkt økes ved at belegget behandles slik at det blir elektrisk ledende. Den beste måte å bevirke dette på består i å herde belegget til vannuoppløselighet ved en temperatur som er lik eller høyere enn sintringstemperaturen for aluminium-pulveret i belegget. Det har med andre ord vist seg at en herdetemperatur på omtrent 538° C er ønskelig. coating is greatly increased by treating the coating so that it becomes electrically conductive. The best way to effect this is to harden the coating to water insolubility at a temperature equal to or higher than the sintering temperature of the aluminum powder in the coating. In other words, it has been shown that a curing temperature of approximately 538° C is desirable.

Ved anvendelse av beleggmaterialet i henhold til oppfinnelsen, hvor det partikkelformede material er en legering inneholdende magnesium og aluminium, oppnås ennå større korrosjonsbeskyttelse, endog ved anvendelse av en så lav herdetemperatur som 315° C. When using the coating material according to the invention, where the particulate material is an alloy containing magnesium and aluminium, even greater corrosion protection is achieved, even when using a curing temperature as low as 315°C.

Det er mulig at dette kan bero på at magnesium har ennå sterkere offer-egenskaper enn aluminium. Videre, og dette er av like stor betydning for oppnåelse av de samlede fordeler, har legering-ene av magnesium og aluminium en lavere sintringstemperatur enn pulverformet loo% aluminium, og det er derfor at den økede korrosjonsbeskyttelse kan oppnås selv om det anvendes en vesentlig lavere herdetemperatur. Man skulle vente at denne legering, på grunn av magnesiums høye reaktivitet, ville løses meget hurtig i den vandige løsning, da løsningens pH er omkring 1,6 - 2,7. Det er imidlertid funnet at når man anvender den angitte Al/Mg-legering foreligger det rikelig med tid mellom blandingen av legeringspulveret i løsningen og det tidspunkt når belegget varmeherdes. Ikke desto mindre er det ønskelig at legeringspulveret blandes It is possible that this may be due to magnesium having even stronger sacrificial properties than aluminium. Furthermore, and this is of equal importance for achieving the overall benefits, the alloys of magnesium and aluminum have a lower sintering temperature than powdered loo% aluminium, and it is therefore that the increased corrosion protection can be achieved even if a significantly lower curing temperature. One would expect that this alloy, due to magnesium's high reactivity, would dissolve very quickly in the aqueous solution, as the pH of the solution is around 1.6 - 2.7. However, it has been found that when using the specified Al/Mg alloy, there is plenty of time between the mixing of the alloy powder in the solution and the time when the coating is heat cured. Nevertheless, it is desirable that the alloy powder be mixed

med vannløsningen relativt kort tid før påføring og varmeherding. with the water solution a relatively short time before application and heat curing.

De ovennevnte og andre formål, trekk og fordeler ved oppfinnelsen skal illustreres og tydeliggjøres i den etter-følgende mer detaljerte beskrivelse. The above-mentioned and other purposes, features and advantages of the invention shall be illustrated and clarified in the following more detailed description.

Legeringspulveret bør fortrinnsvis inneholde fra 3-95 vektprosent aluminium og resten magnesium. Ut fra det synspunkt å oppnå lavest mulig sintringstemperatur og følgelig herdetemperatur for beleggmaterialet, er den mest foretrukne The alloy powder should preferably contain from 3-95 weight percent aluminum and the rest magnesium. From the point of view of achieving the lowest possible sintering temperature and consequently curing temperature for the coating material, it is the most preferred

legering lo vektprosent aluminium og 3o vektprosent magnesium, hvilket tilsvarer eutektikum-sammensetningen. Oppnåelse av en lav herdetemperatur utgjør imidlertid bare en faktor i valget av den legering som skal anvendes, og en annen faktor er f.eks. at reaksjonen mellom legeringen og den sure vannløsning skal inhiberes så lenge som mulig. Under hensyntagen til alle faktorer er en 5o-5o legering utmerket, og det foretrukne området er fra 3o-7o vektprosent aluminium og resten magnesium. alloy lo weight percent aluminum and 30 weight percent magnesium, which corresponds to the eutectic composition. Achieving a low hardening temperature is, however, only one factor in the choice of the alloy to be used, and another factor is e.g. that the reaction between the alloy and the acidic water solution must be inhibited for as long as possible. Taking all factors into account, a 5o-5o alloy is excellent, and the preferred range is from 3o-7o weight percent aluminum and the rest magnesium.

Legeringer som i overveiende grad består av magnesium og aluminium, men som dessuten inneholder ett eller flere andre metaller, kan imidlertid også anvendes. Typiske eksempler på slike andre metaller er sink, krom, tinn, nikkel silisium, titan og kopper. Det kan være fordelaktig å innblande slike andre metaller i legeringen ved at man da erholder en legering med lavt smeltepunkt og følgelig lav sintringstemperatur. Men det vesentlige er dog at slike andre metaller kan være til stede uten å eliminere de fordeler som oppnås ved anvendelsen av Al/Mg-kombinasjonen. Generelt kan derfor legeringer som er brukbare for oppfinnelsen, inneholde fra 3-95 vektprosent aluminium, However, alloys which predominantly consist of magnesium and aluminium, but which also contain one or more other metals, can also be used. Typical examples of such other metals are zinc, chromium, tin, nickel silicon, titanium and copper. It can be advantageous to mix such other metals into the alloy in that an alloy with a low melting point and consequently a low sintering temperature is obtained. However, the essential thing is that such other metals can be present without eliminating the advantages achieved by the use of the Al/Mg combination. In general, therefore, alloys which are usable for the invention can contain from 3-95 weight percent aluminium,

fra 3-95 vektprosent magnesium, idet dog minst 8o vektprosent av legeringen består av aluminium og magnesium. from 3-95 weight percent magnesium, although at least 80 weight percent of the alloy consists of aluminum and magnesium.

Særlig for oppnåelse av et relativt jevnt belegg, hvilket ofte er nødvendig særlig for jetmotorkomponenter hvor ujevnhet kunne forårsake turbulens, bør legeringens partikkelstørrelse være liten, helst mindre enn lo ^m. Legeringspulveret kan også anvendes i kombinasjon med andre pulvermaterialer. For visse anvendelser kan det f.eks. være ønskelig å anvende en 5o-5o In particular to achieve a relatively even coating, which is often necessary especially for jet engine components where unevenness could cause turbulence, the alloy's particle size should be small, preferably less than lo ^m. The alloy powder can also be used in combination with other powder materials. For certain applications, it can e.g. be desirable to use a 5o-5o

. blanding av aluminiumpulver og Al/Mg-legeringspulver. Legeringspartiklene, og også aluminiumpartiklene når en blanding derav anvendes, bør fortrinnsvis være av sfærisk form, ofte betegnet som "atomisert" pulver - dette til forskjell fra de flate aluminiumpartikler som vanligvis anvendes i pigmenterte overtrekksmidler på organisk basis. Blandinger inneholdende så lite som lo vektprosent Al/Mg-legering og resten av andre pulvere kan anvendes når særlige egenskaper ønskes. Når det anvendes andre pulvere i kombinasjon med legeringspulveret, bør det annet pulver i alle fall ikke hurtig løse seg i den sure løsningen. Foruten aluminiumpulver kan det som eksempel nevnes kalsiumkarbonat, sink, silisiumdioksyd, aluminiumoksyd, kromoksyd (d.v.s. C^O^) . mixture of aluminum powder and Al/Mg alloy powder. The alloy particles, and also the aluminum particles when a mixture thereof is used, should preferably be of spherical shape, often referred to as "atomized" powder - this in contrast to the flat aluminum particles that are usually used in pigmented coating agents on an organic basis. Mixtures containing as little as 10% by weight Al/Mg alloy and the remainder other powders can be used when special properties are desired. When other powders are used in combination with the alloy powder, the other powder should in any case not dissolve quickly in the acidic solution. Besides aluminum powder, examples can be mentioned of calcium carbonate, zinc, silicon dioxide, aluminum oxide, chromium oxide (i.e. C^O^)

og metallkarbider og silisider. and metal carbides and silicides.

t t

Total mengde partikkelformet material som inngår i belegget, kan være fra lo til så mye som 2ooo g pr. liter i avhengighet av den anvendelse som belegget er bestemt for, og også i avhengighet av atom- eller molekylvekten av det partikkelformede material. For de fleste anvendelser og særlig når det partikkelformede material helt eller i det minste overveiende utgjøres av legeringspulveret, bør imidlertid den mengde partikkelformet material som innblandes i belegget være 25o-looo g pr. -liter løsning. The total amount of particulate material included in the coating can be from lint to as much as 2ooo g per liters depending on the application for which the coating is intended, and also depending on the atomic or molecular weight of the particulate material. For most applications and particularly when the particulate material is entirely or at least predominantly made up of the alloy powder, however, the amount of particulate material mixed into the coating should be 250-100 g per -liter solution.

I det amerikanske patentskrift 3.248.251 er formuleringen og sammensetningen av vannløsningen detaljert forklart, også hva angår de nærmere forhold ved sammenblandingen. Det skal her påpekes at selv om det kan forventes at +6valensen av krom i løsningen kommer til å være til stede som bikromat snarere enn som kromat, på grunn av at løsningen som er sur, skal det her inntatte utrykk "kromat" også innbefatte bikromat, og for det formål å oppnå ensartethet ved definisjonen av mol-konsentrasjonene antas kromatet å foreligge som kromat og ikke som bikromat, selv om i virkeligheten krom med +6 valens . foreligger i form av bikromat. In US patent document 3,248,251, the formulation and composition of the water solution is explained in detail, also with regard to the details of the mixing. It should be pointed out here that although it can be expected that the +6 valence of chromium in the solution will be present as dichromate rather than as chromate, due to the solution being acidic, the term "chromate" used here should also include dichromate , and for the purpose of achieving uniformity in the definition of the molar concentrations, the chromate is assumed to be present as chromate and not as bichromate, although in reality chromium with +6 valence. available in the form of bichromate.

I samtlige tilfeller skal løsningen inneholde minst o,3 mol In all cases, the solution must contain at least o.3 mol

pr. liter oppløst kromat eller molybdat, minst o,5 mol pr. liter oppløst metall og minst 1 mol pr. liter oppløst fosfat. per liter of dissolved chromate or molybdate, at least o.5 mol per liter of dissolved metal and at least 1 mol per liters of dissolved phosphate.

De foretrukne områder er 1-4 mol pr. liter oppløst fosfat, o,5-3 mol pr. liter kromat eller molybdat og 1-4 mol pr. The preferred ranges are 1-4 mol per liter of dissolved phosphate, o.5-3 mol per liter of chromate or molybdate and 1-4 mol per

liter oppløst metall. Ved spesifisering av disse konsentra-sjoner henvises til de angitte radikaler eller ioner, i stedet for til det ..salt eller-rden syre som bestanddelen kan tilsettes i form av eller foreligge i løsningen, og i denne sammenheng anvendes uttrykket "ion", f.eks. "fosfation" for lettvinthets skyld for å gjøre det klart at det vises til et ion, selv om det (i avhengighet av ioniseringskonstanten for den enkelte bestanddel) skulle forekomme at en del av den oppløste bestanddel som det refereres til, faktisk ikke kan foreligge i ionisert eller disossiert form. liters of dissolved metal. When specifying these concentrations, reference is made to the specified radicals or ions, instead of to the salt or acid to which the component can be added in the form of or present in the solution, and in this context the term "ion" is used, e.g. .ex. "phosphation" for convenience to make it clear that an ion is being referred to, even if (depending on the ionization constant of the individual constituent) it should happen that part of the solute referred to may not actually be present in ionized or dissociated form.

Fosfationet, dvs. anionet, kan innføres i vannløsningen i form av fosforsyre eller i form av fosfater av det metall eller de metaller som ønskes innblandet som metallkation, eller også kan det tilsettes i begge former. Uttrykket "fosfat" skal innbefatte ikke bare PO^-ionet, men også HPO^- og ^PO^-ionene. Samtlige tre skriver.seg f.eks. fra ionisering av H^PO^ og hydrogenfosfationene kommer vanligvis, i det minste i en viss utstrekning, til å være til stede i blandingene.Når fosforsyre anvendes som tilsetning ved fremstilling av blandingene, er det meget ønskelig å anvende ortosyren, H^PO^, selv om også de andre former kan anvendes, som f.eks. meta- eller pyrosyrene, som alle ioniseres i vann. The phosphate cation, i.e. the anion, can be introduced into the water solution in the form of phosphoric acid or in the form of phosphates of the metal or metals that are desired mixed in as a metal cation, or it can be added in both forms. The term "phosphate" shall include not only the PO^ ion, but also the HPO^ and ^PO^ ions. All three write, e.g. from ionization of H^PO^ and the hydrogen phosphate ions are usually present, at least to a certain extent, in the mixtures. When phosphoric acid is used as an additive in the preparation of the mixtures, it is highly desirable to use the ortho acid, H^PO^ , although the other forms can also be used, such as e.g. the meta- or pyroacids, all of which ionize in water.

Kromationet kan tilsettes enten som kromsyre eller som dens anhydrid CrO^, eller som et kromat eller bikromat av det eller de metaller som man ønsker tilsette som metallkation. Kombina-sjoner av syre og metallsalter kan naturligvis også anvendes. Om det anvendes molybdatanion, kan dette tilsettes som molybdensyre eller som anhydridet MoO^ eller som metallmolybdat. For de fleste anvendelser oppnås ingen spesiell fordel ved å innblande molybdation, og molybdat har den ulempe at det er dyrt. Det gir heller ikke blandingene så gode egenskaper som dem som kan oppnås med kromat. The chromate cation can be added either as chromic acid or as its anhydride CrO^, or as a chromate or bichromate of the metal or metals that one wishes to add as a metal cation. Combinations of acid and metal salts can of course also be used. If molybdate anion is used, this can be added as molybdic acid or as the anhydride MoO^ or as metal molybdate. For most applications, no particular advantage is gained by incorporating molybdate, and molybdate has the disadvantage of being expensive. It also does not give the mixtures as good properties as those that can be achieved with chromate.

Metallkationet kan tilsettes enten som et metallfosfat, kromat, bikromat eller molybdat. Metallene kan også tilsettes helt eller delvis i form av oksyd, hydroksyd eller karbonat, som løses i fosforsyren eller kromsyren. Hvis det anvendes karbonat, utvikles selvfølgelig karbondioksyd. Det er klart at når metallene tilsettes på denne måte, f.eks. som oksyd, bør i det minste en del av fosfatet, kromatet eller molybdatet tilsettes som syre eller som syre-anhydrid. Metallkationene med valenser +2 og +3 foretrekkes, og for de fleste anvendelser av blandingene er magnesiumion særlig fordelaktig. The metal cation can be added either as a metal phosphate, chromate, bichromate or molybdate. The metals can also be added in whole or in part in the form of oxide, hydroxide or carbonate, which are dissolved in the phosphoric acid or chromic acid. If carbonate is used, of course carbon dioxide is evolved. It is clear that when the metals are added in this way, e.g. as oxide, at least part of the phosphate, chromate or molybdate should be added as acid or as acid anhydride. The metal cations with valences +2 and +3 are preferred, and for most applications of the mixtures magnesium ion is particularly advantageous.

I det følgende skal eksempelvise foretrukne blandinger illustreres. In the following, exemplary preferred mixtures will be illustrated.

Eksempel 1 Example 1

Den fremstilte blanding av Al/Mg-legering og fosfatkromat-metallionløsningen påføres, f.eks. ved sprøyting, dypning, valsing eller pensling på den eller de overflater som skal The prepared mixture of Al/Mg alloy and the phosphate chromate metal ion solution is applied, e.g. by spraying, dipping, rolling or brushing on the required surface(s).

belegges, og herdes deretter ved oppvarming til minst 315°C. coated, and then hardened by heating to at least 315°C.

Den optimale herdetemperaturen varierer i avhengighet av den eksakte sammensetning av legeringen. Vanligvis er imidlertid den foretrukne herdetemperatur omtrent 19o-427°C når den foretrukne legering anvendes (dvs. en legering inneholdende 3o-7o vektprosent aluminium og resten magnesium). Etter fullført herding er belegget uløselig i vann, selv om det i lang tid utsettes for vann og det erholdte belegg har offer-virkning i forhold til stålunderlaget. Den tid som kreves for herdingen, beror på den anvendte temperatur, og jo høyere temperaturen er, desto kortere tid kreves. For en gjennom-snittlig herding av et gitt belegg ved lav temperatur skulle f.eks. en herdetid på 15-6o minutter ved 315°C være ønskelig. Når det kreves hurtig herding, skulle 5-lo minutter ved 427°C kunne passe. For en langsom herding skulle 24 timer ved 19o°C være til-strekkelig. For en ennå hurtigere herding kan det med fordel anvendes strålingsoppvarming ved høyere temperaturer. Vanligvis kan blandingene ikke overherdes, innen relativt vide grenser, og bortsett fra omkostninger og eventuelle temperaturbegrensninger med hensyn til det partikkelformede material eller de anvendte underlagsmaterialer er det ikke forbundet med noen spesiell The optimum hardening temperature varies depending on the exact composition of the alloy. Generally, however, the preferred annealing temperature is about 19o-427°C when the preferred alloy is used (ie an alloy containing 3o-7o weight percent aluminum and the balance magnesium). After complete curing, the coating is insoluble in water, even if it is exposed to water for a long time and the obtained coating has a sacrificial effect in relation to the steel substrate. The time required for curing depends on the temperature used, and the higher the temperature, the shorter the time required. For an average curing of a given coating at low temperature, e.g. a curing time of 15-60 minutes at 315°C would be desirable. When rapid hardening is required, 5-lo minutes at 427°C should be adequate. For slow curing, 24 hours at 19o°C should be sufficient. For even faster curing, radiation heating at higher temperatures can be advantageously used. Generally, the mixtures cannot be overcured, within relatively wide limits, and apart from costs and possible temperature limitations with regard to the particulate material or the substrate materials used, it is not associated with any special

ulempe å herde, under lengre tidsrom eller ved høyere temperaturer , enn det som er .absolutt nødyendig. disadvantage of curing, for longer periods of time or at higher temperatures than is absolutely necessary.

Beleggets tykkelse etter herdingen bør fortrinnsvis være omkring o,ol25-o,5o mm, og følgelig bør den eksakte konsentrasjon av den blanding som påføres og den påførte mengde reguleres i over-ensstemmelse dermed. I enkelte tilfelle er det ønskelig å på- The thickness of the coating after curing should preferably be about 0.125-0.50 mm, and consequently the exact concentration of the mixture applied and the amount applied should be regulated accordingly. In some cases, it is desirable to apply

føre to eller flere belegg, med eller uten herding mellom de enkelte belegg. Blandingene i henhold til oppfinnelsen fukter underlaget godt. Det foreligger derfor lite behov for å apply two or more coatings, with or without curing between the individual coatings. The mixtures according to the invention wet the substrate well. There is therefore little need to

anvendes organiske fuktemidler for oppnåelse av et jevnt belegg. organic wetting agents are used to achieve an even coating.

Følgende ytterligere eksempler illustrerer oppfinnelsen. The following further examples illustrate the invention.

Eksempel 2 N Example 2 N

Eksempel 3 Example 3

Eksempel 4 Example 4

Eksempel 5 Eksempel 6 Example 5 Example 6

Eksempel 7 Eksempel 8 Example 7 Example 8

Eksempel 9 Example 9

Eksempel lo Example lo

MgCr20?6H20 174 g Al2 (Cr207)3 59 g MgO 4o g H3P04 196 g H20 til looo ml MgCr20?6H20 174 g Al2 (Cr207)3 59 g MgO 4o g H3P04 196 g H20 to looo ml

Legering av 65 vektprosent Al 25 vektprosent Mg Alloy of 65% by weight Al 25% by weight Mg

og lo vektprosent Zn 8oo g Overtrukket på kompressorblad {for jetmotorer) and lo weight percent Zn 8oo g Coated on compressor blade {for jet engines)

av metall på jernbasis og herdet ved 371° C i 3o minutter. of iron-based metal and hardened at 371° C for 3o minutes.

Claims (3)

1. Varmeherdbar belegg- eller overtrekks-masse, bestående av en dispersjon av et uorganisk fast material i partikkelform med en kornstørrelse på mindre enn 44 /a. m i en vandig løsning av fosforsyre, kromsyre eller molybdensyre, henholdsvis metallsaltene av disse syrer, med mins^t ett mol pr. liter oppløst fosfat, minst o,3 mol pr. liter oppløst kromat og/eller molybdat og minst o,5 mol pr. liter oppløst metall, idet det faste material i partikkelform er til stede i en mengde på lo til 2ooo g pr. liter av løsningen, karakterisert ved at minst lo vektprosent av det faste material er en legering av aluminium og magnesium, som inneholder minst 3 vektprosent aluminium og minst 3 vektprosent magnesium, idet summen av aluminium og magnesium er minst 8o vektprosent.1. Heat-curable coating or coating compound, consisting of a dispersion of an inorganic solid material in particle form with a grain size of less than 44 /a. m in an aqueous solution of phosphoric acid, chromic acid or molybdic acid, respectively the metal salts of these acids, with at least one mole per liter of dissolved phosphate, at least o.3 mol per liter of dissolved chromate and/or molybdate and at least o.5 mol per liter of dissolved metal, the solid material in particulate form being present in an amount of 1 to 2ooo g per liters of the solution, characterized by at least a weight percent of of the solid material is an alloy of aluminum and magnesium, which contains at least 3 weight percent aluminum and at least 3 weight percent magnesium, the sum of aluminum and magnesium being at least 80 weight percent. 2. Varmeherdbar masse som angitt i kravl, karakterisert ved at legeringen i det vesentlige består av 3o til lo vektprosent aluminium mens resten er magnesium.2. Heat-curable mass as specified in crawl, characterized in that the alloy essentially consists of 30 to 10% aluminum by weight, while the rest is magnesium. 3. Varmeherdbar masse som angitt i krav 1 eller 2, karakterisert ved at det faste material utover aluminium-magnesium-legeringen også inneholder et ytterligere metall, foretrukket aluminium.3. Heat-curable mass as specified in claim 1 or 2, characterized in that the solid material in addition to the aluminium-magnesium alloy also contains a further metal, preferably aluminium.
NO2789/72A 1971-08-06 1972-08-04 HEAT-CURTAINABLE, CORROSION-PROTECTIVE COATING OR COATING PASS ON THE BASIS OF AN ACID-WATER SOLUTION, CONTAINING A POWDER-SHAPED AL / MG ALLOY NO138410C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16985471A 1971-08-06 1971-08-06

Publications (2)

Publication Number Publication Date
NO138410B true NO138410B (en) 1978-05-22
NO138410C NO138410C (en) 1978-08-30

Family

ID=22617470

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2789/72A NO138410C (en) 1971-08-06 1972-08-04 HEAT-CURTAINABLE, CORROSION-PROTECTIVE COATING OR COATING PASS ON THE BASIS OF AN ACID-WATER SOLUTION, CONTAINING A POWDER-SHAPED AL / MG ALLOY

Country Status (13)

Country Link
JP (1) JPS5137087B2 (en)
AU (1) AU458429B2 (en)
BE (1) BE787186A (en)
BR (1) BR7205191D0 (en)
CA (1) CA966954A (en)
DE (1) DE2236274C3 (en)
FR (1) FR2148485B1 (en)
GB (1) GB1358213A (en)
IL (1) IL39811A (en)
IT (1) IT961674B (en)
NL (1) NL165509C (en)
NO (1) NO138410C (en)
SE (1) SE380051B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE825180A (en) * 1974-02-12 1975-08-04 RELATIVELY LOW TEMPERATURE CURING COATING COMPOSITION
JPS5240425A (en) * 1975-09-26 1977-03-29 Mitsubishi Metal Corp Holding apparatus of hollow type mold
JPS5841136B2 (en) * 1975-09-26 1983-09-09 三菱マテリアル株式会社 I can't wait to see what's going on.
JPS5460594U (en) * 1977-10-05 1979-04-26
US4617056A (en) * 1983-12-29 1986-10-14 Sermatech International, Inc. Thick coating compositions
US5478413A (en) * 1994-12-27 1995-12-26 Sermatech International, Inc. Environmentally friendly coating compositions
US6150033A (en) * 1995-06-06 2000-11-21 Sermatech International, Inc. Environmentally friendly coating compositions, bonding solution, and coated parts
DE10163743B4 (en) * 2001-12-21 2006-07-06 AHC-Oberflächentechnik GmbH & Co. OHG Coated steel article, process for its preparation and its use
CN114806233B (en) * 2022-04-02 2023-05-26 中国科学院兰州化学物理研究所 High-finish high-temperature-resistant anti-corrosion inorganic aluminum coating and application method thereof

Also Published As

Publication number Publication date
IL39811A (en) 1975-11-25
NO138410C (en) 1978-08-30
FR2148485A1 (en) 1973-03-23
DE2236274C3 (en) 1975-09-11
BR7205191D0 (en) 1973-06-14
NL7210616A (en) 1973-02-08
IL39811A0 (en) 1972-09-28
JPS5137087B2 (en) 1976-10-13
CA966954A (en) 1975-05-06
AU4476972A (en) 1974-01-24
NL165509C (en) 1981-04-15
AU458429B2 (en) 1975-02-27
DE2236274B2 (en) 1975-02-13
GB1358213A (en) 1974-07-03
DE2236274A1 (en) 1973-03-01
IT961674B (en) 1973-12-10
BE787186A (en) 1973-02-05
JPS4828534A (en) 1973-04-16
FR2148485B1 (en) 1975-03-07
NL165509B (en) 1980-11-17
SE380051B (en) 1975-10-27

Similar Documents

Publication Publication Date Title
US5478413A (en) Environmentally friendly coating compositions
US7993438B2 (en) High temperature resistant coating compositions
US3869293A (en) Inorganic coating compositions and a method
US6150033A (en) Environmentally friendly coating compositions, bonding solution, and coated parts
US3395027A (en) Coating composition and method
US6096139A (en) Triazinethiol-containing anticorrosive coating, anticorrosion treatment method, and anticorrosion treated metal materials
NO138410B (en) HEAT-CURTAINABLE, CORROSION-PROTECTIVE COATING OR COATING PASS ON THE BASIS OF AN ACID-WATER SOLUTION, CONTAINING A POWDER-SHAPED AL / MG ALLOY
US5279650A (en) Corrosion resistant seal coat composition and method of forming
CA2449701C (en) Anti-corrosive pigments and method for making the same
US5279649A (en) Coating composition and method of forming
JPS6369984A (en) Improved coated parts,coating and its adaptation
US5244956A (en) Corrosion inhibiting coating composition
US4840668A (en) Corrosion-inhibiting pigments, their production and use
US4428774A (en) Corrosion inhibiting paint compositions
CN102002665B (en) Method for preparing aluminum part surface zincing powder and method for coating aluminum part surface zincing powder
KR101950495B1 (en) Coating agent for forming rust-preventive coating layer of metal
CA1266766A (en) Coating composition containing particles of leachable chromate figments
JP3454010B2 (en) Non-chrome type metal anticorrosion coating composition
JPH03215574A (en) Rust-preventive composition
JP2986963B2 (en) Rust prevention pigment composition
JPH08239776A (en) Rust preventing method and rust preventing composition for zinc-coated steel and uncoated steel
US3105056A (en) Rust-preventing coating composition
Dasgupta et al. ‘Inertisation’of Rusty Steel for Painting
CA3061082A1 (en) Corrosion inhibitor
EP0066880A2 (en) Anti-corrosive pigment, its use in paints and paints containing the same